
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

266 | P a g e

www.ijacsa.thesai.org

A Comparative Study of Databases with Different

Methods of Internal Data Management

Cornelia Győrödi

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Robert Győrödi

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Alexandra Ștefan

Department of Computer Science and Information

Technology, University of Oradea

Oradea, Romania

Livia Bandici

Faculty of Electrical Engineering and Information

Technology, University of Oradea

Oradea, Romania

Abstract—The purpose of this paper is to present a

comparative study between a non-relational MongoDB database

and a relational Microsoft SQL Server database in the case of an

unstructured representation of data, in XML or JSON format.

We mainly focus our presentation on exploring all the

possibilities that each type of database offers us, in the case that

the data, which has to be stored, cannot or is not wanted to be

normalized. This is a scenario most often found in production

when, for the application that is being developed we are

extracting unstructured data from social networks or all kinds of

different channels that the user might have. The comparative

study is based on the creation of a benchmark application

developed in C# using Visual Studio 2013, which accesses

databases created beforehand with proper optimizations that will

be described.

Keywords—MongoDB; Microsoft SQL Server; NoSQL; non-

relational database

I. INTRODUCTION

Nowadays, applications must support millions of users
simultaneously and be able to handle a huge volume of data. A
relational database model has serious limitations when
handling huge volume of data. These limitations have led to the
development of non-relational databases, also commonly
known as NoSQL (Not Only SQL) [10].

The relational database model has a rigid schema which
means that a schema must be designed in advance before data
had been loaded and all attributes of the schema are uniform
for all elements, in the case of missing values, null values are
used instead [11]. Relational databases are known for their
usefulness in terms of data that can be normalized and data that
requires transactional integrity.

Non-relational databases do not store data in tables, the
schema is not fixed and have very simple data model, and they
can handle unstructured data such as documents, e-mail,
multimedia, and social media efficiently as shown in [12].

We often encounter unstructured data in XML or JSON
format, which cannot be normalized or normalization is not

desired. It is important to know this type of data, when and
why we should use a relational data model such as SQL Server
database instead of a document-oriented database, such as
MongoDB and what are the advantages and disadvantages.

It is necessary to do a careful analysis and consider main
factors as the amount of data, the flexibility of schema, the
budget, the amount of transactions that would be made, when
choosing the data model for the application [13].

Generally, for smaller and medium applications, a
relational database would be advisable and for big applications,
that use and manipulate large quantities of data, a non-
relational database is more appropriate [13].

In the first part of this paper, we will be presenting some
information about SQL Server and the XML data type in SQL
Server, and then we will continue with MongoDB and BSON
data type. These will constitute a general knowledge that one
needs to have in order to understand the logic behind each
database type. In the second part, we will focus on experiments
conducted with the help of the benchmark application in order
to determine which of these two types of databases is more
efficient and in what case. We will also present the
experimental results and comparative study with the scenarios
in which these results have an impact.

II. UNSTRUCTURED REPRESENTATION OF DATA IN

MICROSOFT SQL SERVER

Microsoft SQL Server is a relational database management
system and it is one of the most popular systems used. We can
securely say that, at the moment, the database market is
dominated by systems that support the relational data model
[1].

E. F. Codd proposed the relational model in 1970; D. D.
Chamberlin and others from the IBM research lab from San
Jose have developed the language that we now call SQL
(Structured Query Language) [1]. There are many database
management systems that have incorporated SQL and one of
them is obviously the Microsoft SQL Server.

This work was performed through the Partnerships Program in priority areas,

PN-II-PT-PCCA-2013-4-2225 - No. 170/2014 developed with the support of
MEN - UEFISCDI, “Electromagnetic methods to improve processes wine”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

267 | P a g e

www.ijacsa.thesai.org

Database management systems, such as Microsoft SQL
Server, enjoy a high popularity precisely because they are easy
to use and databases are easy to create. Microsoft SQL Server
offers reliable transaction processing which is why so many
choose this database management system.

Keeping the integrity of our data is often times the most
important thing and Microsoft SQL Server has great support
for it.

A. The XML Data Type

If the data is structured then our best choice for storing this
data is the relational model. If the data is unstructured or semi-
structured, we have several options. One would be using a
NoSQL database and we will describe this possibility in the
next chapter. Another option is using XML data type and this
is particularly a good choice if unstructured data are tied in
some way to structured data that is already stored in relational
database. In this way, we will get a model that is independent
from the platform and can be ported easily as shown in [2].

There are many reasons for choosing XML, some of the
best, according to Microsoft, are shown in [2]:

 we don’t have big quantities of data or the structure of
our data is not known at the moment, we maybe have to
take into consideration that our data structure might
change in the future;

 we have recursive data or the entities don’t have
references among themselves;

 we have to follow a specific order in our data;

 we hardly ever need to update the whole entity at once,
we want to update specific parts of it, change the
structure or just simply query.

We have two options of storing XML data: either store it in
SQL Server database and use its native XML features or
choose to manage it in the file system. We choose considering
some of the best reasons as shown in [2]:

 we need transactional integrity, so the most important
reason would be that we need to share, query and
modify the XML data in an efficient and transacted
way;

 we want our relational data to work with or use parts of
our XML data;

 we need support for querying and updating data,
especially for a cross-domain application;

 we want indexing for an efficient way of querying the
data that is stored in XML format.

For choosing to store our XML data in an SQL Server
database, one has the option to store it in varchar(MAX), but as
we want to take full advantage of what Microsoft SQL Server
can offer us, we are going to talk about storing XML in the xml
data type. We will also keep in mind that storing XML in the
xml data type is slower due to the validation that happens in the
background, but this can give the advantage of having all kinds
of information about the specific order in the document, about
attribute and element values.

In order to obtain the results from the experiments we used
the hybrid model. The hybrid model is a combination of
relational and xml data type columns [2]. The choice was
made in order for the performance to be considerably better.

III. UNSTRUCTURED REPRESENTATION OF DATA IN

MONGODB

MongoDB is a document-oriented, NoSQL database.
NoSQL, or Not Only SQL, is an approach of managing data
and designing databases, which is most useful in the case that
we have big quantities of data [3]. NoSQL databases provide
you with ways of storing and retrieving the data that is not
modelled as the relational databases are modelled. Mainly,
NoSQL databases are designed to allow us insertion of data for
which we do not have a predefined schema as the structure of
our data is not set.

A database like MongoDB does not a have the concept of a
“row”; instead, we have a more flexible model called a
“document” [3]. The format in which the documents are stored
is called BSON which comes from binary JSON and which
offers us a binary representation of the JSON documents.

We have an easy way of modifying the structure of our data
as MongoDB does not restrict to certain types or sizes, without
having a predefined schema, we can experiment with
modelling our data and choose the best option according to the
needs of the application [3].

Often times the most challenging thing that developers are
confronted with is the ever-growing amount of data that our
applications deal with. As we need to store this data, the
problem of scaling arises.

There are two choices when it comes to scaling: either we
can scale up or we can scale out. Scaling up implies upgrading
the machine we already have, basically adding more resources,
while scaling out is getting our data spread across multiple
machines [3]. Scaling up is generally more expensive and the
physical limitation will inevitably be reached at some point [3].
Scaling out will come with a requirement of a bigger effort in
order to administer the multiple machines, but it is generally
less expensive and easier to scale [3].

When wanting to scale out a relational database we have to
understand that it is generally not an easy problem to solve.
However, MongoDB was made precisely with this process in
mind. Being document oriented makes it easy to split the data
and MongoDB figures out how to spread the data across the
newly added machines [3].

The important thing to note about MongoDB is that while it
has many features that facilitate CRUD operations, some
features that we most often use in relational databases like
joins, are not possible in MongoDB. We have a way of
simulating this type of operation, which will be presented later
on in this paper.

IV. EXPERIMENTAL SETUP

Our working scenario is when we have data that cannot be
normalized, but is still connected in some way to existing data
in the relational database. We have a choice between using the
hybrid model for SQL Server against storing the data in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

268 | P a g e

www.ijacsa.thesai.org

MongoDB and just retrieving it from there. For the SQL
Server, we will store an ID and an xml data type field. For
MongoDB, the data will be stored as documents, which
together will form a collection.

In order to have the fairest comparison we created indexes
designed to ensure the optimal performance. As a result, for the
xml data type we created the following indexes:

 primary XML index – this is the most important index
that we created as this one indexes all the XML tags,
values and paths [4]. According to Microsoft, for the
creation of this index we need a clustered index on the
primary key of the table that contains the xml data type
column as SQL Server will use the primary key to
correlate rows in the primary XML index with rows in
our table [4];

 secondary XML index – in order to be able to create
two types of secondary indexes we needed a primary
XML index. These are the types of secondary indexes
created:

o path – used for queries that specify path
expressions because it makes searching faster
[5];

o value – used for value based queries, an
example would be searching for a string [5].

 full-text index on a XML column – according to
Microsoft, it indexes the content of the XML values,
but ignores the XML mark-up [6].

MongoDB has a default index on the _id field, so if now of
creation we do not set it, this _id will be automatically set. Like
the concept of primary key in SQL, this _id prevents the
introduction of two _id values that are the same and is unique
[7]. These are the following indexes created for the MongoDB
database:

 single field – it is either an ascending or descending
index specified by the user on single field of the
document [7];

 compound index – it is an index on multiple fields from
the document and the order in which you specify the
fields is very important as MongoDB will sort after the
first field and then it will sort within each value of the
first field by the second field specified [7];

 text index – it is an index that supports running text
search queries in a string content. One can specify any
field that has a string as a value or an array of strings,
according to MongoDB [8].

In order to run the experiments, we created a benchmark
application using C# and Visual Studio 2013 as an IDE
(Integrated Development Environment). Using the repository
pattern, we created two repositories for each database. For the
execution of the SQL commands, we used SqlCommand from
SqlClient that is the .NET Framework Data Provider for SQL
Server and for MongoDB we used the .NET MongoDB Driver.
Both provide asynchronous workflows.

The architecture of the computer used to run the
experiments:

Operating System Windows 10 Pro

Processor
Intel(R) Core(TM) i5-4200M CPU
@ 2.50 GHz

Installed memory (RAM) 4.00 GB

Disk SSD Crucial MX100 256GB

V. EXPERIMENTAL RESULTS

A. Experiment 1

The first experiment consists of populating the two
databases with 100.000 entries. The chart shown in Figure 1
presents the results of the experiment:

Fig. 1. The results of populating with 100.000 entries

We can easily see the implications of inserting an already
considerable amount of data, both in SQL Server and in
MongoDB. MongoDB is faster, usually being tens of seconds
faster than SQL Server. The difference occurs also because of
the XML validation done by SQL Server. The xml data type
ensures us that each XML instance is correctly formed and this
process slows down the insertion.

As it can be seen in Figure 1, MongoDB is faster than SQL
Server in 9 out of 10 cases. The method used for insertion is
similar in order to not give an advantage through
implementation.

B. Experiment 2

The purpose of this experiment was to search by a
randomly generated ID 1.000 times on each execution. As
previously described the ID on the SQL Server database is a
primary key and on the MongoDB database _id field has a
default index on it.

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s
ec

o
n

d
s

Execution count

Population with 100.000 entries

XML SQL MongoDB

XML SQL Average MongoDB Average

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

269 | P a g e

www.ijacsa.thesai.org

The results of this experiment are pointing to the
conclusion that searching by the ID field on which have a
primary key or default index on it is yielding better results in
SQL Server than in MongoDB. SQL Server is efficient and fast
in these types of operations as it shown in Figure 2.

Fig. 2. The results of searching by ID

C. Experiment 3

The third experiment consisted in searching for a random
string 1.000 times at every execution. In this experiment, we
aim to test the full-text index and the text index that we set for
each database type. The results, as shown in Figure 3, are
rather dramatic as the difference between the two database
types are quite big. MongoDB finds it simply easier and more
efficient to search for particular occurrences of a string.

Fig. 3. The results of searching by string

D. Experiment 4

The purpose of this experiment is to update a field that has
a randomly generated ID 1.000 times.

MongoDB clearly dominates in these types of operations,
as we can see in Fig. 4, the difference is yet again major and in
favour of our NoSQL database. MongoDB enables superior
performance as querying in the XML using the xml data type
methods, but is not nearly as fast as MongoDB’s easy way of
looking up the document by its ID and updating its field.

This is the method chosen to update a field in the SQL
Server database:

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
ili

se
co

n
d

s

Execution count

Search by ID

XML SQL

MongoDB
XML SQL Average

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 s
ec

o
n

d
s

Execution count

Search by a string

XML SQL MongoDB

XML SQL Average MongoDB Average

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

270 | P a g e

www.ijacsa.thesai.org

UPDATE Post SET Xml.modify('replace value of
(/post/category/text())[1] with
(\"UpdatedCategory\")')
WHERE Id = @Id

Fig. 4. The results of updating a field

E. Experiment 5

The aim of this experiment is to compare the execution
speed of join operations. MongoDB does not support join
operations as it goes against the concept of data getting
denormalized [9]. The addition of redundant data reduces the
need for join operations. However, in certain scenarios we do
not want to keep redundant data in our documents, and for this
particular need MongoDB offers two solutions:

 manual references –meaning that we ought to have a
field that will store the primary key of the document
where the related data resides [9];

 DBRefs – this is a reference between two documents
using the _id field, the name of the collection and
optionally the name of the database [9].

In this particular scenario, we know in which database the
collection resides and we have all the information we need in
our application meaning that DBRef does not give us any
advantage over the manual reference. With that in mind, we
chose to use the manual reference and to create an index on the
reference field.

In the setup phase of our SQL Server database, we have
created two tables – one that holds the posts, stores an ID, and
has an xml data type field, which stores the XML and one table
that holds the comments, which stores the post_id and some
random content. We mirrored this in MongoDB by adding a
comments document. It is necessary for us to create an index
on the foreign key field post_id as this will speed up the
operation drastically and will give fairness as we add an index

on the post_id reference field from the MongoDB database as
well.

We added, for each database, between 10 and 100
comments for 25,000 posts.

In our experiment, we made 1,000 join operations using the
ID field which is, as previously mentioned, primary key in the
SQL Server database and default _id index in MongoDB. In
MongoDB’s case, in order to simulate the joint operation we
looked first for the post and then for all the comments made for
that particular post.

As we can see in Figure 5, the results yielded by the SQL
Server database are much better, which is as expected since
with proper optimization there is no way that MongoDB can,
beat SQL’s JOIN. What is notable is that without having an
index on the post_id foreign key field, SQL Server yielded
much worse results than what we can observe here for
MongoDB.

Fig. 5. The results of join operations

VI. CONCLUSIONS

The purpose of all these experiments was to give an answer
to the question: when do we use a relational database and when
do we use a NoSQL database, like MongoDB?

The answer is not nearly as complex as one might think.

First, we need a proper analysis of the operations that we
will do on our database and after that an analysis on the data
that we work with. Microsoft SQL Server offers us
transactional integrity and speed in JOIN operations, however
MongoDB has the superior read and update speed. We must
ask ourselves, “Do we have a rigid schema for our data?” Will
the structure of our data suffer modifications? How flexible do
we need to be when that happens? If our data cannot be
normalized, we have to ask ourselves the question, “Does any

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8 9 10

Ti
m

e
in

 m
ili

se
co

n
d

s

Execution count

Updating a field

XML SQL
MongoDB
XML SQL Average
MongoDB Average

1 2 3 4 5 6 7 8 9 10

XML SQL 1 0.850.880.742.431.411.191.331.381.29

MongoDB 45 50 49 46 50 43 47 51 48 49

XML SQL Average 1 1 1 1 1 1 1 1 1 1

MongoDB Average 47.847.847.847.847.847.847.847.847.847.8

1

5

50

Ti
m

e
in

 s
ec

o
n

d
s

Execution count

Join operations

XML SQL MongoDB

XML SQL Average MongoDB Average

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

271 | P a g e

www.ijacsa.thesai.org

of the existing data in our relational database relate to our data
that cannot be normalized?”

If yes, then is the hybrid model enough? Normalization
often requires of us to store the data in many tables and in
order for us not lose on performance we need many indexes.
The same kind of structure can be modelled in a MongoDB
database and in such a way that we completely get rid of the
need to use JOIN type operations, which will drastically
improve performance and will be considerably faster than any
relational database. Identifying the needs of each application is
key.

In this particular scenario, having data that cannot be
normalized, it is very easy for us to conclude that given huge
amount of data, MongoDB will always be the best solution.
We can go as far as model our data in a single document,
which will always be faster than storing XML in an xml data
type column in an SQL Server database.

To sum up, while we cannot conclude that smaller amounts
of data mean that the hybrid model becomes the best option,
we can say that it entirely depends on the needs of the
application that is being developed.

REFERENCES

[1] Matt Levene, George Loizou, “A Guided Tour of Relational Databases
and Beyond” Published by Springer-Verlag, London, 1999, pp 1-2.

[2] XML Data Type and Columns (SQL Server) – Available:
https://msdn.microsoft.com/en-us/library/hh403385.aspx., accessed
January 2016.

[3] Kristina Chodorow, “MongoDB: The Definitive Guide, Second Edition”
Published by O’Reilly, May 2013, pp 3-4.

[4] TechNet Library, “Primary XML Index” – Available:
https://technet.microsoft.com/en-us/library/bb500237(v=sql.105).aspx,
accessed January 2016.

[5] TechNet Library, ”Secondary XML Index” – Available:
https://technet.microsoft.com/en-us/library/bb522562(v=sql.105).aspx,
accessed January 2016.

[6] TechNet Library, ”Full-Text Index on an XML Column” – Available:
https://technet.microsoft.com/en-us/library/bb522491(v=sql.105).aspx,
accessed January 2016.

[7] MongoDB for Giant Ideas, ”Index Introduction”
https://docs.mongodb.org/manual/core/indexes-introduction/, accessed
February 2016.

[8] MongoDB for Giant Ideas, ”Text Indexes” – Available:
https://docs.mongodb.org/manual/core/index-text/, accessed February
2016.

[9] MongoDB for Giant Ideas, ”Database References” – Available:
https://docs.mongodb.org/manual/reference/database-references,
accessed February 2016.

[10] N. Jatana, S. Puri, M. Ahuja, I. Kathuria, D. Gosain, “A survey and
comparison of relational and non-relational databases”, International
Journal of Engineering Research &Technology (IJERT) ISSN: 2278-
0181, Vol 1, Issue 6, August 2012, pp. 1-5.

[11] R. D. Bulos, J. Bonsol, R. Diaz, A. Lazaro, V. Serra,”Comparative
analysis of relational and non-relational database models for simple
queries in a web-based application”, Research Congress 2013, de la
Salle University Manila, march 7-9, 2013.

[12] K. Sanobar, M. Vanita, “SQL Support over MongoDB using Metadata”,
International Journal of Scientific and Research Publications, Volume
3, Issue 10, October 2013.

[13] C. Győrödi, R. Győrödi, R. Sotoc, “A Comparative Study of Relational
and Non-Relational Database Models in a Web- Based Application”,
International Journal of Advanced Computer Science and Applications,
ISSN : 2158-107X(Print), ISSN : 2156-5570 (Online),Volume 6, Issue
11, 2015, pag. 78-83.

http://thesai.org/Downloads/Volume6No11/Paper_11-A_Comparative_Study_of_Relational_and_Non_Relational_Database.pdf
http://thesai.org/Downloads/Volume6No11/Paper_11-A_Comparative_Study_of_Relational_and_Non_Relational_Database.pdf

