
Containing a Confused Deputy on x86: A Survey of
Privilege Escalation Mitigation Techniques

Scott Brookes
Thayer School of Engineering

Dartmouth College
Hanover, NH, USA

Stephen Taylor
Thayer School of Engineering

Dartmouth College
Hanover, NH, USA

Abstract—The weak separation between user- and kernel-
space in modern operating systems facilitates several forms of
privilege escalation. This paper provides a survey of protection
techniques, both cutting-edge and time-tested, used to prevent
common privilege escalation attacks. The techniques are com-
pared against each other in terms of their effectiveness, their
performance impact, the complexity of their implementation, and
their impact on diversification techniques such as ASLR. Overall
the literature provides a litany of disjoint techniques, each of
which trades some performance cost for effectiveness against
a particular isolated threat. No single technique was found to
effectively mitigate all known and potential attack vectors with
reasonable performance cost overhead.

Keywords—Protection & Security; Virtualization; Kernel ROP;
ret2usr; Kernel Code Implant; rootkits; Operating Systems; Privi-
lege Escalation

I. INTRODUCTION

The modern operating system kernel is one of the most
basic building blocks of any complex computing or control
system. It exists to provide a controlled interface to the
hardware and to protect multiple processes and users from each
others’ actions. In order to accomplish these tasks securely, it
must operate with a higher privilege level than user processes,
making it an attractive target for attackers. As security research
steadily enhances the security of individual processes, the
kernel is being attacked more regularly. Despite the recent
increase in popularity of attacking the kernel, system designers
have long recognized the need for kernel security. MULTICS
[1], [2] was one of the first operating systems to take security
seriously and laid the groundwork for the most popular kernel
security mechanisms still used today. In particular, it defined
operating system “rings”, designated by processor modes,
and memory segmentation and paging structures with flexible
read, write, and/or execute permission bits to allow memory
partitioning and protection.

Unfortunately, almost all modern operating systems share
a common vulnerability: a “weak” separation between kernel-
and user-space. While the operating system provides a unique
address space for each process in order to isolate processes
from one-another, each address space must still allow access to
kernel functionality. This is generally accomplished by sharing
the address space of the kernel with each process. In contrast
to the rare instances of “strong” separation between kernel-
and user-space (such as the 4G/4G split Linux patch [3], 32-
bit XNU [4], and certain systems using the hardware facilities

provided by SPARC V9 hardware [5]), this weak separation
protects the kernel from unauthorized access only with the
mode of operation of the processor. A process that successfully
manages to operate in supervisor mode has carte blanche
access to all of the code and data of the kernel.

Often assisted by the weak separation of kernel- and user-
space, all of the most popular kernels have been compromised
by “rootkits” that give the attacker the highest level of privilege
(i.e. “root”) [6]–[8]. This survey is specifically interested in
privilege escalation attacks that:

• Hijack the facilities of the kernel to create a “con-
fused deputy” that is acting on behalf of the attacker
[9]. This does not include attacks that are correctly
exercising badly designed features of the kernel [10]
or attacks that operate outside of the purview of the
kernel [11].

• Persist even without a specific kernel-level bug or
design flaw. Although most rootkits do require some
kernel level bug (such as a buffer overflow) to be in-
voked, attacks that utilize a specific bug such as [12]–
[14] are beyond the scope of this survey. Additionally,
attacks such as [15] that are enabled by a specific
kernel design flaw will not be considered. These cases
typically have trivial solutions.

• Elevate local privilege to root rather than “horizontal”
privilege escalation such as [16].

• Effect x86 Architectures. The focus of this article is
on the x86 architecture because of its wide use in
data centers and workstations [17]. However, some
techniques specific to ARM will be examined because
they do make valuable and interesting contributions to
the state of the art.

The privilege escalation attacks that fit these criteria fall
into three main categories: kernel code implants [18], kernel-
mode return oriented programming (ROP) [19]–[21], and
return-to-user (ret2usr) attacks [22].

Kernel code implants are attacks in which the adversary
manages to overwrite existing code with (or inject) arbitrary
instructions into the kernel space, and then direct the kernel
to execute those instructions. Well-known examples of this
type of attack include exploitation of classic buffer-overflow
vulnerabilities associated with system calls [23]. If an attacker

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

476 | P a g e
www.ijacsa.thesai.org

U
se

r-
Sp

ac
e

Ke
rn

el
-S

pa
ce

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

fn:
...
JMP kernel_target

attacker_target

attacker_target:
...
execve(shell);

Fig. 1: Return-to-User Privilege Escalation Attack

manages to overflow a buffer on the kernel stack using some
malformed arguments to a system call, it is possible to write
shell-code onto the stack and overwrite a return-address so as
to invoke the shell-code. This attack vector has largely been
mitigated by techniques that mark the stack non-executable
or provide canary code to detect overflows [24], [25] but it
illustrates the core concept.

Kernel return-oriented programming (ROP) attacks defeat
the use of a non-executable stack by using a payload, not
of code directly on the stack, but of carefully crafted stack-
frames that direct computation through a series of gadgets
found in normal kernel code [19]–[21]. Research has shown
that even small programs are likely to contain the gadgets
necessary to generate a ROP Turing machine controlled only
by a carefully crafted payload delivered to the stack [26]. All
operating systems are large and complex enough to guarantee
that the necessary gadgets will be present. As a result, an
attacker with the appropriate knowledge can perform arbitrary
computation using a ROP payload.

A return-to-user attack is enabled directly by weak kernel-
and user-space separation. In this attack, illustrated in Figure
1, a user-controlled target associated with some kernel-code
branch is set to an address in the normal user-space code. The
compromised branch creates a path of execution that leaves
kernel-code, entering user-code, without changing the CPU
privilege level from supervisor mode to user mode. This attack
results in the execution of user-controlled code with kernel-
level privileges. Although hardware extensions such as Intel’s
SMEP [27] aim to mitigate this threat, these extensions are
only slowly being adopted by operating systems and SMEP
bypass techniques have already been demonstrated [28], [29].

Unfortunately, mitigation techniques for privilege escala-

tion do not operate in isolation and it is important that they do
not undermine other security features. For instance, it is easy
to inadvertently inhibit techniques for enhancing security using
non-determinism. This general class of technique was initially
described by Cohen [30] and Forrest [31]. In the years since
these seminal papers, many have explored the idea further.
A recent survey of the area was presented in [32]. Address
Space Layout Randomization (ASLR) is one of the most
widely used applications of this technique. First implemented
by the Linux PaX team [33], many other operating systems
have implemented some form of ASLR including Mac OS X
[34], Windows [35], and others. ASLR loads distinct memory
regions including main program code, libraries, and the stack
and heap at random locations within a program’s virtual
address space making it difficult to predict code entry points.
More fine-grained techniques for diversifying the memory
layout of a process [36], [37] require even more flexibility
than traditional ASLR.

In Summary, this paper surveys the primary technologies
presented in the literature to mitigate privilege escalation. It
provides a comparative analysis based on their effectiveness,
performance impact, and implementation complexity. It also
specifically considers whether the technologies provide suffi-
cient flexibility to coexist with state of the art address space
layout randomization techniques. ASLR is chosen to provide
a window to whether the techniques presented “play nicely”
with other kernel security efforts because it is has widespread
application on real systems and requires flexibility in order to
be implemented fully. Section II examines techniques based on
hypervisors and virtualization while the remaining techniques
are discussed in section III. These techniques are compared
and contrasted in section IV. Finally, some proposals are more
accurately described as architectures than techniques. These
are not directly comparable to the primary methods because
they involve a dramatic paradigm shift. These approaches are
briefly reviewed in Section V.

II. MITIGATION TECHNIQUES BASED ON
VIRTUALIZATION

Virtualization has dramatically changed the face of com-
puting, not simply in terms of security and the way indi-
vidual users interact with computers, but also by enabling
cloud computing by allowing virtual machines to be migrated
between servers. By adding a layer to the standard software
stack, known as a hypervisor [38] or Virtual Machine Monitor
(VMM) [39], an abstraction layer is introduced to isolate the
operating system kernel from the hardware. In many ways,
the hypervisor is to an operating system what an operating
system is to a user process - serving to protect virtual machines
from each other just as a kernel isolates user processes. The
following approaches use virtualization as a means to deliver
security guarantees to the kernel.

A. NICKLE

NICKLE [40] provides memory integrity to kernel code
and thereby denies the execution of kernel code implants. It
uses a VMM to maintain a “shadow” copy of memory that is
verified when any kernel-code is loaded. This is achieved by
comparing the memory to be loaded against a pre-computed
cryptographic hash of the “clean” code distributed by the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

477 | P a g e
www.ijacsa.thesai.org

manufacturer or developer of the code. At boot time, a known
clean copy of the kernel is loaded into the shadow memory and
whenever a kernel module is loaded at runtime, it is verified
and added to the shadow memory.

With the integrity of the shadow memory guaranteed by
off-line a priori cryptographic hashes of trusted code, NICKLE
can ensure that no unauthorized kernel code is executed
by directing all memory accesses targeting kernel code to
retrieve from the shadow memory rather than from regular
memory. Although no attempt is made to deny an attacker from
modifying or injecting kernel code, kernel-mode execution is
contained within trusted memory.

This is achieved transparently to the operating system
kernel, allowing for commodity operating systems to be ex-
ecuted with NICKLE with no modification of kernel code.
Additionally, NICKLE permits the mixing of kernel code and
data within memory pages; this distinguishes NICKLE from
many alternative approaches that require code and data to be
loaded onto unique pages.

Unfortunately, NICKLE requires the off-line computation
of cryptographic hashes for any code that may be executed; this
poses a significant logistical issue for maintaining NICKLE on
real systems and adds additional vulnerabilities associated with
protection and distribution of hash values. NICKLE imposes a
“minimal to moderate impact on system performance, relative
to that of the respective original VMMs” averaging 1%-5%
[40].

B. SecVisor

SecVisor [41] is an alternative virtualization technology
leveraging hardware facilities to virtualize physical memory
associated with modern processors. By utilizing this additional
layer of translation from “guest physical” to “real physical”
memory addresses, additional hardware memory protections
can be enforced. This capability typically provides additional
flexibility in creating memory access security; namely, any
combination of read, write, and execute permissions can be
allowed or denied on a particular page of memory [42].

SecVisor uses physical memory virtualization to mark only
one of kernel- and user-space executable at a time. When a
violation of security rules is detected, the protections can be
swapped if the CPU has indeed changed privilege level, but are
otherwise denied. This defeats ret2usr attacks by preventing
unauthorized processor mode switches as shown in Figure
2. Additionally, the same virtualization allows SecVisor to
enforce standard W⊕X rules on all kernel code pages that the
user has approved. This mitigates the possibility of a kernel
code implant by verifying that all executable kernel code is
non-writable and has been approved for execution by the user.

The security benefits of SecVisor are packaged in a tiny
VMM that provides a small attack surface: only 4092 lines
of source code in total. Unfortunately, SecVisor does have
several weaknesses. The kernel running on top of SecVisor
must guarantee that it does not share code and data on a
single page. Additionally, the kernel has to be modified to
cooperate with SecVisor by issuing VMCALLs to designate
that it is loading or unloading kernel code. Finally, it imposes
an overhead as high as 97% due to the additional translation

U
se

r-
Sp

ac
e

Ke
rn

el
-S

pa
ce

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

fn:
...
JMP kernel_target

attacker_target

attacker_target:
 ...

execve(shell);

Fig. 2: SecVisor’s Protection Against ret2usr Attacks

required by the virtualization of physical memory. For a full
discussion of performance overhead costs, the interested reader
should consult [41].

It is worth noting that [43] discovered two different bugs in
the SecVisor implementation that allowed an attacker to violate
rules that SecVisor claimed to enforce. Although these were
implementation rather than design issues, and easily remedied,
it is clear that even in a small code base security properties
are difficult to reason about and correctly enforce.

C. SVA

The Secure Virtual Architecture (SVA) [44] is a set of
architecture independent instructions that allow an operating
system to interact with hardware. A kernel is ported to use
these instructions, similar to porting a kernel to any new
hardware architecture. Offline, an SVA compiler produces
SVA byte-code from the kernel source code. This compiler
has advanced features to provide memory safety and control-
flow integrity at compile-time, similar to “safe” programming
languages such as Java. The byte-code is distributed to users
and executed on top of a virtualized SVA interpreter that
performs the final step of translating to native target-dependent
machine code.

The effort required to port an operating system to execute
on SVA and the large performance cost are balanced by a
promise of a substantial increase in security. Guaranteed mem-
ory safety and control-flow integrity deny common methods
used to initiate ret2usr, kernel ROP, and kernel code implant
attacks. An important point is that SVA does not set out to
deny these attacks explicitly. Instead, it attempts to deny the
vulnerabilities that enable these forms of attack, such as buffer
overflows. Unfortunately, the infrastructure needed to support

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

478 | P a g e
www.ijacsa.thesai.org

SVA presents a significant hurdle. In addition to porting a
kernel to a new architecture, SVA imposes restrictions on
the kernel’s memory allocation mechanisms that are likely to
require modifications in kernel subsystems such as kmalloc.
The performance cost is high, measured at approximately 50%
on average, but at times reaching a 4-fold reduction.

D. KCoFI

Kernel Control Flow Integrity (KCoFI) [45] leverages the
mechanics of the SVA implementation discussed previously,
but offers only control flow integrity. Specifically, KCoFI
ensures that function calls always enter at the beginning of
some function’s code, and that all returns from a particular
function target the location of a possible call site. In order
to prevent user-space applications from imitating the labels
that KCoFI uses to validate branches, allowable address tran-
sitions are restricted to those within a certain pre-defined
“kernel” range of virtual addresses. This limits the capabilities
of advanced load-time randomization schemes. KCoFI also
provides advanced treatment for the issues that make control
flow integrity particularly difficult in the context of operating
systems. In particular, it takes special care to handle interrupts,
signals, DMA/devices, incomplete branch target information at
compile-time, and page faults.

By verifying all branches at run-time, while the processor
is in kernel mode, KCoFI manages to deny each of the
three primary privilege escalation techniques described in this
survey. Unfortunately, as with SVA, there is a large perfor-
mance cost. Although the average performance impact on a
standard application was 13%, worst-case costs up to 3.5-
fold were reported. In addition, the method shares the SVA
framework and therefore also requires porting the OS to a
new “architecture,” and pre-compiling the kernel and all of its
modules with specialized SVA compilers.

E. SBCFI

State-based control-flow integrity (SBCFI) [46] provides
course grained control-flow integrity for the operating system
kernel. It sets itself apart from traditional control-flow integrity
solutions, such as [47], in two ways. First, it implements moni-
toring externally from the kernel, in a hypervisor. Additionally,
it assumes that attackers will generate persistent control-flow
violations, therefore necessitating that kernel state is checked
only periodically. Consequently, its introspection techniques
allow SBCFI to detect any attack that persistently modifies
the kernel’s known control-flow graph.

The authors of [46] argue that trading strict security rules
for performance by using SBCFI instead of complete CFI is
acceptable because SBCFI will still detect most rootkits. In
particular, they examined 25 rootkits found “in the wild” on
Linux and found that all but one were detected by SBCFI. They
suggest that attacker goals such as packet-sniffing or keystroke
logging demand persistent rather than transient control-flow
changes.

Unfortunately, SBCFI focuses on detection rather than
prevention. This, combined with the focus on only persis-
tent control-flow changes, leaves many avenues open to the
attacker. SBCFI verifies the state of the kernel by checking a
pre-computed hash of the kernel code and checking all function

U
se

r-
Sp

ac
e

Ke
rn

el
-S

pa
ce

Hardware-Enforced Privilege
Mode Boundary

INT/SYSENTER

IRET/SYSEXIT

fn:
...
if target Є kernel

JMP target
else

JMP fault_handler

attacker_target

attacker_target:
...
execve(shell);

Fig. 3: kGuard’s Protection Against ret2usr Attacks

pointers stored in the kernel heap to verify that nothing has
been changed. These checks would not detect a process that
has achieved escalated privilege via a ret2usr attack or a
kernel ROP payload. Overall, SBCFI manages to effectively
deny persistent modifications to the kernel control-flow graph
with minimal performance costs of less than 1% on average.
However, it fails to address the general threat associated with
privilege escalation.

III. OTHER TECHNIQUES

A. kGuard

kGuard [22] aims to deny ret2usr attacks by inserting
guards on the kernel’s control-flow at compile time as shown
in Figure 3. On the x86 platform, the call, jmp, and ret
instructions all redirect control-flow and therefore are vulnera-
ble to being hijacked in order to redirect kernel execution into
user-controlled code. kGuard places an inline check before
any of these instructions. The checks are provided in two
different forms depending on whether the target address is
stored in a register or in memory. The checks simply verify
that the branch target lies within kernel-space. Unfortunately,
if an attacker controls the target of two branches, he can direct
the first to jump directly to the second branch, bypassing the
kGuard check completely. Since the second branch is in kernel-
space, the check on the first branch would allow the control
transfer. To avoid this attack, kGuard includes a compile-time
code diversification mechanism that makes it difficult for the
attacker to locate the address of the second branch.

One of the most significant advantages of kGuard is that, as
a purely compile-time technique, it is portable to any operating
system on any target hardware. It does not require any special
hardware or impose many restrictions on the implementation
of kernel features. Additionally, its average performance cost

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

479 | P a g e
www.ijacsa.thesai.org

is low at approximately 1%, making it deployable on existing
systems. Unfortunately, kGuard does suffer from a variety of
weaknesses. Although its simplicity lends itself to easy deploy-
ment, it is unable to protect against kernel-code implants or
kernel-ROP. Although these are outside of the scope of kGuard,
a kernel code implant could be used to create a ret2usr attack
by implanting an unguarded jump into a user-space region.
Therefore, another technique must be used in combination
with kGuard to deny the possibility of a ret2usr scenario.
This quickly increases in complexity and performance cost as
multiple techniques need to be deployed on the same system.
Additionally, kGuard’s inline checks verify that the target of a
control-flow transfer lies in kernel-space only by checking that
it falls within a predefined range. This limits the capacity for
deploying advanced code randomization during the loading of
the kernel.

B. Return-less Kernels

Recall that Kernel ROP attacks requires “return” instruc-
tions in order to move from one gadget to another. In [48]
the author utilizes “return indirection,” introducing additional
jumps at compile-time to disrupt this mechanism and defeat
kernel ROP attacks. This approach uses a pre-computed table
of all legal return addresses. Rather than pulling a return
address from the stack and jumping to it at the end of a
function, this method reads an address from the specified index
in the return address table. If this table is trusted, the attacker
could only modify which legal return address is used. It is
assumed that most gadgets begin in a location other than a
legal return address, and as a result this technique defeats the
possibility of an attacker to craft a malicious payload.

In addition to introducing return indirection, [48] intro-
duces compiler modifications to avoid instructions with an
embedded “return” opcode. On an architecture such as x86,
variable length instructions make it possible to read different
instructions if the instruction pointer is offset some distance
into an opcode. Without taking care at compile-time to avoid
these scenarios, an attacker could still create gadgets by
indexing the instruction pointer at unintended positions in the
middle of the intended instruction.

The idea of using a return-less kernel is a clearly beneficial.
It effectively mitigates a very particular risk with reasonable
overhead, assessed at approximately 6%. Unfortunately, it
does require modification to the kernel source. Functionality
provided by compiling a higher-level language, such as C, does
not need to be modified, but any functionality defined in assem-
bly language must be manually modified to follow return-less
principles. Since the kernel interfaces with hardware directly,
there is a non-trivial level of assembly code included in most
kernel implementations.

C. PaX

One of the first kernel-hardening efforts was implemented
on Linux by the PaX team [49] circa 2000. UDEREF [50]
utilizes segmentation to create a stricter separation between
kernel- and user-space (denying ret2usr), while the PAGEXEC
and Restricted mprotect() features essentially generate and
enforce typical W⊕X security rules on kernel code and data
to mitigate kernel code implants.

PaX is valuable as a case study in hardening kernels.
Unfortunately, it is less valuable as a mechanism for protecting
modern kernels on today’s hardware. Its protection mech-
anisms were based on Linux-specific software mechanisms
(such as mprotect()) and x86-32-specific hardware features
(such as segmentation). Additionally, the performance cost
was significant, according to [22]. PaX-reported data about
performance cost was available at the time of writing.

D. Sprobes and TZ-RKP

Sprobes [51] and TZ-RKP [52] both utilize the ARM
TrustZone [53] hardware facilities included in modern ARM
processors. TrustZone is a hardware-protected context that can
run tangentially to the regular operation of the processor. The
hardware disables the normal processor context from accessing
anything within the “secure world” created by TrustZone and
transitions between the regular context and TrustZone’s secure
context are limited by hardware to a small well-specified
interface.

Sprobes [51] utilizes TrustZone by installing an introspec-
tion handler in the secure world and installing, at load- or
run-time, special instructions that invoke the secure world at
predetermined points in the execution of the kernel. When one
of these probes is executed, control transfers to the secure
world in which kernel state can be interrogated, control flow or
memory contents verified, or any other number of actions can
be taken. Furthermore, restrictions are placed on the normal
world’s ability to manipulate the virtual memory settings of
the processor. The requirement that these systems be updated
by the secure world guarantees that a kernel cannot manipulate
virtual memory in order to bypass the probes.

TrustZone-based Real-time Kernel Protection (TZ-RKP)
[52] is a similar approach that forces vital control operations
involving the virtual memory layer to be routed through the se-
cure world. TZ-RKP forgoes the probes provided by Sprobes,
but takes a more extreme approach by limiting the kernel’s
control over important system state such as virtual memory.
TZ-RKP forces all attempts to control virtual memory and
other hardware resources through the secure world, providing
a mechanism to verify any changes to the system state. With
a controlled and static system state, it is easier to make claims
about what an attacker may do to manipulate the kernel state.

Both [52] and [51] are built on the TrustZone architecture.
The hardware underlying their implementation allows each to
be implemented with a reasonable performance cost (typically
10%). TrustZone is also attractive because it manages to avoid
the “turtles all the way down” problem in which software layer
x is protected by introducing software layer x − 1, which
simply becomes the new target for attackers and instantiates the
same problem again. Traditional virtualization can be criticized
for this problem, but TrustZone holds itself off to the side of
layer x rather than existing underneath it.

Unfortunately, TrustZone is an ARM-specific technology.
Although ARM is used extensively in mobile and embed-
ded applications, the x86 architecture continues to dominate
desktop and server applications. Although these techniques are
interesting, their utility is limited by a reliance on specialized
hardware.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

480 | P a g e
www.ijacsa.thesai.org

TABLE I: Summary of Examined Attack Mitigation Methods

Project
Kernel
Code

Implant

Kernel
ROP ret2usr

Typical
Reported

Performance
Cost

Maximum
Reported

Performance
Cost

NICKLE [40] 3 7 7 1-5% 19.03%
KCoFI [45] 3 3 3 13% 3.5×
SVA [44] 3 3 3 50% 4×

SecVisor [41] 3 7 3 20% 97%
SBCFI [46] 3 7 7 <1% 13%
kGuard [22] 7 7 3 1% 23.5%

PaX [49], [50] 3 7 3 No Data No Data
Return-less
Kernel [48] 7 3 7 6% 17.32%

Sprobes [51] 3 3 3 10% 1̃0%
TZ-RKP [52] 3 7 3 3% 7.65%

IV. COMPARISON

Table I summarizes and compares the techniques discussed
in the previous sections on the basis of their ability to mitigate
privilege escalations and their expected cost:

• Kernel Code Implant/Kernel ROP/ret2usr: Does this
technique mitigate the risk of privilege escalation
associated with these particular attack vectors?

• Typical/Maximum Performance Cost: What is the typ-
ical and worst-case reported performance costs?

The performance costs listed represent only the maximum
performance cost and an estimated average used only to illus-
trate differences between the techniques. In some cases these
come from micro-benchmarks corresponding to small code
segments, in other cases they come from macro-benchmarks
corresponding to full applications. For the estimated average,
they are often a mix of these tests. Each of the techniques
offers thorough performance cost analyses that could not be
summarized in a simple table. Interested readers should consult
the original paper for each technique for a more complete
treatment.

Table II compares the techniques on the basis of general
observations regarding their operation:

• x86-64 compatible: Most desktop and server-class sys-
tems use the 64-bit x86 architecture. Is the technique
viable with the hardware provided by the x86-64
hardware?

• Memory and/or Control Flow Integrity: Which is the
primary mechanism by which the tool delivers its
security guarantees?

• Code-Diversity Compatible: Is the technique suffi-
ciently flexible to allow for advanced fine-grained
address space layout randomization techniques?

• Code Size: How many lines of code (LoC), as a
measure of the attack surface presented, are used in
the implementation of the technique as presented?

It is clear from Table I that while KCoFI and SVA offer
the most protection against the three different techniques asso-
ciated with privilege escalation, they also come with dramati-
cally more performance overhead than the other methods. This
conforms to expectations in that the more thorough the security

TABLE II: Further Characteristics of Examined Methods

Project x86-64
Compatible

(M)emory
and/or

(C]ontrol [F)low
Integrity

Code-Diversity
Compatible LoC

NICKLE [40] 3 M 3 932
KCoFI [45] 3 CF 7 5579
SVA [44] 3 M & CF 3 No Data

SecVisor [41] 3 M 3 4092
SBCFI [46] 3 CF 3 No Data
kGuard [22] 3 CF 7 1000

PaX [49], [50] 7 M & CF 7 No Data
Return-less
Kernel [48] 3 CF 3 2100

Sprobes [51] 7 M & CF 3 No Data
TZ-RKP [52] 7 M 3 No Data

measure, the higher its performance impact. Sprobes and TZ-
RKP appear exceptional as they enjoy the lowest performance
costs and strong security claims. Unfortunately, each utilizes
the ARM TrustZone architecture and consequently are unavail-
able on the Intel x86 architecture. Additionally, vulnerabilities
have already been discovered in some TrustZone hardware
implementations [54].

V. PARADIGM-SHIFT TECHNIQUES

The techniques compared in Tables I and II each provide
a modification to some part of the conventional kernel design,
implementation, or build process that mitigates a particular
threat. There are a few approaches, however, that attempt
to offer similar security benefits by redefining the security
paradigm rather than simply patching the status quo best
practices. This radical departure from the current state of the
art means that they cannot easily be compared to the previously
described techniques. In all cases, it also means that they have
not yet been widely accepted.

A. Microkernels

The idea of a microkernel departs from the standard
“monolithic” kernel architecture by emphasizing a small code-
base for the operating system kernel. There have been several
examples of microkernels presented in the literature such as
Mach [55], Minix [56], L4 [57], QNX [58], Bear [59], and
many others.

All microkernels aim to minimize the source code in order
to decrease the likelihood of vulnerabilities [60]. Additionally,
a small code base allows for the possibility of using formal
analysis and formal verification techniques [61], [62]. In order
to keep the microkernel small, core functionality such as device
drivers are migrated into user level processes. Additionally,
many microkernels use message-passing for all communication
between two processes or a process and the kernel. This
provides a more easily verified and secured narrow interface
between components.

By exporting core functionality, such as device drivers, into
user-space microkernels struggle to offer the same levels of
performance as monolithic kernels. Consequently, they have
yet to replace monolithic kernels in common applications on
commodity hardware.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

481 | P a g e
www.ijacsa.thesai.org

B. ExoKernel

The ExoKernel [63] suggests redefining the nature of the
kernel entirely. Rather than providing abstractions that the
application developer can use to access hardware, the ExoK-
ernel provides only the thinnest possible layer to manage the
multiplexing of hardware resources. Therefore, the ExoKernel
circumvents tasks normally reserved for the kernel such as
buffering network communications, interrupt or exception han-
dling, virtual memory management, and other normal kernel
functions. Instead, each individual application must define its
own abstractions to handle these tasks.

Although likely to offer more security for a system overall,
the ExoKernel appears significantly complicate application de-
velopment. Many of the tasks that a secure kernel can provide
to protect all processes, such as virtual memory management,
become the responsibility of the application developer. This
is likely to make individual applications less secure since
application programmers may lack the technical sophistica-
tion to interact directly with hardware, interrupts, atomicity,
and concurrency. These central parts of the operating system
exist to provide applications with well-defined interfaces to
this complex functionality. The ExoKernel eliminates those
interfaces by design.

C. Unikernels

Unikernels trade flexibility for security and performance
by running a single process within a single address space
[64]. Eliminating the requirement to support multiple processes
and/or multiple users simplifies the code base required to
implement a unikernel and reduces the overhead required to
complete a single unit of useful work. Several examples have
been deployed alongside virtualization technologies in cloud
applications [65]–[67]. Despite their proven usefulness for
providing fast, highly focused applications, unikernels don’t,
in isolation, provide protection from most of the attack vectors
discussed in this paper. Additionally, in order to support the
multiple-user multiple-job paradigm that conventional applica-
tions require to operate effectively, they require a hypervisor
for scheduling and other process-management type tasks. In
a sense, this is simply asking the hypervisor to act as an
operating system and the same issues with conventional op-
erating system design will simply move one layer deeper in
the software stack.

VI. CONCLUSION

Each of the techniques examined in this survey makes
valuable contributions to the security of modern operating
systems. Those that offer the most comprehensive security
suffer from high performance costs or specialty hardware
requirements. On the other hand, many mitigate a specific,
focused risk to kernel security while suffering only a small
performance cost. Unfortunately, there is no single solution
that offers both acceptable performance and comprehensive
security coverage on the popular x86 platform. The impact
of combining the techniques to improve coverage is not well
understood in terms of complexity, performance, or security.
This survey has also examined techniques that, rather than pre-
senting incremental improvements on the status quo, attempt to
dramatically redefine the notion of an operating system. These

techniques also suffer from nontrivial performance costs in
addition to the logistical challenges associated with a paradigm
shift.

Overall, the kernel developer has a wide variety of tech-
niques to choose from, but must balance individual strengths
in privilege escalation prevention with the associated penalties
in performance and complexity. The authors believe that future
work aimed at mitigating privilege escalation will continue to
have performance issues without some change in the underly-
ing hardware or kernel design paradigms. Modern commodity
operating systems are so highly developed that there is unlikely
to be some technique hiding in a dark corner that will not
decreasing perforance by requiring extra work.

NOTICE

The U.S. Government is authorized to reproduce and
distribute reprints for Governmental purposes notwithstanding
any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense
Advanced Research Projects Agency (DARPA) or the U.S.
Government. This material is based on research sponsored by
DARPA under agreement number: FA8750-11-2-0257.

REFERENCES

[1] R. C. Daley and J. B. Dennis, “Virtual memory, processes, and sharing
in multics,” Communications of the ACM, vol. 11, no. 5, pp. 306–312,
1968.

[2] F. J. Corbató and V. A. Vyssotsky, “Introduction and overview of
the multics system,” in Proceedings of the November 30–December 1,
1965, Fall Joint Computer Conference, Part I, ser. AFIPS ’65 (Fall,
part I). New York, NY, USA: ACM, 1965, pp. 185–196. [Online].
Available: http://doi.acm.org/10.1145/1463891.1463912

[3] I. Molnar, “4G/4G split on x86, 64 GB RAM (and more) support,”
July 2003. [Online]. Available: https://lwn.net/Articles/39283/

[4] D. Keuper, “Xnu: a security evaluation,” December 2012. [Online].
Available: http://essay.utwente.nl/62852/

[5] R. McDougall and J. Mauro, Solaris internals: Solaris 10 and Open-
Solaris kernel architecture. Pearson Education, 2006.

[6] K. Way, “Lastore-daemon in deepin 15 results in privilege escalation,”
February 2016. [Online]. Available: https://www.exploit-db.com/
exploits/39433/

[7] J.-J. Khalife, “MS15-010/CVE-2015-0057 win32k Local Privilege
Escalation,” December 2015. [Online]. Available: https://www.
exploit-db.com/exploits/39035/

[8] rebel, “issetugid() + rsh + libmalloc osx local root,” July 2015.
[Online]. Available: https://www.exploit-db.com/exploits/38371/

[9] N. Hardy, “The confused deputy: (or why capabilities might have
been invented),” SIGOPS Oper. Syst. Rev., vol. 22, no. 4, pp.
36–38, Oct. 1988. [Online]. Available: http://dl.acm.org/citation.cfm?
id=54289.871709

[10] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy,
“Privilege escalation attacks on android,” in Information Security,
ser. Lecture Notes in Computer Science, M. Burmester,
G. Tsudik, S. Magliveras, and I. Ili, Eds. Springer Berlin
Heidelberg, 2011, vol. 6531, pp. 346–360. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-18178-8 30

[11] Kdm, “NTIllusion: A portable Win32 userland rootkit,” 62. [Online].
Available: http://phrack.org/issues/62/12.html

[12] “CVE-2016-0728,” January 2016. [Online]. Available: http://www.cve.
mitre.org/cgi-bin/cvename.cgi?name=2016-0728

[13] “CVE-2013-2094,” May 2013. [Online]. Available: http://www.cve.
mitre.org/cgi-bin/cvename.cgi?name=2013-2094

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

482 | P a g e
www.ijacsa.thesai.org

[14] metasploit, “Chkroot local privilege escalation,” November 2015.
[Online]. Available: https://www.exploit-db.com/exploits/38775/

[15] V. P. Kemerlis, M. Polychronakis, and A. D. Keromytis, “Ret2dir:
Rethinking kernel isolation,” in Proceedings of the 23rd USENIX
Conference on Security Symposium, ser. SEC’14. Berkeley, CA,
USA: USENIX Association, 2014, pp. 957–972. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2671225.2671286

[16] “CWE-639: Authorization Bypass Through User-Controlled Key,”
September 2008. [Online]. Available: https://cwe.mitre.org/data/
definitions/639.html

[17] T. P. Morgan, “x86 servers dominate the datacenter - for now,”
June 2015. [Online]. Available: http://www.nextplatform.com/2015/06/
04/x86-servers-dominate-the-datacenter-for-now/

[18] A. Lineberry, “Malicious code injection via/dev/mem,” 2009.

[19] E. Buchanan, R. Roemer, S. Savage, and H. Shacham, “Return-
Oriented Programming: Exploitation without Code Injection,” 2008.
[Online]. Available: https://www.blackhat.com/presentations/bh-usa-08/
Shacham/BH US 08 Shacham Return Oriented Programming.pdf

[20] H. Shacham, “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86),” in Proceedings of the
14th ACM Conference on Computer and Communications Security,
ser. CCS ’07. New York, NY, USA: ACM, 2007, pp. 552–561.
[Online]. Available: http://doi.acm.org/10.1145/1315245.1315313

[21] R. Hund, T. Holz, and F. C. Freiling, “Return-oriented rootkits:
Bypassing kernel code integrity protection mechanisms,” in Proceedings
of the 18th Conference on USENIX Security Symposium, ser. SSYM’09.
Berkeley, CA, USA: USENIX Association, 2009, pp. 383–398.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1855768.1855792

[22] V. P. Kemerlis, G. Portokalidis, and A. D. Keromytis, “kGuard:
Lightweight Kernel Protection Against Return-to-user Attacks,” in
Proceedings of the 21st USENIX Conference on Security Symposium,
ser. Security’12. Berkeley, CA, USA: USENIX Association, 2012, pp.
39–39. [Online]. Available: http://dl.acm.org/citation.cfm?id=2362793.
2362832

[23] A. One, “Smashing the stack for fun and profit,” Phrack, vol. 7,
no. 49, November 1996. [Online]. Available: http://www.phrack.com/
issues.html?issue=49&id=14

[24] C. Cowan, C. Pu, D. Maier, H. Hintony, J. Walpole, P. Bakke, S. Beattie,
A. Grier, P. Wagle, and Q. Zhang, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks,” in Proceedings of
the 7th Conference on USENIX Security Symposium - Volume 7, ser.
SSYM’98. Berkeley, CA, USA: USENIX Association, 1998, pp. 5–5.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1267549.1267554

[25] C. Cowan, “Non-executable stack,” 1997.

[26] “Microgadgets: Size does matter in turing-complete return-oriented
programming,” in Presented as part of the 6th USENIX
Workshop on Offensive Technologies. Berkeley, CA: USENIX,
2012. [Online]. Available: https://www.usenix.org/conference/woot12/
workshop-program/presentation/Homescu

[27] S. Fischer, “Supervisor mode execution protection,” 2011,
nSA Trusted Computing Conference and Exposition.
[Online]. Available: https://www.ncsi.com/nsatc11/presentations/
wednesday/emerging technologies/fischer.pdf

[28] D. Rosenburg, “SMEP: What is it, and How to Beat it on Linux.”
June 2011. [Online]. Available: http://vulnfactory.org/blog/2011/06/05/
smep-what-is-it-and-how-to-beat-it-on-linux/

[29] keegan, “Attacking Hardened Linux Systems with Kernel JIT Spraying,”
June 2011. [Online]. Available: http://mainisusuallyafunction.blogspot.
com/2012/11/attacking-hardened-linux-systems-with.html

[30] F. B. Cohen, “Operating system protection through program evolution,”
Computers & Security, vol. 12, no. 6, pp. 565–584, 1993.

[31] S. Forrest, A. Somayaji, and D. Ackley, “Building diverse computer
systems,” in Proceedings of the 6th Workshop on Hot Topics in
Operating Systems (HotOS-VI), ser. HOTOS ’97. Washington, DC,
USA: IEEE Computer Society, 1997, pp. 67–. [Online]. Available:
http://dl.acm.org/citation.cfm?id=822075.822408

[32] P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in Security and Privacy (SP), 2014 IEEE Symposium
on, May 2014, pp. 276–291.

[33] “Address Space Layout Randomization,” PaX Team, Tech. Rep., 2001.
[Online]. Available: https://pax.grsecurity.net/docs/aslr.txt

[34] “OS X Mavericks Core Technologies Overview,” Apple, Tech. Rep.,
October 2013. [Online]. Available: http://www.apple.com/media/us/
osx/2013/docs/OSX Mavericks Core Technology Overview.pdf

[35] O. Whitehouse, “An Analysis of Address Space Layout Randomization
on Windows Vista,” Symantec, Tech. Rep., 2007.

[36] M. Kanter and S. Taylor, “Attack Mitigation through Diversity,” in
Military Communications Conference, MILCOM 2013 - 2013 IEEE,
Nov 2013, pp. 1410–1415.

[37] ——, “Diversity in Cloud Systems Through Runtime and Compile-
time Relocation,” in Proceedings of the 13th IEEE Conference on
Technologies for Homeland Security, 2013, pp. 396–402.

[38] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’03. New York,
NY, USA: ACM, 2003, pp. 164–177. [Online]. Available: http:
//doi.acm.org/10.1145/945445.945462

[39] R. P. Goldberg, “Survey of virtual machine research,” Computer,
vol. 7, no. 9, pp. 34–45, Sep. 1974. [Online]. Available: http:
//dx.doi.org/10.1109/MC.1974.6323581

[40] R. Riley, X. Jiang, and D. Xu, “Guest-transparent prevention of
kernel rootkits with vmm-based memory shadowing,” in Proceedings
of the 11th International Symposium on Recent Advances in
Intrusion Detection, ser. RAID ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 1–20. [Online]. Available: http://dx.doi.org/10.1007/
978-3-540-87403-4 1

[41] A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A Tiny
Hypervisor to Provide Lifetime Kernel Code Integrity for Commodity
OSes,” SIGOPS Oper. Syst. Rev., vol. 41, no. 6, pp. 335–350, Oct.
2007. [Online]. Available: http://doi.acm.org/10.1145/1323293.1294294

[42] Intel 64 and IA-32 Architectures Software Developer’s Manual Com-
bined Volumes: 1, 2A, 2B, 2C, 3A, 3B, and 3C, Intel, June 2014.

[43] J. Franklin, A. Seshadri, N. Qu, S. Chaki, and A. Datta, “Attacking,
repairing, and verifying secvisor: A retrospective on the security of a
hypervisor,” Carnegie Mellon University, Tech. Rep., 2008.

[44] J. Criswell, A. Lenharth, D. Dhurjati, and V. Adve, “Secure
virtual architecture: A safe execution environment for commodity
operating systems,” in Proceedings of Twenty-first ACM SIGOPS
Symposium on Operating Systems Principles, ser. SOSP ’07. New
York, NY, USA: ACM, 2007, pp. 351–366. [Online]. Available:
http://doi.acm.org/10.1145/1294261.1294295

[45] J. Criswell, N. Dautenhahn, and V. Adve, “Kcofi: Complete control-
flow integrity for commodity operating system kernels,” in Security and
Privacy (SP), 2014 IEEE Symposium on, May 2014, pp. 292–307.

[46] N. L. Petroni, Jr. and M. Hicks, “Automated detection of persistent
kernel control-flow attacks,” in Proceedings of the 14th ACM
Conference on Computer and Communications Security, ser. CCS ’07.
New York, NY, USA: ACM, 2007, pp. 103–115. [Online]. Available:
http://doi.acm.org/10.1145/1315245.1315260

[47] U. Erlingsson and F. B. Schneider, “Sasi enforcement of security
policies: A retrospective,” in Proceedings of the 1999 Workshop on
New Security Paradigms, ser. NSPW ’99. New York, NY, USA:
ACM, 2000, pp. 87–95. [Online]. Available: http://doi.acm.org/10.
1145/335169.335201

[48] J. Li, Z. Wang, X. Jiang, M. Grace, and S. Bahram, “Defeating
return-oriented rootkits with ”return-less” kernels,” in Proceedings of
the 5th European Conference on Computer Systems, ser. EuroSys ’10.
New York, NY, USA: ACM, 2010, pp. 195–208. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755934

[49] PaX, “Homepage of the PaX Team,” 2013. [Online]. Available:
http://pax.grsecurity.net

[50] B. Spengler, “uderef,” 2007. [Online]. Available: https://grsecurity.net/
∼spender/uderef.txt

[51] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: Enforcing kernel code
integrity on the trustzone architecture,” arXiv preprint arXiv:1410.7747,
2014.

[52] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma,
and W. Shen, “Hypervision across worlds: Real-time kernel protection

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

483 | P a g e
www.ijacsa.thesai.org

from the arm trustzone secure world,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14. New York, NY, USA: ACM, 2014, pp. 90–102. [Online].
Available: http://doi.acm.org/10.1145/2660267.2660350

[53] “Building a Secure System using TrustZone
Technology,” ARM, Tech. Rep. [Online]. Available:
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/
PRD29-GENC-009492C trustzone security whitepaper.pdf

[54] D. Rosenberg, “Qsee trustzone kernel integer over flow vulnerability,”
2014.

[55] M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian,
and M. Young, “Mach: A new kernel foundation for unix development,”
1986, pp. 93–112.

[56] J. N. Herder, H. Bos, B. Gras, P. Homburg, and A. S. Tanenbaum,
“Minix 3: A highly reliable, self-repairing operating system,” SIGOPS
Oper. Syst. Rev., vol. 40, no. 3, pp. 80–89, Jul. 2006. [Online].
Available: http://doi.acm.org/10.1145/1151374.1151391

[57] D. Potts, S. Winwood, and G. Heiser, “Design and implementation of
the l4 microkernel for alpha multiprocessors,” 2002.

[58] D. Hildebrand, “An architectural overview of qnx,” in Proceedings
of the Workshop on Micro-kernels and Other Kernel Architectures.
Berkeley, CA, USA: USENIX Association, 1992, pp. 113–126.
[Online]. Available: http://dl.acm.org/citation.cfm?id=646405.759105

[59] C. Nichols, M. Kanter, and S. Taylor, “Bear – a resilient kernel for
tactical missions,” in Military Communications Conference, MILCOM
2013 - 2013 IEEE, Nov 2013, pp. 1416–1421.

[60] R. K. Pandey and V. Tiwari, “Article: Reliability issues in open source
software,” International Journal of Computer Applications, vol. 34,
no. 1, pp. 34–38, November 2011, full text available.

[61] C. Baumann, B. Beckert, H. Blasum, and T. Bormer, “Formal
verification of a microkernel used in dependable software systems,”
in Computer Safety, Reliability, and Security, ser. Lecture Notes in
Computer Science, B. Buth, G. Rabe, and T. Seyfarth, Eds. Springer
Berlin Heidelberg, 2009, vol. 5775, pp. 187–200. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-04468-7 16

[62] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification of an
os microkernel,” ACM Trans. Comput. Syst., vol. 32, no. 1, pp. 2:1–2:70,
Feb. 2014. [Online]. Available: http://doi.acm.org/10.1145/2560537

[63] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr., “Exokernel:
An operating system architecture for application-level resource
management,” in Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, ser. SOSP ’95. New York,
NY, USA: ACM, 1995, pp. 251–266. [Online]. Available: http:
//doi.acm.org/10.1145/224056.224076

[64] A. Madhavapeddy and D. J. Scott, “Unikernels: Rise of the virtual
library operating system,” Queue, vol. 11, no. 11, p. 30, 2013.

[65] A. Bratterud, A.-A. Walla, P. E. Engelstad, K. Begnum et al., “In-
cludeos: A minimal, resource efficient unikernel for cloud services,”
in 2015 IEEE 7th International Conference on Cloud Computing
Technology and Science (CloudCom). IEEE, 2015, pp. 250–257.

[66] A. Kivity, D. Laor, G. Costa, P. Enberg, N. HarEl, D. Marti, and
V. Zolotarov, “Osvoptimizing the operating system for virtual ma-
chines,” in 2014 usenix annual technical conference (usenix atc 14),
2014, pp. 61–72.

[67] J. Martins, M. Ahmed, C. Raiciu, and F. Huici, “Enabling fast, dynamic
network processing with clickos,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking.
ACM, 2013, pp. 67–72.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 4, 2016

484 | P a g e
www.ijacsa.thesai.org

