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Abstract—Majority logic decoding (MLD) codes are very
powerful thanks to the simplicity of the decoder. Nevertheless,
to find constructive families of these codes has been recognized
to be a hard job. Also, the majority of known MLD codes are
cyclic which are limited in the range of the rates. In this paper
a new adaptation of the Iterative threshold decoding algorithm
is considered, for decoding Quasi-Cyclic One Step Majority
logic codes (QC-OSMLD) codes of high rates. We present the
construction of QC-OSMLD codes based on Singer difference sets
of rate 1/2, and codes of high rates based on Steiner triple system
which allows to have a large choice of codes with different lengths
and rates. The performances of this algorithm for decoding these
codes on both Additive White Gaussian Noise (AWGN) channel
and Rayleigh fading channel, to check its applicability in wireless
environment, is investigated.

Keywords—Iterative threshold decoding; Quasi-Cyclic codes;
OSMLD codes; Majority logic decoding; Steiner Triple Sys-
tem; BIBD

I. INTRODUCTION

Today LDPC codes [1] are present in most Telecom stan-
dards like DVB-S2 and WiMAX [2]. However, the decoding of
these codes remain algorithmically complex and in situations
such as the DVB-S2 [3] are often concatenated with codes
such as Reed Solomon to improve performances. In our point
of view, the MLD codes are better competitors for LDPC codes
and this for several reasons. In fact, the hardware implemen-
tation of these codes is very simple and only requires AND
gates. The cyclic OSMLD codes can be decoded iteratively
by an extension of the Massey algorithm [4] which is less
complex than the believe propagation algorithm but almost
with the same performances.

In this article, the studied subject is QC-OSMLD codes
which, unlike the cyclic OSMLD codes, offer a wide range
of rates equivalent to that used in the standards. The first
QC-OSMLD codes were constructed by L. Townsend and
E. Weldone [5], but most of these codes are constructed by
either computer search or hand through trial-and-error, except
the construction based on Singer Difference set, which is a
geometry projective method. Later, Chen Zhi and al[6] had

given a mathematical formulation for the construction of QC-
OSMLD codes with high rates, these codes are based on
Steiner Triple system (STS) .

Iterative threshold decoding QC-OSMLD codes of rate 1/2
has proven to perform remarkably well on Additive White
Gaussian Noise (AWGN) channel [7]. the purpose of this paper
is to investigate the performance of iterative threshold decoding
of QC-OSMLD codes of rate n0−1

n0
constructed from Singer

Difference Set, and STS on both Rayleigh fading channel and
AWGN channel, is investigated .

The organization of the paper is as follows. The first
section provides the reader with a concise description of not
only the OSMLD codes but also the majority logic decoding
algorithm and the Quasi-Cyclic Codes. Afterwards, the second
section defines the Singer Difference Set, and it presents
the constructed codes based on this algorithm. Section 3 is
about the construction of QC-OSMLD codes of rate of the
form n0−1

n0
based on STS, starting with a description of

Balanced Incomplete Block Design (BIBD), then presenting
the STS construction, and eventually, presenting the different
constructed codes. Section 4 introduces the encoding method
after describing the iterative threshold decoding algorithm and
explaining the modification made for the Rayleigh fading
channel. Finally, the last part presents the simulations results
and analyses the ITD algorithm for decoding the constructed
codes on both Rayleigh fading channel and AWGN channel.

II. QUASI-CYCLIC OSMLD CODES

A. OSMLD Codes

Consider an (n, k) linear code C with parity-check matrix
H. The row space of H is an (n, n-k) code, denoted by C⊥ ,
which is the dual code of C or the null space of C. For any
vector v in C and any vector w in C⊥ , the inner product of v
and w is zero [8]. Now let consider that a codeword vector in
C is transmitted over a binary symmetric channel. Taking into
consideration that e(e1, e2,..., en) and r(r1, r2,..., rn) are the
error vector and the received vector, respectively. Then r = v
+ e. The construction of the below linear sum of the received
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vector for any vector w in the dual code C⊥ :

A =
n∑

p=1

rpwp (1)

Which is called a parity-check sum. Using the fact that
<w,v>=0, the following relationship between the parity-check
sum A and error digits in e is obtained:

A =
n∑

p=1

epwp (2)

Suppose that there exist J vectors in the dual code C⊥ , which
have the following properties:

1) The jth component of each vector wi is a 1.
2) For i6=j there is at most one vector whose ith com-

ponent is a 1.

These J vectors are said to be orthogonal on the jth digit
position. They are called orthogonal vectors. Now, let us form
J parity-check sums from these J orthogonal vectors,
For each i in 1,.., J Ai =

∑
p 6=1

ep + ej the error digit ej is

checked by all the check sums above. Because of the second
property of the orthogonal vectors, any error digit other than
ej is checked by at most one check sum. These J check sums
are said to be orthogonal on the error digit ej . If all the error
digits in the sum Ai are zero for i6=j, the value of Ai is equal
to ej . Based on this fact, the parity-check sums orthogonal on
ei can be used to estimate ei, or to decode the received digit
ri.

B. Majority logic decoding principle

The error digit ej is decoded as 1 if at least one-half of
the check sums orthogonal on ej , are equal to 1; otherwise,
ej is decoded as 0 like majority rule [8]. When C is a cyclic
code, each ei can be decoded simply by cyclically permuting
the received word r into the buffer store.

Example 1:
Let us consider the (7,3) code, which is the short code in
difference set codes class. This code is specified by the perfect
difference set P=0, 2, 3 of order 21. From this perfect set, the
following three check sums orthogonal on e7 could be formed:
A1 = e4 + e5 + e7
A2 = e2 + e6 + e7
A3 = e1 + e3 + e7
If a simple error e=(000001) occurs, then A1 = A2 = A3 = 1.
If a double error occurs; for example, e7=1 and one value of
e1, ..., e6 is equal to 1, then two values of Ai are 1. So we
can say that :
- e7=1 if only and if at least 2 values of Ai are 1
- e7=0, otherwise

C. Quasi-cyclic Codes

A code is said to be quasi-cyclic if every cyclic shift of
a codeword by p positions results in another codeword [9].
Therefore, a QC codes are a generalization of cyclic codes
with p = 1. A QC code (mn0, mk0) with a minimum distance d

based on difference set can be specified with k0 disjoints differ-
ence sets {D1,D2,...,Dk0} such that Di(di0,di1,di2,...,di(S−1))
of order S, chosen from the set {0,1,2,..., mk0} [5]. The
parity check matrix H in the systematic form of such code
is completely defined as follows:

H = [P1P2...Pk0
In−k] (3)

The circulant matrix Pi is deducted from the difference set
Di; the elements of Di can specify the position in the matrix
header Pi with one, while dij represents one in the position
j, the others rows are obtained by a cyclic shift of the header.
Where I represents the identity matrix.

The majority logic decoding algorithm for QC codes is the
same as cyclic codes. However, there is a little bit difference
between them. Hence, in cyclic codes each error digit ei can
be decoded by cyclically permuting the received word r, but in
QC codes in systematic form, shift is done cyclically by one
position of each (n-k) bits simultaneously.

Example 2:
Let consider the QC code C(6,3,3). This code is of the rate
1/2 and based on the Singer difference set DS{0,1} of order
2.

The parity check matrix H in systematic form is [P I3]

(
1 1 0 1 0 0
0 1 1 0 1 0
1 0 1 0 0 1

)
The parity-check sum orthogonal on e3 is obtained from the
parity check matrix H :
A1 = e2 + e3 + e5
A2 = e1 + e3 + e6

III. CONSTRUCTION BASED ON SINGER DIFFERENCE SET

A. Signer Difference Set

A difference set [10] of order S and modulo m ≥ S(S
- 1)+1 is defined as a collection of S integer specified from
the set {0,1,...,m-1} such that no two of the S(S - 1) ordered
differences modulo m are identical. If m=S(S - 1)+1, then
for any non-zero integer n < m, there is exactly one pair
of elements in the difference set such that their difference
is congruent to n modulo m. Such a set is called a perfect
difference set.

Singer [11] has demonstrated how to construct such sets
when S = pu + 1 and p is prime. Points and lines in
the projective geometry PG(m - 1, q) form a difference set
of parameters [q,m]. The construction of Singer difference
sets with parameters [q,m] is straightforward if a primitive
polynomial of degree m in Fq is known. The following is the
basis of Singer algorithm:

1) Choose a primitive polynomial of degree m in Fq

f(x) = xm +
m∑
i=1

aix
m−i (4)
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2) Choose the start value λ0 = 0, λ1, λ2,..., λm−1

3) Calculate the recurrence relation

λn = −
m∑
i=1

aiλn−i (5)

4) The set of integers { 0 ≤ i < qm−1
q−1 : λi = 0 } is a

Pefect Difference Set

Example 3:

1) Taking primitive polynomial x4 +x3 +2 of degree 4
on F3

2) Choosing the start sequence λ0 = 0, λ1 = 0, λ2 = 1
3) Then, calculating the recurrence relation as

follows: λn = 2λn−1 + λn−4 yields the sequence
10001212201112222020211201021002212022002000
. . .

4) The Positions where λi = 0 are
{1,2,3,9,17,19,24,26,29,30,35,38,39} that form
the Perfect Difference Set.

B. Construction based on Singer Difference Set

The Singer construction allows to have codes with rate 1
2 .

It’s possible to construct a single perfect difference set of order
S = pu + 1 and modulo m = p2u + pu + 1 where p is a prime
number, and u is a positive integer. As a results, it’s always
possible to construct codes with minimum distance pu + 2 and
length 2(p2u + pu + 1).

All constructed codes are OSMLD and completely orthog-
onalizable since the orthogonal parity-check equations number
J is always equal to dmin-1, where d is the minimum distance
of the code.

In [5], Townsend and Weldon has constructed a rate 1
2

codes of small length up to n = 366. With the help of Magma
[12], many perfect difference sets have been constructed,
which allows to construct a large number of QC-OSMLD
codes of large lengths up to n = 2.109.

Table 1 shows a part of constructed codes. The parameters
in this table are :

Pu : P is prime, and u an integer

m : is the modulo, m = p2u + pu + 1

(n , k) : n is the length and k is the dimension of the code

d : is the minimum distance of the code

Difference Sets : Represent the constructed Singer differ-
ence set

Density : is the density of the parity check matrix H

LDPC : specifies if the code is Low Density Parity Check
(LDPC) code, for that it’s obligatory to have density ≤ log2(n)

From this table, it’s clear that the majority of QC-OSMLD
codes are LDPC codes which allow us to decode them with
LDPC decoder like Sum-Product, Belief Propagation ...

IV. CONSTRUCTION BASED ON STEINER TRIPLE SYSTEM

Historically, Smith [13] presented in 1968 an application
of incomplete block designs to the construction of several
families of error-correcting codes which may be decoded
using a relatively simple majority logic decoding procedure.
However, he didn’t give any explicit construction for such
designs. Special cases of these codes are equivalent to the Self-
orthogonal Quasi-cyclic codes based on Perfect Difference Sets
discussed by Townsend and Weldon [5] (1967).

Chen Zhi and al stated an [6] explicit constructions of many
classes of difference families considered as base blocks for
Steiner designs. He presented a construction of infinite optimal
self-orthogonal quasi-cyclic codes with high rates.

This section describes briefly the different construction
methods of QC-OSMLD codes based on block design. Also,
a part of constructed codes generated automatically by Matlab
programmes is represented.

A. Balanced Incomplete Block Design

A Balanced Incomplete Block design (BIBD) [10] is a pair
(V,B) where V is a set and B is a collection of b k-subsets
of V (blocks) such that each element of V is contained in
exactly r blocks, and any 2-subset of V is contained in exactly
λ blocks. The numbers v, b, r, k, and λ are said parameters
of the BIBD.

Trivial necessary conditions for the existence of a
BIBD(v, b, r, k, λ) are :

1) vr = bk
2) r(k − 1) = λ(v − 1)

The incidence matrix of a BIBD (V,B) with parameters
v, b, r, k, λ is a v × b matrix A = (aij), in which aij = 1
when the ith element of V occurs in the jth block of B, and
aij = 0 otherwise.

B. Construction methods

1) QC-OSMLD codes based on STS (v = 6t + 1): This
construction [6][14] is applicable for k = 3 and v is a power
of a prime of the form v ≡ 1(mod 6). Considering for each v,
GF (v = pe), the Galois field of order v. Let ω be a primitive
root. Then the STS difference family with parameters v =
6t + 1, b = 6t2 + t, r = 3t, k = 3, λ = 1, is described by
base blocks typically given by the form :

(ω0, ω2t, ω4t), (ωi, ω2t+i, ω4t+i), (ωt−1, ω, ω5t−1)

Another construction proposed by Rosa [15][10], for which
the knowledge of a primitive root is not required, may be
applicable for these designs using Skolem Sequences.

From [14] the block designs given above, an infinite class
of optimal QC-OSMLD [(t + 1)(6t + 1), t(6t + 1), 4] codes
with the basic block length n0 = (t+ 1)pe−1 is specified.
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TABLE I: Rate 1
2 QC-OSMLD codes based on Perfect Difference sets

Pu m (n,k) d Difference Sets Density log2(n) LDPC
1 3 (6,3) 3 0 1 66,66 2.5849 No
2 7 (14,7) 4 0 1 3 28 .57 3,8073 No
3 13 (26,13) 5 0 1 3 9 19.23 4,7004 No
22 21 (42,21) 6 0 1 4 14 16 14.28 5,3923 No
5 31 (62,31) 7 0 1 3 10 14 26 11.29 5,9541 No
7 57 (114,57) 9 0 1 6 15 22 26 45 55 8.33 6,5849 No
23 73 (146,73) 10 0 1 12 20 26 30 33 35 57 7.89 6,8328 No
32 91 (182,91) 11 0 1 37 39 51 58 66 69 82 86 6.04 7,5077 Yes
11 133 (266,133) 13 0 1 3 17 21 58 65 73 100 105 111 124 4.88 8,0552 Yes
13 183 366,183) 15 0 1 3 24 41 52 57 66 70 96 102 149 164 176 4.09 8,5156 Yes
24 273 (546,273) 18 0 1 22 33 83 122 135 141 145 159 175 200 226 229 231 238 246 3,09 9,09 Yes
17 307 (614,307) 19 0 1 3 30 37 50 55 76 98 117 129 133 157 189 199 222 293 299 2,75 9,26 Yes
19 381 (762,381) 21 0 1 3 13 28 51 65 82 86 104 112 145 201 212 217 241 261 307 339 375 2,26 9,57 Yes
23 553 (1106,553) 25 0 1 3 14 31 60 64 109 146 151 185 265 286 313 321 337 357 375 454 460 479 486

501 544
1,77 10,11 Yes

29 871 (1742,871) 31 0 1 3 23 30 41 88 97 132 165 169 186 201 211 235 306 319 345 425 431 542 547
561 592 604 620 668 719 811 819

1,66 10,76 Yes

31 993 (1986,993) 33 0 1 3 13 101 127 154 169 204 210 226 235 259 289 297 317 356 434 474 478 495
538 570 584 589 607 618 654 749 756 801 920

1,37 10,95 Yes

37 1407 (2841,1407) 39 0 1 3 25 32 82 99 208 313 410 453 479 487 557 621 649 709 736 742 782 827 837
848 890 895 899 913 951 1040 1088 1123 1142 1172 1213 1252 1272 1288 1395

1,24 11,47 Yes

47 2257 (4514,2257) 49 0 1 3 131 138 143 296 377 381 457 566 590 690 712 773 802 891 905 973 979 996
1030 1039 1050 1065 1075 1083 1102 1123 1238 1270 1337 1387 1434 1528 1541
1590 1606 1636 1757 1788 1816 1858 1914 1978 2033 2144 2219

1,06 12,14 Yes

97 9507 (19014,9507) 99 0 1 3 37 52 191 308 332 433 914 919 984 1093 1155 1231 1238 1600 1678 1723 1732
1755 1773 1826 1930 1938 2099 2116 2141 2457 2712 2859 3058 3187 3466 3524
3655 3675 3748 4139 4145 4183 4297 4301 4518 4528 4600 4720 4777 4964 5043
5054 5176 5268 5329 5356 5496 5526 5601 5617 5851 6151 6173 6491 6539 6759
6778 6792 6878 7021 7163 7226 7290 7490 7650 7747 7860 7941 8028 8056 8154
8304 8339 8370 8438 8450 8505 8534 8574 8797 9005 9048 9094 9107 9133 9154
9270 9326 9400

0,49 14,21 Yes

181 32943 (65886,32943) 183 0 1 129 145 211 306 460 514 547 748 771 800 894 1044 1101 1152 1277 1553 1798
1833 1840 1888 1924 2118 2381 2431 2564 2601 2613 3054 3308 3669 4369 4507
4620 4807 4839 5136 5342 5452 5623 5798 5808 5914 6488 6577 6798 6816 7063
7590 7745 7894 7935 7993 7995 8365 9166 9234 9572 9836 10220 10263 10355 10692
10764 10895 11081 11272 11376 11598 11645 12078 12215 12453 12498 12536 12807
12973 13250 13296 13384 13423 13858 13935 14408 14494 14603 14818 14892 15318
15397 15478 15625 15797 16219 16454 16607 17068 17141 17200 17211 17330 17696
17722 18264 18291 18433 18659 18715 18795 18958 19607 19714 19879 20145 20324
20523 20585 21192 21349 21370 21373 21728 22555 22586 22815 22929 23208 23376
23535 23550 23894 24074 24326 24490 24518 24802 24808 24904 24926 25681 25822
25839 26204 26421 26440 26474 26518 26538 26543 26658 26966 27006 27071 27363
28337 28404 28504 28697 28895 28971 29246 29883 29897 29958 30097 30106 30110
30322 30352 30473 30771 31030 31192 31380 31582 32046 32445 32676 32739 32747
32832

0,27 16,00 Yes

2) QC-OSMLD codes based on STS (v = 6t + 3):
The construction of such designs using the Extended Skolem
Sequences is proposed. A Skolem sequence of order n is a
sequence S = (s1, s2, ..., s2n) of 2n integers satisfying the
conditions :

1) for every k ∈ {1, 2, ..., n} there exists exactly two
elements si, sj ∈ S such that si = sj = k

2) if si = sj = k with i < j, then j − i = k.

Skolem sequences are also written as collections of ordered
pairs {(ai, bi) : 1 ≤ i ≤ n, bi − ai = i} with ∪ni=1{ai, bi} =
{1, 2, ..., 2n}

Example 4:
A Skolem sequence of order 5 : S =
(1, 1, 3, 4, 5, 3, 2, 4, 2, 5) or, equivalently, the collection
{(1, 2), (7, 9), (3, 6), (4, 8), (5, 10)}.

An extended Skolem sequence of order n is a sequence
ES = (s1, s2, ..., s2n) of 2n+1 integers satisfying conditions
1 and 2 of the previous definition and :

3) there is exactly one si ∈ ES such that si = 0.

The element si = 0 is called the hook or zero of the
sequence.

3) Construction By A. Rosa: Suppose {1, ..., 3n+1}\{2n+
1} can be partitioned into m triples {a, b, c} such that a+b = c
or a + b + c ≡ 0(mod 6n + 3). (This problem is called the
second Heffter difference problem). Then the set of all triples
{0, a, a+b}, together with “short block” {0, 2n+1, 4n+2}, is a
(6n+ 3, 3, 1) cyclic partial difference family; the base blocks
for a STS(6n + 3). Heffter’s second difference problem is
solved using extended Skolem sequences of order n with a
hook in the nth position. From such a sequence, the pairs
(br, ar) is constructed such that br − ar = r, for 1 ≤ r ≤ n.
Then the set of all triples (r, ar + n, br + n) is taken, for
1 ≤ r ≤ n.

Below an explicit construction for the required Skolem
sequences (as ordered pairs) :

n = 4s :


(r, 4s− r + 1) r = 1, ..., s− 1

(s + r − 1, 3s− r) r = 1, ..., s− 1

(4s + r + 1, 8s− r + 1) r = 1, ..., s− 1

(5s + r + 1, 7s− r + 1) r = 1, ..., s− 1

((2s− 1, 2s), (3s, 5s + 1)), (3s + 1, 7s + 1), (6s + 1, 8s + 1)
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n = 4s + 1, (n > 5) :


(r, 4s− r + 2) r = 1, ..., 2s

(5s + r, 7s− r + 3) r = 1, ..., s

(4s + r + 2, 8s− r + 3) r = 1, ..., s− 2

(2s + 1, 6s + 2), (6s + 1, 8s + 4), (7s + 3, 7s + 4)

n = 4s + 2, (n > 2) :


(r, 4s− r + 3) r = 1, ..., 2s

(4s + r + 4, 8s− r + 4) r = 1, ..., s− 1

(5s + r + 3, 7s− r + 3) r = 1, ..., s− 2

(2s + 1, 6s + 3), (2s + 2, 6s + 2), (4s + 4, 6s + 4)

(7s + 3, 7s + 4), (8s + 4, 8s + 6)

n = 4s− 1 :


(r, 4s− r) r = 1, ..., 2s− 4

(4s + r + 1, 8s− r) r = 1, ..., s− 2

(5s + r, 7s− r − 1) r = 1, ..., s− 2

(2s, 6s− 1), (5s, 7s + 1), (4s + 1, 6s), (7s− 1, 7s)

When n = 2, take the sequence :

{(1, 2), (4, 6)}

When n = 5, take :

(1, 5), (2, 7), (3, 4), (8, 10), (9, 12)

When n = 1, the sequence does not exist. The construction
above gives STS(6n + 3) with parameters (v, b, r, k, λ) =
(6t+ 3, (3t+ 1)(2t+ 1), 3t+ 1, 3, 1).

4) QC-OSMLD codes based on STS (v = 12t + 7): This
construction [10] is available for v a prime power in the form
v = 12t + 7. Let ω be a primitive root of the Galois field
GF (12t + 7 = pe). Then, the base blocks of a design with
parameters v = 12t+7, b = (2t+1)(12t+7), r = 3(2t+1),
k = 3, λ = 1 are given in the form (ω2i, ω2i+2t, ω4t+i)

5) QC-OSMLD codes based on STS (v = 12t + 1):
This construction [6] is applicable for v a prime power in
the form v = pe = 12t + 1. Let ω be the primitive root of
GF (pe) such that ω4t − 1 = ωq where q is odd. Then, the
base blocks of a design with parameters (v = 12t + 1, b =
t(12t+1), r = 3(12t+1), k = 4, λ = 1) are given in the form :
(0, ω0, ω4t, ω8t), (0, ω2i, ω2i+4t, ω) (0, ω2t−2, ω6t−2, ω10t−2)
such that i = 0, ..., t − 1. Block designs [6] given
above specify an infinite class of optimal QC-OSMLD
(n, k, dmin) = ((t + 1)(12t + 1), t(12t + 1), 5) codes with
basic block length n0 = (t+ 1)pe−1.

6) QC-OSMLD codes based on STS (v = 20t + 1):
This construction [6] is applicable for v a prime power
in the form v = pe = 20t + 1. Let ω be the primi-
tive root of GF (pe) such that ω4t + 1 = ωq where q
is odd. Then the base blocks of a design with parameters
(v = 20t + 1, b = t(20t + 1), r = 5t, k = 5, λ = 1)
are given in the form : (ω2i, ω4t+2i, ω8t+2i, ω12t+2i, ω16t+2i)
such that i = 0, ..., t − 1. Block designs [6] given above
specify an infinite class of optimal QC-OSMLD (n, k, dmin) =
((t+1)(20t+1), t(20t+1), 6) codes with basic block length
n0 = (t+ 1)pe−1.

C. New constructed codes

The following tables represent a small part of many con-
structed QC-OSMLD codes based on the methods described
above. The length n, the dimension k, the minimum distance
d, and the rate, and also the base blocks which represent the
headers of the circulant matrix of the parity-check matrix H,
are represented. Due to the significant number of base blocks
in high rate, aren’t represented in the tables.

TABLE II: QC-OSMLD codes based on STS v = 12t+ 7

n k d Rate Base blocks
76 57 4 0.75 1 4 16

186 155 4 0.833 1 19 20
9 16 29

344 301 4 0.87
1 4 41
9 12 25
10 36 38

804 737 4 0.92

1 19 26
4 9 52
16 36 37
7 10 64
14 40 55

4564 4401 4 0.96 -

TABLE III: QC-OSMLD codes based on STS v = 6t+ 3

n k d Rate Base blocks

50 35 4 0.7 1 3 4
2 6 8

91 70 4 0.77
1 4 6
2 5 8
3 8 11

144 117 4 0.81

1 5 6
2 7 10
3 8 12
4 11 13

206 176 4 0.85

1 6 10
2 7 12
3 8 9
4 13 15
5 14 17

286 247 4 0.86

1 7 12
2 8 11
3 9 15
4 10 14
5 14 16
6 16 17

851 782 4 0.919 -
1000 925 4 0.925 -
16800 16485 4 0.981 -
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TABLE IV: QC-OSMLD codes based on STS v = 6t+ 1

n k d Rate Base blocks

39 26 4 0.667 1 3 9
2 5 6

76 57 4 0.75
1 7 11
2 3 14
4 6 9

125 100 4 0.80

1 6 11
2 12 22
4 19 24
8 13 23

186 155 4 0.833

1 5 25
3 13 15
8 9 14
11 24 27
2 10 19

344 301 4 0.875

1 6 36
3 18 22
9 11 23
26 27 33
13 35 38
19 28 39
14 30 41

1649 1552 4 0.941 -
2071 1962 4 0.947 -
64898 64021 4 0.99 -

TABLE V: QC-OSMLD codes based on STS v = 12t+ 1

n k d Rate Base blocks

75 50 5 0.666 0 1 6 11
0 4 19 24

148 111 5 0.75
0 1 10 26
0 3 4 30
0 9 12 16

245 196 5 0.80

0 1 25 37
0 9 29 38
0 16 23 32
0 32 43 46

366 305 5 0.833 -
511 438 5 0.86 -
873 776 5 0.89 -
1331 1210 5 0.91 -
10470 10121 5 0.966 -

TABLE VI: QC-OSMLD codes based on STS v = 20t+ 1

n k d Rate Base blocks

244 183 6 0.75
1 9 20 34 58
4 14 19 36 49
13 15 16 22 56

405 324 6 0.80

1 7 19 49 52
4 28 34 46 76
16 22 31 55 61
1 7 43 58 64

606 505 6 0.83 -
847 726 6 0.86 -
1810 1629 6 0.90 -
4215 3934 6 0.93 -
6859 6498 6 0.95 -

V. ITERATIVE TRESHOLD DECODING

A. Encoding

In the case of QC codes, the encoding can be achieved with
simple shift registers while the complexity is linear [9][16].
Because the quasi-cyclic code is not in systematic form, an
additional k-stage register is required by this encoder to store
the information symbols of the next block until encoding
is completed. This difficulty can be avoided by using an

equivalent systematic code. In this case the codes constructed
are in systematic form.

QC codes could be encoded by either generator matrix
or polynomial multiplication. These codes are defined by the
parity check matrix H. The generator matrix G is obtained by
the following transformation :

H = [PIn−k]⇔ G = [IkP
T ] (6)

The encoding algorithm consists of multiplying the mes-
sage i by the generator matrix G to get the codeword v.

v = i ∗G (7)

The Quasi-cyclic codes have a polynomial form. Consider
C(n,k) a systematic quasi-cyclic code with rate 1

2 , and let P
which defines the code be the circulant matrix. The information
vector to be encoded is denoted by i, then

v = iG = [i iP ] (8)

Let i(x) and p(x) represent the information vector and
the header of the circulant matrix P in polynomial form,
respectively. Obviously, the remaining rows of P are:

(xp(x), x2p(x), ..., xk−1p(x)) mod xk − 1 (9)

The algebra of polynomials modulo xm -1 is equivalent
to the algebra of m x m circulant matrices; besides, the
polynomial product i(x)p(x) mod xk-1 is similar to multiplying
the vector i by the circulant matrix P. Hence,

v(x) = [i(x), i(x)p(x)] (10)

Example 5: Let consider the same code as in the example
2. Now, to transmit the message i=101.
i = 101 then i(x) = 1+x2
And p = 101 then p(x) = 1+x2
Then the codeword is:
v(x) = [i(x),i(x)*p(x)]=[1+x2,(1+x2)*(1+x2)]=[1+x2,1+x]
⇒v = 101110.
In the case of QC codes with rate of the form n0−1

n0
, the

encoding like codes with rate 1/2 can be realised by either
generator matrix or polynomial multiplication [9].

These codes are defined by the parity check matrix H of
the form :

H = [P1P2...Pk0
In−k] (11)

The generator matrix G is obtained by the following
transformation :

H = [P1P2...Pk0
In−k]⇔ G =


PT
1

PT
2

Ik
...
...
PT
k0
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In the case of codes with rate n0−1
n0

, there are many circu-
lant matrix ( P1 P2 ... Pk0

), then for encoding the information
vector ’i’, it must be divided into k0 subgroup (i1 i2 ... ik0

) then
based on the equation (10), the following equation is obtained
:

v(x) = [i(x),

k0∑
j=1

ij(x)pj(x)] (12)

To clear this, let us consider the following example.

Example 6:

Let consider the OSMLD QC(15,10) code, with the mini-
mum distance is d=3. The disjoint difference sets of order S=2
which define the parity matrix H of this code are D1{0,1} and
D2{0,2}.

The parity check matrix H in systematic form is [P1 P2 I5]


1 1 0 0 0 1 0 1 0 0 1 0 0 0 0
0 1 1 0 0 0 1 0 1 0 0 1 0 0 0
0 0 1 1 0 0 0 1 0 1 0 0 1 0 0
0 0 0 1 1 1 0 0 1 0 0 0 0 1 0
1 0 0 0 1 0 1 0 0 1 0 0 0 0 1


After transformation of the parity check matrix H, the

generator matrix G is obtained

1 0 0 0 0 0 0 0 0 0 1 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 1 0 0 0 0 0 0 0 0 1 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 1
0 0 0 0 0 1 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1


Now transmitting the message i=1001001011. To know

the codeword v corresponding to the message i, it’s possible
to use the classical method by using the generator matrix
G v = i*G = 111011010110101. For using the polynomial
method, the message must be divided into k0=2 vectors
i1=10010 ⇒ i1(x)=1+x3
i2=01011 ⇒ i2(x)=x+x3+x4
From the generator matrix G, headers of the two circulant
matrix PT

1 and PT
2 is obtained:

c1 = 10001 ⇒ c1(x) = 1+x4
c2 = 10010 ⇒ c2(x) = 1+x3
Then, the equation (9) must be calculated:
v(x)=[i(x),(i1(x)*c1(x))+(i2(x)*c2(x))]
=[1+x3+x6+x8+x9,((1+x3)*(1+x4))+((x+x3+x4)*(1+x3))]
v(x)=[1+x3+x6+x8+x9,(1+x2+x3+x4)+(x2+x3)]
=[1+x3+x6+x8+x9,1+x4] Then, the codeword to transmit
is :
v = 100100101110001 Which is the same as the codeword
obtained by using generator matrix G.

B. ITD

Threshold decoding is simply the logical extension to soft
decisions of majority decoding described above. In Massey’s
original work [17], he considered two different variations of
the decoding algorithm. Considering here the method which
uses the Bi equations that are obtained from Ai by a simple
transformation [18].
Thanks to its speed and simplicity, the Majority Logic (ML)
decoding of Quasi-Cyclic codes is significant. Therefore, it is
worth investigating which Quasi-Cyclic codes can be decoded
using ML decoder. Majority logic decoding is well described in
[8,19]. It consists of cyclic shift register, XOR matrix, majority
gate and XOR for correcting the codeword bit under decoding.

The ITD algorithm which is based on SISO extension
of Massey threshold decoding algorithm [17] was developed
mainly for decoding Parallel Concatenated Block Codes [20]
and product codes constructed from OSMLD Codes [21],
later it was enhanced for decoding not only Generalized
Parallel Concatenated OSMLD Codes [22] but also OSMLD
block codes [4]. ITD algorithm has an improvement in error
correcting related to standard ML decoding.

Considering the transmission of the codeword
C(c1,c2,...,cn) over an Additive White Gaussian Noise
channel (AWGN), using BPSK modulation. The soft decision,
which is the Log Likelihood Ratio (LLR), on the jth bit of
the received word R(r1,r2,...,rn) can be calculated as follows:

LLRj = ln

[
p(cj = 1/R)

p(cj = 0/R)

]
(13)

The hard decision vector corresponding to the received
vector R is denoted by H(h1,h2,...,hn). Where cj is the jth
bit of the transmitted codeword. For a code with J orthogonal
parity check equations; the equation (13) can be expressed as:

LLRj = ln

[
p(cj = 1/{Bi})
p(cj = 0/Bi)

]
(14)

Where Bi, for i in {1, ..., J}, are obtained from the
orthogonal parity check equations on cj bit, as follows:

B0 = hj and each Bi with i in {1,...,J}, is calculated by
eliminating the term hj from the ith orthogonal parity check
equation. By applying BAYES rule, (14) becomes:

LLRj = ln

[
p({Bi}/cj = 1)

p({Bi}/cj = 0)
× p(cj = 1)

p(cj = 0)

]
(15)

Since the parity check equations are orthogonal on the jth
position, so the individual probabilities P(Bi/cj = 1 or 0) are
all independent and (15) can be written as:

LLRj =
J∑

i=0

ln

[
p({Bi}/cj = 1)

p({Bi}/cj = 0)

]
+ ln

[
p(cj = 1)

p(cj = 0)

]
(16)

Assume that the transmitted symbols are equally likely to
be +1 or -1, and thus the last term in (16) is null. As a result,
the equation (16) becomes:

LLRj =
J∑

i=1

ln

[
p({Bi}/cj = 1)

p({Bi}/cj = 0)

]
+ ln

[
p({B0}/cj = 1)

p({B0}/cj = 0)

]
(17)
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According to [18], (17) can be expressed as:

LLRj ' (1− 2B0)w0 +
J∑

i=1

(1− 2Bi)wi (18)

Where the value of (1-2Bi) is equal to +1 or -1, and wi

is a weighting term proportional to the reliability of the ith
parity check equation. then showing that:

(1− 2B0)w0 = 4
Es

N0
rj (19)

Where Es is the energy per symbol, and Ns is the noise
spectral density.

wi = ln


1 +

k=nj∏
k=1,k 6=j

tanh(Lik

2 )

1−
k=nj∏

k=1,k 6=j

tanh(Lik

2 )

 (20)

Where ni is the total number of terms in the ith orthogonal
parity check equation without cj , ik represents the kth element
of the ith parity check equation and with:

Lik = 4
Es

N0
| rik | (21)

Thus the soft output can be split into two terms, namely
into a normalized version of the soft input rj and an extrin-
sic information LEj

representing the estimates made by the
orthogonal bits on the current bit cj . Hence, (18) becomes

LLRj = 4
Es

N0
rj + LEj

(22)

Using the following notation:

Lc = 4
Es

N0
(23)

Which is called the reliability value of the channel.

The algorithmic structure of the SISO threshold decoding
can be summarized as follows:

For each j = 1,...,n

• Compute the terms Bi and wi, i ∈ {1,..,J}

• Calculate B0 and w0

• Compute the extrinsic information LEj

• The Soft-output is obtained by:

LLRj = Lcrj + LEj

Iterative decoding process (see Figure 1) can be described
as follows:

In the first iteration, the decoder only uses the channel
output as input and generates extrinsic information for each
symbol. In subsequent iterations, a combination of extrinsic
information and channel output is used as input.

Fig. 1: Scheme of iterative threshold decoder

As shown in Figure 1, the soft input and the soft output of
the qth decoder is achieved through the following equations:

R(q) = R+ α(q)LE(q) (24)

LLR(q + 1) = LcR(q) + LE(q + 1) (25)

Where R(q) represents lines (or columns) of the received
data, and LE(q) is the extrinsic information computed by the
previous component decoder. In the proposed procedure, a
fixed value 1/J is used for the parameter α(q) and this for
all iterations. The value chosen for α(q) reacts as an average
of all J estimators which contribute in the computation of LEj

.

C. Modification of Rayleigh fading channel

In the channel model, each received bit rj can be expressed
as :

rj = aj ĉj + nj (26)

In this representation, ĉj is a BPSK symbol associated to the
transmitted bit cj, and nj is an AWGN. The Rayleigh variable
aj is generated as:

aj =
√
x2j + y2j (27)

where xj and yj are zero mean statistically independent Gaus-
sian random variables each having a variance σ2. Considering
the power normalized to one as

E[a2j ] = σ2 = 1 (28)

Which gives a variance of 0.5 for Gaussien variables.
The main matter in determining the required modification for
ITD algorithm is the availability of channel side information on
the Rayleigh fading channel. The threshold decoding algorithm
has to be modified slightly by changing equation (23) which
defines the reliability value of the channel by

Lc = 4
Es

N0
aj (29)

With this modification, it’s possible to use the same decoder
structure which was described in Figure 1.

VI. SIMULATION RESULTS AND ANALYSIS

This section considers simulation results and analysis for
some decoding QC-OSMLD codes of rate n0−1

n0
and 1/2

with the Iterative Threshold Decoding algorithm. Some of our
simulations are over AWGN channel , whereas others are over
Rayleigh Fading channel; however, both of them are with mod-
ulation BPSK. Due to computational limitations, a minimal
residual error of 200 have been used. In the simulations over
Rayleigh fading channel, assuming an accurate fade estimate
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at the receiving and an independent Rayleigh distribution of
the fades.

The performance improves with each iteration in all sim-
ulation results presented. The following results represent the
performance of decoding an QC-OSMLD code with the ITD
algorithm and comparison with classic Threshold decoding
algorithm.

A. AWGN

The Figure 2 depicts the performance of QC-OSMLD code
(366,183,15). The improvement is great for the first iterations
and is negligible after the 6th iteration. Figure 3 presents a

0 1 2 3 4 5 6 7
10

−

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

Iter (1)
Iter (2)
Iter (3)
Iter (4)
Iter (5)
Iter (6)
Iter (7)
Iter (8)
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Fig. 2: The performance of the ITD algorithm with 10 iter-
ations for decoding an QC-OSMLD code (366,183,15) over
AWGN channel.

comparison between three QC-OSMLD codes (366,183,15)
(1106,553,25)and the(4514,2257,49). Observing that smaller
codes length has best performance at low SNR, whereas at
SNR>5 for the code (4514,2257,49) the performance improves
quickly from 10−1 to 10−5 between SNR=5 and SNR=6. The
next comparison is between the code (182,91,11) decoded with
ITD 10 iterations and the code LDPC WiMax(192,96,10),
which is from [23], decoded with the Belief propagation
decoder. These two codes are of the same rate 1

2 , and they
have nearly the same dimension and minimum distance.

The Figure 4 shows that the LDPC WiMax code
(192,96,10) decoded with BP algorithm outperforms the
OSMLD-QC code (182,91,11) decoded with the ITD algo-
rithm. However, the first decoder requires more iterations; on
the other hand, the second one is less complex.

B. Rayleigh

The curves in the Figure 5 show the achieved bit error
rates for the QC-OSMLD code (366,183,115) over Rayleigh
fading channel. The number of iterations used is a 10, such
that there is no significantly more to gain by more iterations.
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Fig. 3: Comparison between the performance of the
QC-OSMLD codes (366,183,15), (1106,553,25) and
(4514,2257,49) decoded with ITD 10 iteration, over AWGN
channel
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Fig. 4: Comparison between the performance of the code
QC-OSMLD (182,91,11)decoded with ITD 10 iterations and
and the code LDPC WiMAX(192,96,10)decoded with BP 40
iterations BP with 40 iterations

Observing that the performance increases with each iteration,
and the improvement is negligible after the 7th iteration .

Figure 6 presents a comparison between three QC-OSMLD
codes (366,183,15) (1106,553,25)and the(4514,2257,49) over
Rayleigh fading channel. Observing that the same behaviour
as the AWGN channel, but in high SNR.

The Figure 7 shows the performance of decoding the QC-
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Fig. 5: The performance of the ITD algorithm with 10 iter-
ations for decoding an QC-OSMLD code (366,183,15) over
Rayleigh fading channel.
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Fig. 6: Comparison between the performance of the
QC-OSMLD codes (366,183,15), (1106,553,25) and
(4514,2257,49) decoded with ITD 10 iterations, over
Rayleigh fading channel

OSMLD code (366,183,15) on both Rayleigh and AWGN
channels. As observed in the other simulations, the perfor-
mance of this code in an independent Rayleigh channel is
worse than that for the AWGN channel by approximately 5
dB. It is worth mentioning that the number of iterations needed
is about the same for the both channels.

The figure 8 shows a comparison between the performance
of decoding the QC-OSMLD codes of different rates. To
simplify, two scenarios have been opted. In the first case,
there are two codes (39, 26, 4) and (15, 10, 3) which have
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Fig. 7: Comparison between the performance of the ITD
algorithm with 10 iterations for decoding an QC-OSMLD code
(366,183,15) on AWGN channel and over Rayleigh fading
channel
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Fig. 8: Comparison between the performance of the QC-
OSMLD codes (15,10,3), (39,26,4) of rate 2/3 and (76,57,4) of
rate 3/4, decoded with ITD 10 iterations, over AWGN channel

the same rate 2/3. From the graph above, it’s clear that as the
code length increases, the performances rises, as well, which
results in a gain of 1db at 10−5. In the second case, two codes
with different rates has been compared (76,57,4) of rate 3/4
and (39,26,4) of rate 2/3 holding the same minimum distance
which is 4. As a result, even if the code length is large, the
code of rate 3/4 is outperformed by the code of rate 2/3 with
difference of 3db at 10−5.
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VII. CONCLUSION

In this paper, the construction of a class of QC-OSMLD
codes based on Steiner triple system, and another class based
on Singer difference sets has been investigated. The encoding
methods has been presented for those codes. Also, the per-
formances of decoding these codes with the ITD algorithm
over AWGN channel and also over fading channel has been
shown. The decoding algorithm used for AWGN channel is
unchanged, and only the channel reliability factor needs to be
redefined. The simulations results show that the constructed
codes perform well when decoded with ITD algorithm. It is
interesting to apply this iterative decoding algorithm on other
channels models like Rice or Nakagami. Also as extension of
this work we plan to investigate the performance of decoding
rate 1

n0
QC-OSMLD codes with an adaptation of our ITD

algorithm.
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