
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

64 | P a g e

www.ijacsa.thesai.org

Identify and Manage the Software Requirements

Volatility
Proposed Framework and CaseStudy

Khloud Abd Elwahab

MSc student /Information system

Department

Faculty of computers and

information, Helwan University line

3: Cairo, Egypt

Mahmoud Abd EL Latif

Associate Professor of information

system department

Faculty of computers and

information, Helwan University

Cairo, Egypt

Sherif Kholeif

Assistant Professor of information

system

Faculty of computers and

information, Helwan University

Cairo, Egypt

Abstract—Management of software requirements volatility

through development of life cycle is a very important stage. It

helps the team to control significant impact all over the project

(cost, time and effort), and also it keeps the project on track, to

finally satisfy the user which is the main success criteria for the

software project.

In this research paper, we have analysed the root causes of

requirements volatility through a proposed framework

presenting the requirements volatility causes and how to manage

requirements volatility during the software development life

cycle.

Our proposed framework identifies requirement error types,

causes of requirements volatility and how to manage these

volatilities to know the necessary changes and take the right

decision according to volatility measurements (priorities, status

and working hours). This framework contains four major phases

(Elicitation and Analysis phase, Specification Validation phase,

Requirements Volatility Causes phase and Changes Management

phase). We will explain each phase in detail.

Keywords—software requirements; requirement errors;

requirements volatility; reason for requirement changes and

control changes

I. INTRODUCTION

The software engineering industry faces several issues;
requirement changes are one of the most significant and critical
issues during software development process. The project
requirements are almost never stable and fixed as has been
explained by [Jones (1996)]. Requirements are defined in [1]
as "The information from the user about what will do and what
is the main objective of this project and what is the deadline to
deliver this project and so on".

Accuracy and focus through gathering requirements does
not prevent requirement changes to take place during the
software development life cycle. Requirements volatility is
defined in [18] as “the emergence of new requirements or
modification or removal of existing requirements”. Numbers of
requirements change during software development process
depending on the quality measures of requirements (Correct,
Unambiguous, Complete, Consistent, Importance and Stability,
Verifiable, Modifiable, Traceable, and Understandable) [5].

Requirements changes have a significant impact on project
performance, project schedule and budget. This paper proposes

a framework focus on how to manage requirements volatility
during the software development life cycle and to limit the
implications thereof. The remainder paper is structured as
follows: Section 2 presents the motivation to search for the
requirements volatility topic. Section 3 explains the
requirements volatility definition, factors, causes, and the
measures, and finally explains the impact of that on software
development process. Section 4 contains proposed framework
and presents a case study in explanation of the benefits of this
framework. Section 5 concludes our results and provides some
open research directions

II. MOTIVATION

Understanding the requirements volatility and the impact
thereof during the software development life cycle is a very
interesting area that needs more studies to focus on how to
manage these changes. Abeer. Al and Azeddine, in [18]
according to previous studies suggest that 86% of the change
requests are related to requirements volatility and it is often
more than 50% of the requirements are changed before the
delivery of a software project, furthermore implementing the
requirements volatility in later phases causes 200 times costlier
than implementing the requirements volatility in the analysis
phase. All these facts are the motivation to start searching and
try to find solutions for such critical point.

III. RESEARCH QUESTIONS

In this paper, we are going to discuss the following
questions:

1) What is Requirements volatility?

2) What are the causes of Requirements volatility?

3) What is the impact of Requirements volatility?

4) How to manage requirements volatility in different

phases using proposed framework.

IV. REQUIREMENTS VOLATILITY

Requirements volatility refers to additions, deletions and
modifications of requirements during the system development
life cycle, as defined in [4] "Stable requirements are the holy
grail of software development." RV creates additional work in
design and coding, which increases the system development
cost and time and compromises the system quality. Ignoring

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

65 | P a g e

www.ijacsa.thesai.org

requests for requirement changes can cause project failure due
to user rejection, and failure to manage RV can increase the
development time and cost.

A. REQUIREMENTS volatility factors

Environment changes are the main factor for requirements
volatility; according to previous studies, there are Development
Environment changes, and we also cannot avoid the Business
Environment changes [11].

 Business Environment changes are, for instance,

government regulations, market competition, financing

sources, restrictions, management changes, organization

policy, legal factors, technological factors and business laws.

 Development Environment changes are, for instance,

requirement errors, evolving user and technological needs, new

technology, missing members of team project, incorporation of

cost upgrades; resolve requirement conflicts, missing

requirements).
Fig.1 shows the various factors causing requirements

volatility [11].

Fig. 1. (a)Requirements volatility factors [11]

Fig. 1. (b)Requirements volatility factors [11]

B. Cause of REQUIREMENTS volatility

After considering the environment changes, we concluded
that there are several causes for requirements volatility,
Requirements errors are one of the main causes. For more
accuracy, we classify requirement errors into three main
groups: people errors, process errors and documentation errors
[7], Fig. 2.

 People Requirement Errors:

 The communication gaps between stakeholders.

 Poor participation between the development team and

management team.

 Less understanding domain knowledge, unstructured

process execution.

 Users have unreasonable timelines and do not really

know what they want

 Process Requirement Errors:

 Bad management process.

 Rush and bad analysis requirements, using old process

and methodology.

 Inadequate method of achieving objectives and

requirements change during the project

 Documentation Requirement Errors:

Team may do not understand the policy of the user's
organization or no use of standards.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

66 | P a g e

www.ijacsa.thesai.org

Fig. 2. Types of Requirements Errors [7]

C. Mesurements of REQUIREMENTS volatility

To avoid implementing unnecessary volatility changes, we
should analyse the changes request depending on some
measures; for instance, priority of changes (low, high, and
medium) and the severity of changes (Critical, major,
minor….), working hours needed, change types (added, deleted
or modified), phase in SDLC and impact of each change.
Figure-3

D. Impact of REQUIREMENTS volatility

Several research studies have found that requirements
volatility is positively correlated with the increase in the size of
the project, effort and cost (often >20%) and schedule duration
[19].

Requirements volatility inevitably result in additional work
and increased defect density, furthermore, it increased
development working efforts that need a rework in code,
design, and also increase team working hours and cost.

Sometimes we need to reschedule the whole project, as the
volatile requirements quality decreases. We need to re-design
the test cases according to new requirements.

Fig.-4 presents the requirements volatilely over all
(measurements, cause, and impact).

Fig. 3. Measurements of Requirements volatility

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

67 | P a g e

www.ijacsa.thesai.org

Fig. 4. Requirements volatility Causes, Impact and Measurements

V. SOFTWARE REQUIREMENTS VOLATILITY PORPOSED

FRAMEWORK

After studying the causes and impact of volatility in
requirements, we have proposed a framework using UML
concepts for model-driven software development, which is
given in Fig. 5. This framework consists of four major stages.

1) Elicitation and analysis of business

2) Specification validation

3) Requirements volatility causes

4) Manage Changes phase

The proposed framework identifies requirement error types,
causes of requirements volatility and how to manage these
volatilities to know the necessary changes and take the right
decision according to volatility measurements (priorities, status
and working hours).

The proposed framework is used to help the team to know
the root cause of requirements volatility that will reduce
number of changes happened in next release and other project.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

68 | P a g e

www.ijacsa.thesai.org

Fig. 5. Proposed framework to identify and manage the software requirements volatility

B. Elicitation and Analysis of business REQUIREMENTS:

Elicitation and analysis requirements is a critical phase in
the software development life cycle, in this phase, requirements
should discussed with user to make clear and then enter
agreement therewith for all requirement needs. This process is
to ensure that requirements are visible to and understood by all
stakeholders.

There are some techniques that help in getting more
accurate requirements such as: Brainstorming, Document
Analysis, Focus Groups, Requirement Workshops and
Interface. The results will be documented in Software
Requirements Specification SRS, The SRS is full analysis and
formalizing the requirements definition, what the software will
do and how it will be expected to implement [16] [17]

C. SPECIFICATION VALIDATION:

Specification validation works with the final requirements
document where a group of work team read and validate the
requirements according to nine requirement measures "Correct,
Unambiguous, Complete, Consistent, Importance and Stability,
Verifiable, Modifiable, Traceable, and Understandable"[5] and
user needs, and then look for errors to discuss and agree to
actions to address such errors before beginning implementation
to avoid volatility during software development life cycle
(SDLC).

Fig. 6 shows the nine requirement measures and the
classifications of requirements errors that will appear due to
poor requirements gathered

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

69 | P a g e

www.ijacsa.thesai.org

Fig. 6. Elicitation and analysis & Validation phase

D. Requirements VOLATILITY:

It is impossible to find software project without
requirements volatility. We can define requirements volatility
as missing requirements or misunderstanding and also
gathering requirements without consideration of the nine
requirement measurements to be added, deleted or modified, to
keep project on track.

The development team needs to deal with changes and
handle them. If the changes are not handled effectively,
problems can occur needing extra efforts to manage the impact
thereof on cost, quality, and schedule, as can be seen in the
impact of requirements volatilely framework, both of Project

rework + Number of defects + Number of system

requirements + Project effort + Project cost + and need to

Change in project schedule. At the end, all these changes may
conclude into Customer satisfaction.

The causes of volatility can be classified into two main
categories: development environment changes and business
environment changes. These have already been discussed
before.

Fig. 7 present causes of volatility and we are going to
describe how to control the changes in next phase.

Fig. 7. RV Causes

E. Changes Management phase

It is almost certain that projects face changes during project
life cycle development as explained above. These changes may
help projects to cope with business needs. Change management
is an important part of the project management process, thus
each change should be considered carefully before approval, in
order to deliver a project successfully.

The Proposed framework illustrates change control process,
that each change requires a form properly defined by the user,
that includes details of the change, and the business case, then
the development team analysis may be considered and the
changes approved prior to implementation to avoid
unnecessary changes, and not to disrupt resources and delay the
project delivery depending on seven measures (change impact,
severity, priority, working hours, phase SDLC, change type and
the number of changes), using all collected data to record all
changes requested and decisions made in change log, the task
group would re-estimate the project plan (effort, project
schedule and project cost), developers are responsible for
estimating the effort required to implement the new
requirement changes which they will work on , project
managers notify user and negotiate the cost of changes going to
be implemented, after the change is done correctly, the case is
closed in the change log.

Fig. 8 present the controlling of requirements volatilely
process

Fig. 8. Ccontrolling process of requirements volatilely

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

70 | P a g e

www.ijacsa.thesai.org

VI. CASE STUDY

In this section, we will apply the proposed framework on
ADJD system as a case study and discuss the impact of
software requirement changes during the life cycle
development in different project aspects (cost, schedule, and
quality).

ADJD system refers to the Abu Dhabi Judiciary
Department-Treasury System; the treasury system developed
for the Abu Dhabi Judicial Department integrates with the
existing case management system to facilitate the management
of financial deposits and withdrawals associated with legal
cases. By recording details of the beneficiaries and building an
accounting structure, the Judicial Department is able to
organize the financial processes involving receivables, check
issuing and bank account management.

Basically clients are not technical people. They need
software for their business but the requirements are unclear.
Nobody has done an in-depth analysis of all the implications so
during implantation phase client request some new features.
The new features will probably break some assumptions
development team made in their code and they start thinking
immediately of all the things you might have to refractor, no
matter how conscious you are of all these new features, you
give shorter times than you originally suppose it might take.
Special when you feel the pressure of deadlines and
management expectations.

Measuring the Requirements volatility percent: Stark [20],
derived a formula based on the statistics on different projects
that:

Requirements volatility = (added + deleted + changed

(modified))/ (# requirements in VCN)*100 [20].
Where VCN (version content notice) = set of requirements

agreed by both the developer and customer.

In VCN 1.2 release has 55 requirements initially, later 2
new requirement are added, and 5 requirements are deleted
from initial requirements, modified 11 requirements and at the
end add 2 new features as business needs.

RV = (2+5+11+2)*100/55= 36.4 % of project has changes

TABLE I. LOG OF CHANGES

RV No. Priority Severity Change Type
Effort *6 H

(man days)

2 2 Critical Additions 3

11 3 Major Modifications 2

5 5 Minor Delete 2

2 1 Critical Add new feature 5

Total=

20

Total=12 man

day * 6

 First when the proposed framework is used, it helped
the team to know the root cause of requirements
volatility that will reduce number of changes happened
in next release and other projects.

 As is explained in case study, 36% of project
requirements changed due to requirement errors that
have not been discovered before development team start
implementation. Proposed framework manage changes

appeared during life cycle development by analysis of
changes requested depending on some criteria (priority,
severity, type of change, change type, impact of change
and no of working hour's needs) to avoid implement
unnecessary volatility change.

VII. CONCLUSION

In this paper we have described several aspects of
requirements volatility, such as factors, causes, measurements
and impact of requirement volatility on software life cycle
development, and also proposed framework to manage
requirements volatility.

The causes of requirements volatility cannot be overcome
fully but we described some causes like (poor communication
between stake holders and developers, technical aspects and
bad management process, etc.)

Requirements volatility has an impact on the whole
software life cycle development. It has impact on the project
schedule, cost, and quality. It cannot be avoided, but we can
manage it to reduce the effect of requirements volatility by
following some methods in analysis, design, and coding. Due
to the impact of requirements volatility many projects have
failed.

The proposed framework will manage the requirement
changes that help to reduce the effect of changes made all over
the project. This framework contains four major phases
(Elicitation and Analysis phase, specifications Validation
phase, Requirements Volatility phase and Change management
phase) that help project development team to know the
necessary changes and take the right decision according to
volatility measurements (priorities, status and working hours).

Future work: more research is needed to develop the
flexible architecture which is suitable for requirements
volatility. We need to define new methods to manage
requirements volatility, and also more work on management of
the requirements volatility, modified framework is needed by
adding different software process models

REFERENCES

[1] Amira A. Alshazly a, *. A. (2014). Detecting defects in software
requirements specification. Alexandria Engineering Journal, 15

[2] Aybüke Aurum, C. W. (2005). Engineering and Managing Software
Requirement. Germany: © Springer-Verlag Berlin Heidelberg.

[3] CS2 Software Engineering note 2. (2004, autumn 1). Software
Requirements1. Software Requirements1, p. 9.

[4] Daniel D. Galorath, Galorath Incorporated. (2006). the 10 Step Software
Estimation Process for Successful Software Planning, Measurement and
Control. Galorath Incorporated, 13.

[5] Davis, A., Colorado Univ., C. S., Overmyer, S., Jordan, K., & Caruso, J.
(1993). Identifying and measuring quality in a software requirements
specification. Software Metrics Symposium, IEEE. Proceedings. First
International, 12.

[6] Dhirendra Pandey1, U. S. (2011, May). A Framework for Modelling
Software Requirements. IJCSI International Journal of Computer
Science Issues, 8.

[7] Gursimran Singh Walia a, J. C. (2009). A systematic literature review to
identify and classify software requirement errors. Information and
Software Technology, 23.

[8] Kelly, A. (2008, Feb). Changing Software Development: Learning to
Become Agile. Wiley.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

71 | P a g e

www.ijacsa.thesai.org

[9] King, A. F. (2005, December). How to Detect Requirements Errors-A
Guide to Slashing Software Costs and Shortening Development Time.
Retrieved from ravenflow: www.ravenflow.com

[10] Loconsole, A. (2007). Definition and validation of requirements
management measures. SE-90187 Umeå, Sweden, Umeå University,
Thesis, 106.

[11] M.P.Singh, R. V. (2012, 9). Requirements Volatility in Software
Development Process. International Journal of Soft Computing and
Engineering (IJSCE), 6.

[12] N Nurmuliani, D. Z. (2007). Analysis of Requirements Volatility during
Software Development Life Cycle. Australian Software Engineering
Conference (ASWEC’04), 13.

[13] Sakthivel, S. (2010). Manage Requirements Volatility to Manage Risks
in IS Development Projects. ISACA JOURNAL, 4.

[14] Sudhakar, M. (2005). Managing the Impact of Requirements Volatility,
Master Thesis, Department of Computing Science,Umeå University,SE-
90187 Umeå, Sweden, 42

[15] Awasthi, R. (2012). Development of a Structured Framework to
Minimize Impact of Requirement Volatility. International Journal of
Computer Applications (0975 – 8887), 7

[16] International Institute of Business Analysis (IIBA), “Business Analysis
Body of Knowledge 2.0”, 2009

[17] Wiegers, Karl E., “Software Requirements, 3nd Edition”, Microsoft
Press, 2009

[18] Abeer AlSanad and Azeddine Chikh., (2014). " The Impact of Software
Requirement Change – A Review "

[19] G. Stark, P. Oman, A. Skillicorn, and R. Ameele, “An Examination of
the Effects of Requirements Changes on Software Maintenance
Releases” in Journal of Software Maintenance Research and Practice,
Vol. 11, 1999, pp:293-309

[20] Mohd.Haleem, Mohd.Rizwan Beg, Sheikh Fahad
Ahmadlnternational,Journal of Advanced Research in Computer
Engineering & Technology (IJARCET) Volume 2, No 5, May 2013, pp:
1811-1815.

