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Abstract—In this paper, a multimodal firefly algorithm 

named the CFA (Coulomb Firefly Algorithm) has been presented 

based on the Coulomb’s law. The algorithm is able to find more 

than one optimum solution in the problem search space without 

requiring any additional parameter. In this proposed method, 

less bright fireflies would be attracted to fireflies which are not 

only brighter, but according to the Coulomb’s law pose the 

highest gravity. Approaching the end of iteration, fireflies' 

motion steps are reduced which finally results in a more accurate 

result. With limited number of iterations, groups of fireflies 

gather around global and local optimal points. After the final 

iteration, the firefly which has the highest fitness value, would be 

survived and the rest would be omitted. Experiments and 

comparisons on the CFA algorithm show that the proposed 

method has successfully reacted in solving multimodal 

optimization problems. 

Keywords—Swarm Intelligence; multimodal firefly algorithm; 

multimodal optimization; firefly algorithm 

I. INTRODUCTION 

Optimization is finding an optimum solution from a set of 
available options with the purpose of optimizing criteria for the 
problem in a limited time. The main challenge with single 
solution optimization algorithms, however, is that they are only 
able to find one optimum solution from a set of available 
options while most real-world problems have more than one 
optimum solution [1]. Hence, multimodal optimization 
algorithms which are among the novel inventions of 
evolutionary algorithms, have been designed to find a set of 
possible solutions from available options. Unlike unimodal 
optimization algorithms which try to avoid local optimal 
points, multimodal optimization algorithms recognize these 
points as a solution. Although normally the algorithms have 
not been basically designed to merely solve these problems, 
several algorithms have recently tried to solve these problems 
by modifying existing unimodal optimization algorithms. The 
majority of these algorithms are based on particle swarm 
optimization algorithms [1-6] and genetic algorithms [7-10]. 
The firefly optimization algorithm has been used successfully 
to optimize different kinds of problems, but all of them have 
been within the span of unimodal optimization problems. In 
this paper, the Coulomb’s law has been applied to the firefly 
optimization algorithm in order to turn it into a multimodal 
algorithm. 

EPSO algorithm [3] was introduced by J. Barbara and 
Carlos A. C. in 2009. In this method, the selection of global 
optimum mechanism, in PSO algorithm, was changed using 

Coulomb's law. Then, the particles that are to be selected as the 
global optimum can be separately calculated for each particle. 
In fact, particles may move towards different particles as the 
global optima. In other words, the global optima for every 
particle could vary from one particle to another. Hence, 
particles not only do not surround the global optima, but they 
also surround their local optima. It is evident that a particle 
with a more desirable cost function is surrounded by more 
particles. It is this mechanism's property that particles tend to 
move towards a point that has both an appropriate cost function 
value and an appropriate distance from the particle. 

FERPSO [2] is a well-known algorithm that has been 
proposed for solving multimodal optimization problems which 
was introduced by Xiaodong Li in 2007. In terms of nature, 
this algorithm could be viewed as: more birds will gather 
where there is more food.  In fact, if they find a good resource 
near themselves, they will not use farther resources. In 
FERPSO, the particles that are to be selected as global optimal 
point are selected for each particle regarding the Euclidian 
distance between particles. In essence, the overall structure of 
FERPSO and EPSO are highly similar, and they both have the 
same level of complexity. 

B. Y. Qu et al have combined a local searching technique 
with some existing multimodal PSO optimization algorithms 
that have used niching [2, 11, 12] method trying to solve such 
problems. In this method, the personal best for particles are 
improved significantly by using a local searching method. In 
fact, the personal best is improved by generating a random 
point between the particle and the nearest point, that is, if the 
newer point is more desirable than the current personal best, 
the new point will replace the former, otherwise, the original 
point stays intact. 

J.Zhang et al. [13] proposed a modified algorithm called the 
sequential niching particle swarm optimization (SNPSO). This 
algorithm divides the whole population into several sup-
populations which can be located around optimal solutions in 
multimodal problems. They use space convergence rate (SCR), 
in which each sub-population detects global and local optimal 
solutions until the end of iteration. 

Xiaodong li. [11] proposed an improved PSO algorithm 
called the (SPSO). In this method, the idea of species is used to 
specify each species’ best value of neighborhood. The 
algorithm divides the whole population into several 
populations called species with regard to their similarity. Each 
species gather around a particle called species seed. 
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II. FIREFLY ALGORITHM 

A. The Behavior of Fireflies in Nature 

There are almost two thousand known species of firefly in 
nature, most of which emit flashes of light with a certain 
rhythm in order to attract a mating partner or bait. In addition 
to these reasons, fireflies can protect themselves against the 
attackers using the flashes which can also attract the opposite 
sexes. The distance between the fireflies and the environment, 
where the light is emitted, is somehow effective on the 
intensity of light received by fireflies. As the light intensity 
obeys the inverse square law at a particular distance r (I ∝ 
1/r2), and because light is absorbed by air, most fireflies can 
just be visible to a limited distance. 

B. Firefly Algorithm 

The firefly algorithm is one of the novel optimization 
algorithms based on swarm intelligence which was first 
introduced by X.Yang in 2008 [14]. It was inspired by the 
natural behavior of fireflies. The firefly algorithm randomly 
distributes a number of artificial fireflies in the search space at 
the beginning. All of the fireflies are unisexual and thus 
regardless of gender, each firefly can be attracted by any other 
firefly. Each firefly produces a light whose intensity depends 
on the optimality of its position and is proportional to its fitness 
value. The next step is comparing constantly the intensity of 
the light of each firefly with that of other fireflies and less 
bright fireflies moves towards brighter ones. Evidently, 
depending on the distance, fireflies receive lights with varying 
intensities; however, the brightest firefly moves randomly in 
search of space to increase its chance of finding the global 
optimum solution. Movement of the less bright firefly towards 
the brighter one is expressed through equation (1). 
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Where    is the maximum coefficient of attraction between 
ith and jth fireflies, α is the coefficient of random displacement 
vector, γ is the light absorption coefficient for the environment, 
and       is the Euclidean distance between two fireflies. Each 

firefly is compared to all others and if its fitness value is less 

than that of another one, it will be attracted according to 
equation (1). This trend continues to the last algorithm iteration 
when finally the optimum solution is obtained as the final 
solution. Main steps of the firefly algorithm can be expressed 
in the form of the pseudo-code briefed in Algorithm 1 (FA). 

III. MULTIMODAL OPTIMIZATION 

Constraints such as physical, temporal and economic 
limitations can prevent achievement of actual results; however, 
having knowledge of multimodal optimization solutions is very 
useful in engineering fields. In such cases, if multiple local and 
global solutions are available, the optimum system 
performance is obtained by switching between solutions. Since 
there are several solutions to many real-world problems, 
multimodal optimization algorithms are useful for solving 
these problems. Not only are these algorithms able to locate 
multiple optima in a single run, but they also preserve their 
population diversity. The reason why classic optimization 
techniques are not used to find multiple solutions shows their 
unreliability in finding more than one solution in multiple runs 
[15]. Evolutionary algorithms including Genetic Algorithms 
(GAs), Differential Evolution (DE), Particle Swarm 
Optimization (PSO), and Evolution Strategy (ES) are kinds of 
algorithms which has been tried to solve multimodal 
optimization problems. Referred algorithms [7, 10, 15-23] are 
among algorithms designed to the aforementioned criteria. 

IV. MULTIMODAL FIREFLY ALGORITHM 

Studies on multimodal optimization have mostly focused 
on the PSO and genetic algorithms. In this paper, like other 
meta-heuristic algorithms which have used unimodal 
algorithms for solving multimodal optimization problems, 
some changes are made on FA algorithm without the need for 
any additional parameter, and it has been utilized to solve 
multimodal optimization problems. In the proposed algorithm, 
the Coulomb’s law in equation (2) has been used to calculate 
the electrostatic interaction between two fireflies. This 
technique was successfully used by J. Barrera and A. Coello in 
[3] to obtain a multimodal PSO algorithm. They have used this 
method to calculate forces between two particles which has 
also been used in the present paper to calculate the attraction 
between two fireflies. 

Algorithm 1  Pseudo-code for FA main steps 

Objective function f(x), x = (x1, ..., xd)
T 

Generate initial population of fireflies xi (i = 1, 2, ..., n) 

Light intensity Ii at xi is determined by f(xi) 

Define light absorption coefficient γ 

1: while (t <MaxGeneration) 

2:     for i = 1 : n all n fireflies 

3:            for j = 1 : i all n fireflies 

4:               if (Ij > Ii) 

5:                      Move firefly i towards j in d-dimension; 

6:                  end if 

7:                  Attractiveness varies with distance r via exp[−γr] 

8:                 Evaluate new solutions and update light intensity 

9:            end for j 

10:      end for i 

11:     Rank the fireflies and find the current best 

12: end while 

Postprocess results and visualization 
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In this equation, 
 

    
 is the proportionality constant 

(Coulomb constant); Qi and Qj denote the magnitude of two 
charged particles, and r is the distance between two charges. 
According to this formula, force magnitude is proportional to 
magnitude of charges but it obeys inverse square law for 
distance. Hence, the attraction between two fireflies is 
calculated through the following equation. 
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In this equation, α is equal to 1 and       is the fitness 
value for the firefly which will be attracted to one of the 
present fireflies.     ⃗  is the vector of the fitness value of other 

fireflies to which the ith firefly is being compared. Finally, the 
destination firefly is obtained by using equation (4). 

   ,
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i i jF
Fmax F  (4) 

Calculating the above equation yields to the maximum 
value of       . Finally, the index of the j

th
 firefly, with the 

highest value of F, is calculated and equation (5) is obtained by 

changing equation (1). 
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As a result, the i
th
 firefly is attracted to the firefly which has 

the highest value of F. Therefore, destination fireflies are not 
selected just based on the value of fitness value but from 
calculating the electrostatic interaction between other fireflies. 
This method prevents the attraction of other fireflies by the best 
firefly. Instead, fireflies are attracted by fireflies which besides 
having sufficient fitness value, must be at a close distance since 
distance is an effective parameter in their attraction. In each 
iteration in this case, each firefly compares its electrostatic 
interaction with others and then moves toward the firefly which 
has the highest electrostatic interaction. As it was mentioned 
before, α is the coefficient of random displacement with a 
value considered to be [0.1-1] at the beginning. This makes the 
firefly’s movements to be random to some extent and to search 
for new sources; however, this value of α results in a less 
precise solution at the end of iteration. To prevent it, the 
coefficient of random movement is reduced in each iteration so 
as to reduce the randomness of the movement of the firefly 
toward the destination. Moreover, the value of γ is increased in 
each iteration so that fireflies take smaller steps at the end of 
the iteration. These two actions take place using equations (6) 
and (7). 

Iteration
α  α 1

MaxGeneration 2

 
   

 
 (6) 

Algorithm 2  Pseudo-code for CFA main steps 

Objective function f(x), x = (x1, ..., xd)
T
 

Generate initial population of fireflies xi (i = 1, 2, ..., n) 

Light intensity Ii at xi is determined by f(xi) 

Define light absorption coefficient γ 

1: while (t <MaxGeneration) 

2:     γ= γ +t / (MaxGeneration*5); 

3:          α = α * (1-t / (MaxGeneration*2); 

4:           for i = 1 : n all n fireflies 

5:                         for j = 1 : i all n fireflies 

6:                                        if (Ij > Ii) 

7:                                               push(F,( Ii * Ij)/norm(x(i)-x(j))^2); */ in d-dimension  

8:                                       end if 

9:                         end for j 

10:                      Move firefly i towards          in d-dimension;  
11:                       Attractiveness varies with distance r via exp[−γr] 

12:                      Evaluate new solutions and update light intensity 

13:          end for i 

14: end while 

Postprocess results and visualization 

Iteration
γ  γ

MaxGeneration 5
 


 (7) 

Main steps of CFA can be summarized into the pseudo-
code shown in Algorithm 2. 
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TABLE I.  TEST FUNCTION 

 Test function Range 
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f1 = Ackley, f2 =Rastrigin,  f3 = Shubert, f4 = Six-hump camel back, f5 = Himmelblau, f6 = Equal maxima, f7 = Decreasing maxima

V. EXPERIMENTAL RESULT 

A. Test Functions 

The experiments have been performed on benchmark 
functions common in multimodal optimization. Specifications 
of these algorithms are presented in Table (1). 

B. Configurations 

All algorithms were implemented in Matlab 2013 and were 
run in a computer equipped with an Intel Core(TM) i7-
3632QM 2.2 GH processor and 8 gigabytes of RAM. 

C. Performance measures 

To assess the performance of aforementioned algorithms in 
section (6.4), the following 7 criteria are considered and 
measured 50 runs. 

1) Success Rates (SR): The percentage of performances in 

which all the optimum points have been found successfully. 
To calculate success rate, a user specified parameter, called 

the Level of Accuracy (LOA), is considered. This parameter is 
usually between (0,1] and is used to measure the difference 
between found solutions and the real optimum points in 
functions, so that if the difference between found solution and 
the real solution is less than the amount of LOA, then the found 
solution is counted as a successful solution [12]. 

2) Average Number Of Optima Found (ANOF): The 

average of optimum points found considering LOA for 50 

runs. 

3) Global Average Number of Optima Found: The 

average of global optima found considering LOA for 50 runs. 

4) Average Function Evaluation is the average number of 

fitness function calling for 50 runs [1]. 

5) Success Performance (SP): This parameter is 

computable when the amount of SR is not zero [24]. SP is 

calculated from equation (8) : 

          Avarage NumberOf Function Evaluation ANOF
SP

SR
  (8) 

Based on the fact that algorithms with less ANOF and 
higher SR amount can be considered as a better one, it can be 
concluded that less SP amount is more acceptable. 

6) Maximum Peak Ratio (MPR): The quality of optima is 

tested without considering the population distribution, and the 

performance metric, which is called the maximum peak ratio 

statistic (MPR), is adopted. The MPR is defined as follows: 
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Fig. 1. search landscape of f4 
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c: The number of found optimum point in the solution 

q: The number of real optimum points in the solution 

    The quantity of fitness function obtained in the final 
population 

  : The quantity of real fitness value in objective function 

7) Precision :  the ratio of found optimum points to the 

number of real optimum points 

Precision  
c

q


 
(10) 

D. Test and comparison results 

The results of the experiments are shown in the tables 2-4 
which have the accuracies of 10-1, 10-2 and 10-3 respectively.  
First columns of all three tables represent test functions; second 
columns are equivalent of implemented algorithms and the 
other columns are as written on top of each column. The best 

performance was reported in boldface. As it can be seen from 
the results, with the increase of the level of accuracy, the 
proposed algorithm has a better performance compared to 
FER-PSO [2], EPSO [3] and LS-FER-PSO [1] algorithms. It is 
shown in the tables that the presented algorithm and LS-FER-
PSO algorithm have better performance compared to other 
algorithms. Comparing LS-FER-PSO algorithm and presented 
algorithm, it is shown that sometimes one performance is better 
than the other and vice versa. However it should be mentioned 
that the ratio of average function evaluation of LS-FER-PSO 
algorithm is 1.67 times higher than that of the presented 
algorithm. The performance of this algorithm proved its 
usefulness in solving optimization problems. 

Fig. 1 shows the search space of f4. Fig. 2 also indicates the 
position of fireflies during the running of the proposed 
algorithm with 60 fireflies and 60 iterations using the f4 
function. Fig. 2 A-D shows the position of particles in the 1

st
, 

10
th
, 20

th
 and 30

th
 iterations. In fact, 4 out of the 6 available 

points were successfully found in 0011 function evaluation. 
However all optimum points can be found by increasing the 
number of fireflies. As it can be clearly observed in Fig. 2, by 
getting close to the end of the iterations, fireflies around 
optimum solutions become gradually more and more 
concentrated. Since the firefly algorithm was designed for 
maximum optimization problems, the average value of cost 
functions of fireflies increased in each iteration Fig. 3 
Moreover, as seen in Fig. 4, as the concentration of fireflies 
around optima (i.e. around each other) increased, the standard 
deviation of cost functions decreased. The reason was that the 
more the process of the algorithm got closer to the end of the 
iteration, the more the fireflies and their cost functions got 
closer to form neighborhoods. 

VI. CONCLUSION 

This paper proposed CFA multimodal firefly algorithm 
based on the Coulomb’s law. This algorithm was successful in 
solving multimodal optimization problems. Results of 
experiments indicated that this unimodal optimization 
algorithm was successfully turned into a multimodal 
optimization algorithm through modifications. Two of the 
advantages of this algorithm are quickly yielding optimal 
results and not requiring additional parameter for being turned 
into a multimodal algorithm. According to the results, this 
algorithm can be considered as a reliable multimodal 
optimization algorithm.  
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TABLE II.  THE RESULTS OF THE EXPERIMENTS - ACCURACY: 10-1 

Function Algorithm 
Success 

Rate 

Average 

Optima 

Found 

Global Average 

Optima Found 

Mean Peak 

Ration 
Precision 

Success 

Performance 

Average 

Function 

Evaluation 

Func-1 

CFA 0 94.3 1 1.013023 0.945670 Inf 122000 

FER-PSO 0 37.38 1 0.94486 0.635588 Inf 102000 

EPSO 0 58.18 1 0.981776 0.664516 Inf 102000 

LS-FER-PSO 0.08 108.68 1 0.649761 0.908604 Inf 204000 

Func-2 

CFA 0 97.4 1 1.03153 0.944675 Inf 122000 

FER-PSO 0 58.9 0.98 1.235763 0.663146 Inf 102000 

EPSO 0 66.38 1 0.996027 0.766224 Inf 102000 

LS-FER-PSO 0.52 110.3 1 0.992886 0.995518 927272.7 204000 

Func-3  

CFA 0 147.34 5.14 1.027689 0.962784 Inf 170800 

FER-PSO 0 119.62 3.74 1.093445 0.805226 Inf 142800 

EPSO 0 62.18 3.02 1.040867 0.911363 Inf 142800 

LS-FER-PSO 0 197.12 4.2 0.190057 0.959919 Inf 285600 

Func-4 

CFA 0.14 4.56 2 1.091253 0.984000 87142.86 12200 

FER-PSO 0.02 4.2 2 1.135589 0.960333 510000 5100 

EPSO 0.12 4.7 2 1.022293 0.768690 42500 5100 

LS-FER-PSO 0.98 5.98 2 0.788084 0.976000 1020000 20400 

Func-5 

CFA 1 4 4 0.888415 0.456564 12200 12200 

FER-PSO 0.02 1.92 1.92 1.265238 0.03479 510000 5100 

EPSO 0.04 2.34 2.34 0.859798 0.037773 255000 5100 

LS-FER-PSO 1 4 4 2.205311 0.466675 20400 20400 

Func-6 

CFA 0.42 4.14 4.14 1.09713 0.855333 14523.80 6100 

FER-PSO 1 5 5 1.126117 0.648757 5100 5100 

EPSO 0 1 1 1 1 Inf 5100 

LS-FER-PSO 1 5 5 1.173182 0.868849 10200 10200 

Func-7 

CFA 0.12 3.14 1 0.990534 1 50833.33 6100 

FER-PSO 0.94 4.94 1 1.263032 0.812786 5425.532 5100 

EPSO 0 1 1 1.058738 1 Inf 5100 

LS-FER-PSO 1 5 1 1.144458 0.889643 10200 10200 

TABLE III.  THE RESULTS OF THE EXPERIMENTS - ACCURACY: 10-2 

Function Algorithm 
Success 

Rate 

Average 

Optima 

Found 

Global Average 

Optima Found 

Mean Peak 

Ration 
Precision 

Success 

Performance 

Average 

Function 

Evaluation 

Func-1 

CFA 0 53.8 1 1.020978 0.621089 Inf 122000 

FER-PSO 0 6.38 0.64 0.630055 0.117527 Inf 102000 

EPSO 0 20.88 0.94 1.026456 0.248781 Inf 102000 

LS-FER-PSO 0 43.14 1 1.109575 0.616820 Inf 204000 

Func-2 

CFA 0 57.88 1 1.054625 0.562889 Inf 122000 

FER-PSO 0 7.64 0.24 1.245746 0.091978 Inf 102000 

EPSO 0 21.52 0.78 1.055243 0.247988 Inf 102000 

LS-FER-PSO 0 114.34 1 1.000549 0.953799 Inf 204000 

Func-3  

CFA 0 85.08 5 1.057686 0.627016 Inf 170800 

FER-PSO 0 10.88 0.68 0.92454 0.072021 Inf 142800 

EPSO 0 38.32 2.7 1.072754 0.580346 Inf 142800 

LS-FER-PSO 0 84.04 4 1.060134 0.603456 Inf 285600 

Func-4 

CFA 0.06 4.46 2 0.951791 0.931333 203333.3 12200 

FER-PSO 0 3.88 2 0.916055 0.890000 Inf 10200 

EPSO 0 3.44 1.76 1.038658 0.552857 Inf 10200 

LS-FER-PSO 0 4.02 2 1.173043 0.898333 Inf 20400 

Func-5 

CFA 0 4 4 0.926575 0.408128 12200 12200 

FER-PSO 0 0.46 0.46 0.846641 0.008104 Inf 10200 

EPSO 0 0.58 0.58 0.861226 0.018275 Inf 10200 

LS-FER-PSO 1 4 4 1.513459 0.404559 20400 20400 

Func-6 

CFA 0.02 3.02 3.02 0.866844 0.575548 305000 6100 

FER-PSO 1 5 5 0.995434 0.636006 5100 5100 

EPSO 0 1 1 1 1 Inf 5100 

LS-FER-PSO 1 5 5 1.159774 0.87873 10200 10200 

Func-7 

CFA 1 2.96 1 0.980653 0.796000 Inf 6100 

FER-PSO 1 5 1 0.824626 0.777659 5100 5100 

EPSO 0 1 1 1.058738 1 Inf 5100 

LS-FER-PSO 1 5 1 1.090589 0.92869 10200 10200 
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TABLE IV.  THE RESULTS OF THE EXPERIMENTS - ACCURACY: 10-3 

Function Algorithm 
Success 

Rate 

Average 

Optima 

Found 

Global Average 

Optima Found 

Mean Peak 

Ration 
Precision 

Success 

Performance 

Average 

Function 

Evaluation 

Func-1 

CFA 0 20.24 0.86 1.069871 0.228672 Inf 122000 

FER-PSO 0 0.78 0.22 1.437689 0.014452 Inf 102000 

EPSO 0 8.06 0.5 1.103679 0.092075 Inf 102000 

LS-FER-PSO 0 13.22 1 1.123158 0.189530 Inf 204000 

Func-2 

CFA 0 18.1 0.62 1.030118 0.175755 Inf 122000 

FER-PSO 0 0.78 0 1.212728 0.009763 Inf 102000 

EPSO 0 8.44 0.42 0.986824 0.097171 Inf 102000 

LS-FER-PSO 0 55.42 1 0.992886 0.461895 Inf 204000 

Func-3  

CFA 0 36.1 4.08 1.011276 0.266552 Inf 170800 

FER-PSO 0 0.7 0.04 0.977142 0.004798 Inf 142800 

EPSO 0 16.04 1.08 1.03949 0.235603 Inf 142800 

LS-FER-PSO 0 24.14 4 1.039162 0.170459 Inf 285600 

Func-4 

CFA 0 3.84 1.88 0.930002 0.845333 Inf 12200 

FER-PSO 0 2.08 2 0.927387 0.470333 Inf 10200 

EPSO 0 1.28 0.78 0.785126 0.202500 Inf 10200 

LS-FER-PSO 0 3.14 2 1.182125 0.692333 Inf 20400 

Func-5 

CFA 0.9 3.88 3.88 0.798721 0.412415 13555.56 12200 

FER-PSO 0 0.24 0.24 1.702931 0.004307 Inf 10200 

EPSO 0 0.1 0.1 0.782353 0.001551 Inf 10200 

LS-FER-PSO 1 4 4 1.054611 0.170459 20400 20400 

Func-6 

CFA 0.06 2.76 2.76 1.29713 0.519389 101666.7 6100 

FER-PSO 1 5 5 1.012981 0.629383 5100 5100 

EPSO 0 1 1 1 1 Inf 5100 

LS-FER-PSO 1 5 5 1.208592 0.834246 10200 10200 

Func-7 

CFA 0 1.74 1 1.713465 0.528333 Inf 6100 

FER-PSO 0.96 4.96 1 1.368622 0.743413 5312.5 5100 

EPSO 0 1 1 1.058738 1 Inf 5100 

LS-FER-PSO 1 5 1 1.092660 0.922857 10200 10200 

  
                             A: iteration 1                                                                             B: iteration 01 

  
                                  C: iteration 20                                                                      D: iteration 01 

Fig. 2. the position of particles in different iterations (beginning to end) 
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Fig. 3. The average value of cost function in each iteration 

 
Fig. 4. The standard deviation of  cost fucntions of fireflies in each iteration 
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