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Abstract—Noisy training data have a huge negative impact on 

machine learning algorithms. Noise-filtering algorithms have 

been proposed to eliminate such noisy instances. In this work, we 

empirically show that the most popular noise-filtering algorithms 

have a large False Positive (FP) error rate. In other words, these 

noise filters mistakenly identify genuine instances as outliers and 

eliminate them. Therefore, we propose more conservative outlier 

identification criteria that improve the FP error rate and, thus, 

the performance of the noise filters. With the new filter, an 

instance is eliminated if and only if it is misclassified by a mutual 

decision of Naïve Bayesian (NB) classifier and the original 

filtering criteria being used. The number of genuine instances 

that are incorrectly eliminated is reduced as a result, thereby 

improving the classification accuracy.   

Keywords—component; Instance Reduction Techniques; 

Instance-Based Learning; Class noise; Noise Filter; Naive 

Bayesian; Outlier; False Positive 

I. INTRODUCTION 

In Machine Learning (ML), the quality of the training data 
can have a huge impact on the induced classifier. Noise can 
cause a learning algorithm to overfit the training data [1], 
which harms the classifier’s performance. ML algorithms use 
different methods to mitigate the effect of noise. For example, 
decision-tree learning algorithms use pruning techniques [2] 
whereas neural networks use validation datasets to determine 
when to stop the training process [1]. In Instance-Based 
Learning (IBL), the effect of noise is mitigated by using a large 
number of several similar instances instead of just one as done 
by the k Nearest Neighbor (kNN) algorithm, where k (the 
number of neighbors) is usually set to 3. Another general 
approach that can mitigate the effect of noise is to use a noise-
filtering algorithm that determines and eliminates the outlier 
instances [3], [4], [5], [6], [7], [8]. Although, most of these 
methods were designed for IBL methods, they can also be used 
to preprocess the training data before using them with other 
ML approaches, such as decision trees [9] and neural networks 
[10], [11]. The efficacy of ML methods, specifically kNN, is 
highly influenced by the quality of training data. This is most 
obvious when the number of neighbors, k, is set to one [12]; 
the problem is less severe when k is set to larger values (e.g., 
3). Some Instance Reduction (IR) techniques [13], [14], [15] 
have been developed as noise filters specifically to tackle the 
noise problem. 

In this work, we empirically show that these filters may 
eliminate some genuine instances because they mistakenly 
identify them as outliers due to the noise effect [13]. In other 
words, their FP (i.e., incorrectly eliminated noisy instances) 
error rate in identifying outliers is relatively high. This is 

because they use a relaxed outlier identification criterion, 
which is especially bad when the available training data are 
limited in size. This work proposes more conservative 
identification criteria to replace the outlier identification 
criteria of ENN [14], RENN, and All-kNN [15] noise filters. 
The proposed method uses the decision of NB classifier and 
the decision of the noise filter being used to determine whether 
to discard the instance or keep it. 

The empirical results using 50 benchmark datasets obtained 
from UCI machine learning repository [16] show that the new 
method improves the performance of these noise filters at 
different noise ratios. The proposed conservative methods 
proved to be effective at minimizing the FP error rate. In other 
words, the methods managed to save more genuine instances 
and improved the classification accuracy. We present a 
comprehensive comparison between the methods in terms of 
the average classification accuracy, number of datasets in 
which the methods achieve better results and significantly 
better results, the average percentage of eliminated FP 
instances, the average ratio of data reduction, and the average 
percentage of True Positive (TP) instances (i.e., correctly 
eliminated noisy instances) eliminated by each algorithm. 

The paper is organized as follows: Section 2 presents an 
overview of noise-filtering techniques used in the paper and 
NB classifier, section 3 presents the conservative criteria and 
empirically discusses and analyses the results, and section 4 
concludes the paper. 

II. RELATED WORK AND BACKGROUND MATERIAL 

In this section, we review the noise-filtering material that 
we modify as well as the Naïve Bayesian algorithm. 

A. IR Techniques for Noise Filtering 

The problem of noise in classification has been an active 
research area for many decades, and most machine learning 
algorithms focus on this issue. The problem has continued to 
be a major challenge due to the uncertainty property of the 
noise [17]. Various approaches to dealing with the problem of 
noise have been integrated with the learning algorithms to 
mitigate its effect and improve the learning capabilities. [18] 
categorized the techniques that handle noise into three main 
groups: robust, polishing, and filtering. 

Robust techniques leave the noise in the dataset and use an 
embedded pruning phase to mitigate its effect. Such techniques 
are used in decision trees and rule learning. In decision trees 
some branches are pruned C4.5 [19], while in rule learning 
some preconditions of rules are pruned CN2 [20]. However, 
the classifier built from noisy a dataset may be less 
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representative and less predictive if the noise ratio is very high. 
[21] preferred to handle the noise as a pre-processing phase, so 
that the constructed classifier is not affected by the noise. 

The other two techniques (i.e., polishing and filtering) use 
more pure training data as the noise is preprocessed before any 
classifier is constructed; therefore, most studies tend to use 
such techniques [17]. Polishing techniques try to repair noisy 
instances by replacing the suspected attribute values with other 
appropriate values [22], [23]. The new values are determined 
based on the class of an instance and some additional attribute 
values. Correcting or relabeling an instance is a risky process 
because it can replace a noisy value with another [24], [18], 
[25]. Meanwhile, filtering techniques use an independent 
noise-filtering stage in which noisy instances that meet certain 
criteria are determined and discarded. Noise filtering has been 
implemented in different forms with different types of 
classifiers [26], [6], [27], [28], [4], [9], [10], [3], [5], [8], [29] 
and has been proven to be effective in improving the 
classification accuracy [25]. 

IR techniques were developed to speed up and reduce the 
storage requirements for IBL while preserving the 
classification accuracy [13]. Some such techniques are 
designed specifically to work as noise filters (e.g., ENN [14], 
RENN, and All-kNN [15]). The retained set of instances is 
purer and better represents the underlying instance space. The 
filtering techniques used in this paper include the following: 

 The ENN [14] is a decremental algorithm that starts 
with the complete training set and eliminates an 
instance if it is misclassified by its k nearest 
neighbor(s). We set k to 3 in this work. The algorithm 
smooths the decision boundaries by removing the noisy 
instances, which are typically closer to the border. The 
pseudo code for the ENN algorithm is shown in Figure 
1. 

 The RENN [15] is a repeated form of ENN until no 
more instances can be removed. This will increase the 
gap between classes. 

 All-kNN [15] is a batch algorithm that starts with a 
complete training set. It marks all instances 
misclassified by its i neighbors for all i = 1 to k. The 
elimination is done once, after all the instances in the 
training set are examined. Internal noisy instances 
within a class as well as odd instances on the border 
will be removed. The pseudo code for the All-kNN 
algorithm is shown in Figure 2. 

 

Fig. 1. Pseudo code for ENN algorithm 

 
Fig. 2. Pseudo code for All-kNN algorithm 

B. Naїve Bayesian (NB) 

The NB classifier is a simple form of Bayesian Network 
(BN) with one parent and several children [30]. It is a 
probabilistic classifier based on Bayes’ theorem with strong 
(naïve) independence assumptions between the features, given 
the class [31]. To classify an instance, NB calculates the 
conditional probability for each instance class value and 
considers the class with the maximum probability as the 
predicted class, as shown in Equation 1. 

Class predicted =        
   

     ∏           (1) 

where,   is a vector of all class attribute values,      is the 
probability of class c, and ∏          is the naïve assumption 

that all the attribute values are conditionally independent given 
the class value. Domingos et al. [32] found that NB 
performance is competitive with more sophisticated ML 
methods, such as DT, IBL, and rule induction, even if the 
features’ dependency is very strong. Moreover, NB is a 
strongly noise-tolerant algorithm [33], [34]. Nettleton et al. 
[33] performed a systematic analysis of robustness of many 
ML algorithms to noise—namely, NB, C4.5, IBk, and SMO. 
They determined that NB is the most noise-robust ML 
algorithm. An extended NB structure obtained from noisy data 
was presented in [35], in which the NB is constructed from 
noisy data and is incorporated with the NB model constructed 
from real data using linear equations and optimization 
methods. The proposed method was effective in handling noisy 
data and achieving classification accuracy. El Hindi [36] 
enhanced the performance of NB classification by using a fine-
tuning stage to improve the probabilities estimation, but this 
degraded the sensitivity of NB toward noise. Therefore, several 
modifications for the fine-tuning process were proposed by 
[34]. They simply assign smaller weights for noisy instances 
during the fine-tuning process instead of eliminating or 
correcting them. 

III. CONSERVATIVE NOISE FILTERS 

In this section, we study and compare the performance of 
the reviewed noise filters and suggest more conservative 
criteria to identify outliers. To study their robustness to noise, 
we performed several experiments with different noise ratios. 
We paid special attention to the FP error rate [37] of each 
algorithm, because we believe that these noise filters 
mistakenly classify many genuine instances as outliers and, 
consequently, eliminate them. 

 

 

T is a training set contains all training instances 

 

For each instance (i) 

If (instance(i).class<> majority class of k neighbors) 

 Remove instance(i) from T 

T is a training set contains all training instances 

oldk=k 

For each instance (i) 

 For k=1 to oldk 

   If (instance(i).class<> majority class of k neighbors) 

 mark instance(i) to be removed 

Remove all marked instances 

https://en.wikipedia.org/wiki/Probabilistic_classifier
https://en.wikipedia.org/wiki/Bayes%27_theorem
https://en.wikipedia.org/wiki/Statistical_independence
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TABLE I.  CHARACTERISTICS OF DATA SETS USED IN THE EXPERIMENTS 

In this work, the FP rate refers to the rate of mistakenly 
classifying genuine instances as outliers. Of course, a noise 
filter with a low FP rate is better than a noise filter with a high 
FP rate because the former helps retain more instances that are 
genuine. We must also take into account the False Negative 
(FN) rate, which refers to the rate of mistakenly classifying 
instances as genuine instances when they are in fact outliers. A 
noise filter with a high FN rate is bad because it would fail to 
eliminate all outliers. 

We used 50 benchmark datasets obtained from the UCI 
Repository for Machine Learning [16] to experimentally test 

the FP and FN rates of the noise filters. We deliberately 
inserted class noise in the training sets by replacing the class 
values of some randomly selected instances with other random 
class values. We kept the class values in the test datasets 
unchanged and used different noise ratios of 0%, 5%, 10%, 
15%, and 20%. Each noisy experiment was repeated five times. 
We used the kNN algorithm, with k = 3, and the discretized 
VDM (DVDM) as a distance function [38]. Ten-fold cross-
validation and a paired t-test with a confidence level of 95% 
were used in all experiments. We compared the different 
methods with respect to the following criteria: average 
classification accuracy, the number of datasets in which each 
method achieved better, and significantly better results. We 
also calculated the average reduction size and the FP rate for 
each noise filter. The FP rate was calculated according to 
Equation 2 [39], 

 The False Positive Rate (FPR) = 
  

     
      (2) 

where TN is the number of correctly retained instances 
(i.e., True Negative). We implemented kNN and the classical 
IR noise filters (i.e., ENN, RENN, and All-kNN) in the Weka 
work frame [40]. Table 1 lists the main characteristics of these 
datasets in terms of the number of class values, the number of 
attributes, and the number of instances. 

A. The Prerforamnce of the IR Noise Filters 

We simply applied the selected noise-filtering algorithms to 
the datasets and compared the results of the kNN before and 
after filtering. Table 2 summarizes the results. As shown in 
Table 2, at 0% noise, kNN outperforms all noise filters. In 
addition, All-kNN outperforms RENN, which is consistent 
with the results reported by [13] and [15]. However, the 
advantage of using noise filters is obvious when used with 
noisy training sets, especially when the noise ratio increases. 
At 5% noise, the noise filters start to influence the results in a 
positive way.   

Although, at 5%, noise ENN shows better results than the 
rest of the filters, at 10%, 15%, and 20% noise, RENN emerges 
as the best noise filter; ENN is more conservative and thus 
more suitable when we have a low ratio of noise, yet when we 
have a large ratio of noise, we need a more aggressive 
algorithm, such as RENN. In general, applying a noise-filtering 
algorithm to noisy data before classification improves the 
classification accuracy, which is consistent with the findings of 
[13]. 

Table 3 shows the average reduction in the size of datasets 
as a result of applying each noise-filtering algorithm. RENN 
has the largest reduction in size rate among all algorithms due 
to its natural repeated elimination process.  

It is obvious that the number of instances eliminated by the 
original noise-filtering algorithms is much greater than the 
number of outliers. For example, at 15% noise, the ENN, 
RENN, and All-kNN eliminate 27.4%, 30.65%, and 21.26% of 
the datasets, respectively, which is much higher than the noise 
ratio. Thus, these noise filters eliminate some genuine instances 
that are incorrectly classified by the filter as an outlier, 
resulting in the average percentage of eliminated FPs listed in 
Table 6 for these filters being considered high. 

    

Data set 
# of 

Classes 

# of 

Attributes 

# of 

Instances 

    

anneal 6 39 798 

anneal.ORIG 6 39 798 

arrhythmia 16 280 452 

audiology 22 70 226 

autos 7 26 205 

Breast-cancer 2 10 286 

Breast-w 2 10 699 
bridges_version1 6 13 108 

bridges_version2 6 13 108 

car 4 7 1728 

colic 2 23 368 

colic.ORIG 2 28 368 

congress-voting-1984 2 17 435 

credit-a 2 16 690 
credit-g 2 21 1000 

cylinder-bands 2 40 512 

dermatology 6 35 366 
diabetes 2 9 768 

ecoli 8 8 336 

flags 8 30 194 

glass 7 10 214 

heart-c 5 14 303 

heart-h 5 14 294 

heart-statlog 2 14 270 

hepatitis 2 20 155 

hypothyroid 4 30 3772 

ionosphere 2 35 351 

iris 3 5 150 

labor 2 17 57 

lung-cancer 2 57 32 

lymph 4 19 148 

monk2 2 7 169 

musk1 2 167 476 
postoperative-patient-data 3 9 90 

primary-tumor 22 18 339 

segment 7 20 2310 
sick 2 30 3772 

solar-flare_1 2 13 323 

solar-flare_2 3 13 1066 

sonar 2 61 208 

Soybean 19 36 683 

spect_train 2 23 80 

splice 3 62 3190 

sponge 3 46 72 

tennis 2 5 14 

trains 2 33 10 

Vehicle 4 19 846 

Vote 2 17 435 

Vowel 11 14 990 

Zoo 7 18 101 
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TABLE II.  THE RESULTS OF THE KNN ALGORITHM BEFORE AND AFTER 

APPLYING EACH NOISE FILTER 

TABLE III.  THE AVERAGE REDUCTION IN SIZE OF THE NOISE FILTER AT 

DIFFERENT NOISE RATIOS 

B. Hybrid Outlier-Identification Criteria 

The fact that these noise filters have a high FP rate suggests 
that the noise filters are too relaxed or loose in determining the 
outliers. To improve their performance, we believe that their 
criteria for determining outliers need to be more conservative 
and restricted. As the NB learning algorithm is robust to noise, 
we use it to make the noise identification criteria more 
conservative. We consider an instance an outlier if the NB 
classifier misclassifies it; the condition is added to the original 
noise identification criteria of ENN, RENN, and All-kNN. As a 
result, we ultimately double check if an instance is really an 
outlier before discarding it. The new hybrid outlier-
identification criteria aim to sift through the suspicious 
instances to determine the actual outliers. We expect that this 
approach will reduce the number of mistakenly eliminated FP 
instances. Mutual decision of more than one condition for 
elimination can be helpful in this case.  

Mutual decision has been used with instance reduction 
techniques in [9]. The authors applied the DROP5 algorithm on 
instances marked by the All-kNN algorithm (i.e., 
AllKnnDROP5) as a pre-pruning phase before applying the 
rule induction on the reduced training set. The hybrid reduction 
techniques gave better results in terms of average accuracy 
when compared to ENN, AllKnn, and DROP5 techniques 
individually. Mutual decision looks relatively similar to the 
ensembles’ voting concept [25], in which considering different 
methods can lead to better decisions and thus better 
performance, as shown in [9]. 

To evaluate the performance of the conservative noise 
filters, we re-performed the previously described experiments 
using these algorithms. We prefixed the name of the noise 
filters with NB (e.g., "NB_ENN") to distinguish the 
conservative algorithms from the original algorithms. Table 4 
shows the results of proposed conservative filters and their 
original counterparts. When noise-free, the conservative filters 
achieved better than all other filters used. This is expected as 
they eliminate fewer genuine instances. 

In the presence of noise, the conservative filter with ENN 
and All-kNN gave better results than their corresponding 
regular ENN and All-kNN filters. The improved accuracy 
during noise increases is not less on average than 0.4% and 
0.7% for NB_ENN and NB_All-kNN, respectively. Combining 
NB with RENN does not enhance the original RENN; this will 
be explained shortly. 

Of course, the conservative filters eliminate fewer instances 
than the original filters. This is obvious and has been 
confirmed by the average reduction size of each algorithm 
reported in Table 5. The average reduction in size of the noise 
filter algorithms is larger than the noise ratio.  

On the other hand, this average is close to the noise ratio 
when we used the conservative noise filters. Comparing Tables 
3 and 5 shows a big difference in reduction between the 
conservative filter and the original one. 

Table 6 shows the average percentage of eliminated FP 
instances by each algorithm. As we can see, the All-kNN filter 
eliminated more FPs among other techniques’ reach by an 
average of 12.08%, followed by RENN with an average 
elimination of 9.43% and ENN with an average of 5.57%.  

Clearly, the number of FPs eliminated by the noise filters is 
high when compared with the number eliminated by the 
conservative filters, and this number increases as the noise ratio 
increases in most cases. For example, at the 20% noise ratio, 
ENN, RENN, and All-kNN eliminated 6.24%, 10.59%, and 
15.43% of FP instances, respectively, compared to 5.41%, 
7.3%, and 4.96% eliminated by the corresponding conservative 
filters. NB_All-kNN had the lowest average percentage of 
eliminated FPs among all conservative filters. The conservative 
filters save more FPs than the regular filter, thus  the 
performance of NB_ENN and NB_All-kNN improved 
accordingly, as demonstrated in Table 4. This means that these 
retained instances are important and contribute positively in the 
classification as they increase the number of correctly retained 
instances (i.e., TN instances). 

 

Cla

ss 

Noi

se 

% 

Criteria kNN ENN kNN 
REN

N 
kNN 

All_k

NN 

0 

Average 

Accuracy 
78.79 78.07 78.79 77.10 78.79 78.06 

# Better 

datasets 
30 16 30 16 20 12 

# Sign. better 3 1 3 1 3 2 

5 

Average 

Accuracy 
76.66 77.60 76.66 76.50 76.66 76.32 

# Better 

datasets 
9 40 16 33 14 35 

# Sign. better 2 22 7 23 8 22 

10 

Average 

Accuracy 
75.68 76.01 75.68 75.52 75.68 75.64 

# Better 

datasets 
14 33 15 34 16 34 

# Sign. better 2 18 9 24 12 23 

15 

Average 

Accuracy 
73.61 74.36 73.61 73.93 73.61 73.80 

# Better 

datasets 
14 36 16 34 19 31 

# Sign. better 2 18 6 24 8 18 

20 

Average 

Accuracy 
71.84 72.55 71.84 72.86 71.84 71.86 

# Better 

datasets 
14 36 14 35 22 27 

# Sign. better 2 14 5 25 9 19 

Class 

Noise % 
ENN% RENN% All_kNN% 

0 13.25 15.74 9.26 

5 18.26 20.97 13.81 

10 23.37 25.92 17.89 

15 27.40 30.65 21.26 

20 31.49 34.92 24.30 
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TABLE IV.  SUMMARY OF RESULTS COMPARING THE CONSERVATIVE 

FILTER WITH THEIR COUNTERPARTS 

TABLE V.  THE AVERAGE REDUCTION IN SIZE OF CONSERVATIVE 

FILTERS AT DIFFERENT NOISE RATIOS 

TABLE VI.  THE FPR FOR EACH ALGORITHM 

Class  

Noise% 

The average percentage of eliminated FPs 

NB_ENN 

% 

ENN 

% 

NB_RENN 

% 

RENN 

% 

NB_ 

All_kNN 

% 

All_kNN 

% 

5 4.28 5.07 6.59 8.43 4.46 8.76 

10 4.66 5.29 6.84 8.98 4.58 10.93 

15 5.1 5.68 7.03 9.7 4.82 13.19 

20 5.41 6.24 7.3 10.59 4.96 15.43 

Average 4.86 5.57 6.94 9.43 4.71 12.08 

 

TABLE VII.  THE FNR OF THE NOISE FILTERS 

As Table 4 shows, NB_RENN does not improve the regular 
filter despite the number of FPs eliminated by RENN being 
high compared to the conservative filter. The reason must be 
related to the FN rate of the algorithms. In other words, 
NB_RENN must have a higher FN rate than RENN, which 
simply means it is less effective at identifying and eliminating 
all outliers. Therefore, we calculated the FN rate, which is 
defined as Equation 3 [39], 

FNR=1-TPR      (3) 

where TPR is defined as Equation 4 [39], 

The True Positive Rate (TPR) = 
  

     
           

where FN is the number of incorrectly retained instances 
(i.e., False Negative). 

Table 6 and Table 7 show the FPR and FNR for each 
algorithm at different noise ratio. As expected, Table 7 shows 
that RENN has the lowest FNR at all noise ratios; making it 
more conservative by combining it with NB substantially 
increases the FNR. For example, at 0% noise, RENN has an 
FNR of 16.31% while NB_RENN has 27.11%. Meanwhile, at 
20% noise, RENN has an FNR of 18.98% while NB_RENN 
has 30.46%. Thus, although making RENN more conservative 
reduces its FPR (see Table 6), it also substantially reduces its 
ability to identify and eliminate all outliers. The problem is less 
severe for the other two algorithms because making them more 
conservative slightly increases their FNR. 

Table 8 shows the results of the kNN before and after 
applying the conservative noise-filtering algorithm. Table 2 
and Table 8 indicate that the best conservative algorithm is the 
NB_ENN whereas the best non-conservative algorithm is 
RENN. Therefore, it is logical to compare the effect of each 
compared to the kNN algorithm. Table 9 shows the result of 
this comparison, demonstrating that the NB_ENN’s 
performance is much better than or equal to that of RENN on 
all noise for all ratios using all comparison criteria. The only 
exception is at 20% noise, where RENN achieves significantly 
better results than kNN for 20 datasets whereas NB_ENN 
achieves significantly better results than kNN for 13 datasets. 
However, at the same noise ratio, NB_ENN still achieves 
better average accuracy than RENN and achieves better results 
(but not significantly better) than kNN for 28 datasets whereas 
RENN achieves better results for 21 datasets. Thus, using the 
conservative ENN (i.e., NB_ENN) is probably better than 
using RENN, especially for small noise ratios ranging from 0% 
to 15%. 

 

Cla

ss 

Noi

se 

% 

  Criteria 
NB_

ENN 
ENN 

NB_R

ENN 

RE

NN 

NB_All

_kNN 

All_

kNN 

0 

Average 

Accuracy 
79.14 78.07 78.17 

77.

10 
78.96 78.06 

# Better 
datasets 

27 19 28 14 26 19 

# Sign. 
better 

6 3 3 2 2 2 

5 

Average 

Accuracy 
77.58 77.60 75.77 

76.

50 
77.08 76.32 

# Better 

datasets 
28 17 16 31 26 15 

# Sign. 

better 
9 8 10 16 15 4 

10 

Average 

Accuracy 
76.42 76.01 74.06 

75.

52 
76.38 75.64 

# Better 
datasets 

27 17 19 29 30 15 

# Sign. 
better 

12 3 8 18 12 2 

15 

Average 

Accuracy 
74.78 74.36 72.91 

73.

93 
74.78 73.80 

# Better 

datasets 
29 14 18 30 30 14 

# Sign. 

better 
17 3 5 19 15 2 

20 

Average 
Accuracy 

73.07 72.55 71.49 
72.

86 
72.60 71.86 

# Better 

datasets 
29 13 15 32 30 13 

# Sign. 

better 
16 2 3 21 22 1 

Class 

Noise % 
NB_ENN% NB_RENN% NB_ All_kNN% 

0 5.23 8.35 6.29 

5 7.63 11.03 8.33 

10 9.79 13.51 10.37 

15 11.89 15.88 12.35 

20 13.68 18.02 14.09 

Class  

Noise% 

The False Negative Rate 

NB_ENN 

% 

ENN 

% 

NB_RENN 

% 

RENN 

% 

NB_ 

All_kN

N % 

All_kN

N % 

5 22.32 19.67 27.11 16.31 34.62 32.19 

10 25.2 22.23 27.82 16.81 35.89 33.38 

15 28.15 24.63 29 17.87 38.31 35.34 

20 31.11 27.38 30.46 18.98 40.03 36.84 

Average 26.7 23.48 28.6 17.49 37.21 34.44 
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TABLE VIII.  THE RESULTS OF KNN BEFORE AND AFTER APPLYING THE 

CONSERVATIVE NOISE FILTERS 

 

IV. CONCLUSION 

The problem of classical noise filters is that they eliminate 
large numbers of good instances when such instances are 
incorrectly identified as outliers and consequently eliminated. 
These good instances are useful for improving the 
classification accuracy of the induced classifier. Therefore, this 
work proposed a simple modification for these algorithms to 
make them more conservative. We proposed using hybrid 
outlier-identification criteria by combining an NB classifier 
with the original filtering criteria used by the algorithm. This 
work empirically shows that the conservative filters outperform 
the original filters because they have a smaller false positive 
rate (i.e., eliminate fewer genuine instances). The only 
exception is the conservative RENN (i.e., NB_RENN), which 
performs poorly compared to RENN despite the fact that 
NB_RENN has a smaller false positive rate, but a much higher 
false negative rate than RENN. Consequently, NB_RENN 
performs poorly compared to RENN, especially at large noise 
ratios. However, the conservative ENN (i.e., NB_ENN) 
outperforms RENN, especially at small noise ratios (e.g., from 
0% to 15%). Future work should develop and investigate more 
hybrid noise-filtering criteria. 

 

TABLE IX.  COMPARING THE BEST CONSERVATIVE (NB_ENN) AND THE 

BEST NON-CONSERVATIVE (RENN) ALGORITHMS 
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