
An Algorithmic approach for abstracting transient
states in timed systems

Mohammed Achkari Begdouri, Houda Bel Mokadem and Mohamed El Haddad
Labtic – Ecole Nationale des Sciences Appliqu´ees de Tanger,

BP 1818 Tanger Principal, Tangier, Morrocco

Abstract—In previous works, the timed logic TCTL was extended
with importants modalities, in order to abstract transient states
that last for less than k time units. For all modalities of this
extension, called TCTLΔ , the decidability of the model-checking
problem has been proved with an appropriate extension of Alur
and Dill’s region graph. But this theoretical result does not
support a natural implementation due to its state-space explosion
problem. This is not surprising since, even for TCTL timed logics,
the model checking algorithm that is implemented in tools like
UPPAAL or KRONOS is based on a so-called zone algorithm
and data structures like DBMs, rather than on explicit sets of
regions.

In this paper, we propose a symbolic model-checking algorithm
which computes the characteristic sets of some TCTLΔ formulae
and checks their truth values. This algorithm generalizes the
zone algorithm for TCTL timed logics. We also present a
complete correctness proof of this algorithm, and we describe
its implementation using the DBM data structure.

Keywords: Timed automata, symbolic model checking, back-ward
analysis algorithm, correctness, data structures.

I. INTRODUCTION

Timed verification. Temporal logic is a convenient formalism
for specifying systems and reasoning about them. Furthermore,
model-checking techniques lead to the automatic verifica-
tion that a model of a system satisfies some temporal logic
specification. These methods have been extended to real-time
verification: systems are modeled with timed automata [6], [7]
and timed logics like TCTL [3] are used to express timed
specification like “any problem is followed by an alarm within
3 seconds”. Analysis tools have been developped [22], [25],
[30] and successfully applied to numerous case studies.

Timed temporal logics and duration properties. Along with
the study of timed automata, various timed logics have been
defined to extend the classical temporal logics with quantitative
modalities. For example, this was done with MTL [29], [8],
[31], an extension of LTL, and TCTL [9], [3], [26], where
CTL modalities are augmented with time comparisons of the
form ∼ c, where ∼ is a comparison operator. Another related
logic is the Parametrized TCTL [18] where TCTL and the
timed model are in turn extended with parameters.

In another direction, since the introduction of the duration
calculus [19] in order to express duration properties, numerous
works have been devoted to the algorithmic computation of
such properties for timed systems. Since clocks, which evolve
at the rate of time (as in timed automata), are sometimes not
expressive enough, hybrid variables (with multiple slopes) have
been considered. The resulting model of hybrid automata has

been largely studied in the subsequent years [27]. However,
while some decidability results could be obtained [5], [28],
using stopwatches (i.e. variables with slopes 0 and 1) already
leads to undecidability for the reachability problem [4].

Further research has thus been devoted to weaker models
where hybrid variables are only used as observers, i.e. are
not tested in the automaton and thus play no role during a
computation. These variables, sometimes called costs or prices
in this context can be used in an optimization criterium [5],
[10], [11], [16] or as constraints in temporal logic formulas.
For instance, the logic WCTL [17], [15], interpreted over
timed automata extended with costs, adds cost contraints on
modalities: it is possible to express that a given state is
reachable within a fixed cost bound.

Abstracting transient states. When practical examples are
considered, the need for abstracting transient states often
happens. This is the case for systems which handle variables,
subject to instantaneous changes of value. This motivated the
work in [12], [13], where events that do not last continuously
for at least k time units could be abstracted by introducing an
extension of TCTL called TCTLΔ. The theoretical decidability
result of TCTLΔ model-checking problem rely on an extension
of the region graph proposed in [13]. However, the region
graph is not used for implementation, but tools like UPPAAL
or KRONOS use a so-called “zone algorithm”. This algorithm
computes on-the-fly the set of reachable symbolic states, that
is pairs (q, Z) where q is a control state and Z a zone. One
of the major advantage of zones is that they can be easily
implemented using data structures like DBMs [24].

Contribution. The aim of this paper is to provide an im-
plementable algorithm for TCTLΔ model-checking. The algo-
rithm we propose is an extension of the zone algorithm used
for TCTL timed logics in tools like UPPAAL and KRONOS.
We also provide a possible implementation of this algorithm
using the DBM data structure. The main result of this paper
is the proof of correctness of our algorithm. This proof uses
several techniques, from properties of zones and symbolic
model-checking to properties of fixed point theory.

Outline. The structure of the paper is the following: we first
recall the main features of timed automata model and give
definitions for the syntax and semantics of TCTLΔ timed logic
(Section 2); we present after some known decidability results
of the TCTLΔ model-checking (Section 3); we then describe
the classical zone algorithm for TCTL timed logics (Section
4); we present thereafter our algorithm, we give a complete
proof of its correctness (Section 5) and the following section

500 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

is devoted to explain how to implement it using the DBMs
(Section 6); we end this paper with some concluding remarks
(Section 7).

II. BASIC NOTIONS

Let N and R denote the sets of natural and non-negative real
numbers, respectively. Let X be a set of real valued clocks.
We write C(X) for the set of boolean expressions over atomic
formulae of the form x ∼ k with x ∈ X , k ∈ N, and ∼
∈ {<,≤,=,≥, >}. Constraints of C(X) are interpreted over
valuations for clocks, i.e. mappings from X to R. The set of
valuations is denoted by R

X . For every v ∈ R
X and d ∈ R,

we use v+ d to denote the time assignment which maps each
clock x ∈ X to the value v(x) + d. For every r ⊆ X , we
write v[r ← 0] for the valuation which maps each clock in r
to the value 0 and agrees with v over X \ r. Let AP be a set
of atomic propositions.

A. Timed Automata

Definition 1. A timed automaton (TA) is a tuple A =
〈X,QA, qinit,→A, InvA, lA〉 where X is a finite set of clocks,
QA is a finite set of locations or control states and q init ∈ QA

is the initial location. The set→A ⊆ QA×C(X)×2X×QA is
a finite set of action transitions: for (q, g, r, q ′) ∈ →A, g is the
enabling condition and r is a set of clocks to be reset with the
transition (we write q

g,r−→A q′). InvA : QA → C(X) assigns an
invariant to each control state. Finally lA : QA → 2AP labels
every location with a subset of AP.

A state (or configuration) of a TA A is a pair (q, v), where
q ∈ QA is the current location and v ∈ R

X is the current clock
valuation. The initial state of A is (q init, v0) with v0(x) = 0 for
any x in X . There are two kinds of transition. From (q, v), it
is possible to perform the action transition q

g,r−→A q′ if v |= g
and v[r ← 0] |= InvA(q

′) and then the new configuration is
(q′, v[r ← 0]). It is also possible to let time elapse, and reach
(q, v + d) for some d ∈ R whenever the invariant is satisfied
along the delay. Formally the semantics of a TA A is given
by a Timed Transition System (TTS) TA = (S, sinit,→TA , l)
where:

• S = {(q, v) | q ∈ QA and v ∈ R
X s.t. v |= InvA(q)} and

sinit = (qinit, v0).
• →TA ⊆ S × S and we have (q, v)→TA(q

′, v′) iff
◦ either q′ = q, v′ = v + d and v + d′ |= InvA(q) for

any d′ ≤ d. This is a delay transition — we write
(q, v)

d−→ (q, v + d) —,
◦ or ∃q g,r−→A q′ and v |= g, v′ = v[r ← 0] and
v′ |= InvA(q

′). This is an action transition — we write
(q, v)→a (q′, v′).

• l : S → 2AP labels every state (q, v) with the subset lA(q)
of AP .

An execution (or run) of A is an infinite path s0 →TA

s1 →TA s2 . . . in TA such that (1) time diverges and (2)
there are infinitely many action transitions. Note that an
execution can be described as an alternating infinite sequence
s0

d1−→→a s1
d2−→→a · · · for some di ∈ R. Such an execution

ρ goes through any configuration s ′ reachable from some si
by a delay transition of duration d ∈ [0, di]. Let Exec(s) be

the set of all executions from s. With a run ρ : (q0, v0)
d1−→→a

(q1, v1)
d2−→→a . . . of A, we associate the sequence of absolute

dates defined by t0 = 0 and ti =
∑

j≤i dj for i ≥ 1, and in
the sequel, we often write ρ as the sequence ((qi, vi, ti))i≥0.

Example 1. An example of timed automaton is given below
(Fig. 1), where P is an atomic proposition and x, y are clocks.

A :

q0
P

q1
P

q2
¬P

q3
P

x < 1

y := 0

x < 1 x < 2 ∧ y > 1

y := 0

Figure 1: Example of timed automaton.

An example of run is depicted below,

ρ : (q0, (0, 0))
0.1−→→a (q1, (0.1, 0))

0.8−→→a (q2, (0.9, 0.8)) . . .

A state (q, v) can occur several times along a run ρ, the notion
of position 1 allows us to distinguish them: every occurrence of
a state is associated with a unique position. Given a position p,
the corresponding state is denoted by sp. The standard notions
of prefix, suffix and subrun apply to paths in TTS: given a
position p ∈ ρ, ρ≤p is the prefix leading to p, ρ≥p is the suffix
issued from p. Finally a subrun σ from p to p ′ is denoted by
p

σ�→ p′.

Note that the set of positions along ρ is totally ordered by <ρ.
Given two positions p and p′, we say that p precedes strictly
p′ along ρ (written p <ρ p

′) iff there exists a finite subrun σ
of ρ s.t. p

σ�→ p′ and σ contains at least one non null delay
transition or one action transition (i.e. σ is not reduced to

0−→).
We write σ <ρ p when for any position p′ in the subrun σ,
we have p′ <ρ p.

Given a position p ∈ ρ, the prefix ρ≤p has a duration,
Time(ρ≤p), defined as the sum of all delays along ρ≤p. Since
time diverges along an execution, we have: for any t ∈ R,
there exists p ∈ ρ such that Time(ρ≤p) > t.

For a subset P ⊆ ρ of positions in ρ, we define a natural
measure μ̂(P) = μ{Time(ρ≤p) | p ∈ P}, where μ is Lebesgue
measure on the set of real numbers. In the sequel, we only use
this measure when P is a subrun of ρ: in this case, for a subrun
σ such that p

σ�→ p′, we simply have μ̂(σ) = Time(ρ≤p′
) −

Time(ρ≤p).

B. Definition of TCTLΔ.

The syntax of TCTL was extended in [13] to express that a
formula holds everywhere except on subruns with duration a
parameter k ∈ N: TCTLΔ is obtained by adding to TCTL the
modalities E Uk

∼c and A Uk
∼c , where k ∈ N.

Definition 2 (Syntax of TCTLΔ). TCTLΔ formulae are given
by the following grammar:

ϕ, ψ ::= P1 | P2 | . . . | ¬ϕ | ϕ∧ψ | EϕU∼cψ | AϕU∼cψ |
EϕUk

∼cψ | AϕUk
∼cψ

where Pi ∈ AP, ∼ belongs to the set {<,>,≤,≥,=} and
c, k ∈ N.

1Note that as it is possible to perform a sequence of action transitions in 0
t.u., we cannot replace the notion of positions by a function from fρ from R

to S.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

501 | P a g e
www.ijacsa.thesai.org

Standard abbreviations include �, ϕ ∨ ψ, ϕ ⇒ ψ, . . . as well
as :

EFk∼c ϕ
def
= E(� Uk

∼c ϕ) AFk
∼c ϕ

def
= A(� Uk

∼c ϕ)

EGk
∼c ϕ

def
= ¬AFk

∼c¬ϕ AGk
∼c ϕ

def
= ¬EFk

∼c¬ϕ
Moreover Uk stands for Uk

≥0.

Definition 3 (Semantics of TCTLΔ). The following clauses
define when a state s of some TTS T = 〈S, s init,→, l〉 satisfies
a TCTLΔ formula ϕ, written s |= ϕ, by induction over the
structure of ϕ.

s |= ¬ϕ iff s �|= ϕ
s |= ϕ ∧ ψ iff s |= ϕ and s |= ψ
s |= EϕU∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕU∼cψ
s |= AϕU∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕU∼cψ
s |= EϕUk

∼cψ iff ∃ ρ ∈ Exec(s) s.t. ρ |= ϕUk
∼cψ

s |= AϕUk
∼cψ iff ∀ ρ ∈ Exec(s) we have ρ |= ϕUk

∼cψ

ρ |= ϕU∼cψ iff ∃p ∈ ρ s.t. Time(ρ≤p)∼c
∧ sp |= ψ ∧ ∀p′ <ρ p, sp′ |= ϕ

ρ |= ϕUk
∼cψ iff there exists a subrun σ along ρ,

a position p ∈ σ s.t.Time(ρ≤p)∼c ∧
μ̂(σ) > k ∧ ∀p′ ∈ σ, sp′ |= ψ and for all
subrun σ′ s.t. σ′ <ρ p ∧ ∀p′ ∈ σ′, sp′ |= ¬ϕ
we have μ̂(σ′) ≤ k

Modality EϕUk
∼cψ means that it is possible to reach a suffi-

ciently long interval (> k) where ψ is true, around a position
at a distance ∼ c and, before this position, ϕ is everywhere
true except along negligible duration subpaths (≤ k). Whereas
modality AϕUk

∼cψ means that along any path, ψ lasts long
enough (> k) around a position at a distance ∼ c and, before
this position, ϕ is everywhere true except along negligible
duration subpaths (≤ k).

III. DECIDABILITY RESULT FOR TCTLΔ

In this section we recall the decidability result for the TCTLΔ

model checking [13]. First, we remind that the classical notion
of region proposed by Alur, Courcoubetis and Dill [3] for
TCTL is also correct for TCTLΔ. Nevertheless it needs a
stronger notion of equivalence for the runs in order to preserve
the truth value of TCTLΔ formulae [13]. Then we recall that
adding the modalities Uk does not increase the complexity of
the verification.

A. Region graph

Given a set X of clocks and M ∈ N, two valuations v, v ′ ∈
R

X are M-equivalent [3] (written v ∼=M v′) if:

1) for any x ∈ X �v(x)� = �v ′(x)� or (v(x) > M∧v′(x) >
M),

2) for any x, y ∈ X s.t. v(x) ≤M and v(y) ≤M , we have:
frac(v(x)) ≤ frac(v(y))⇔ frac(v′(x)) ≤ frac(v′(y)) and
frac(v(x)) = 0⇔ frac(v′(x)) = 0.

An equivalence class of ∼= is called a region; and a region
is called a boundary region if it contains valuations v s.t. the
fractional part of v(x) is 0, for some clock x. Given a TA A,
we use MA to denote the maximal constant occurring in A (in
its guards or invariants). We write simply ∼= instead of ∼=M

when M is clear from the context.

x

y

1

2

1

1 210

Example 2. Consider a automa-
ton with two clocks x and y and
the constant M equal to 2. The
set of regions associated with this
automaton can be described by
the figure beside (Fig. 2). The
region drawn in gray corresponds
to the valuations satisfying the
following constraints:

Figure 2: Example of Region.

0 < x < 1 ∧ 0 < y < 1 ∧ frac(y) < frac(x).

Moreover, the equivalence ∼=MA is consistent w.r.t. TCTLΔ

formulae [13], i.e. for all Φ ∈ TCTLΔ and v, v′ ∈ R
X s.t.

v ∼=MA v′, we have: (q, v) |= Φ ⇔ (q, v′) |= Φ.

To illustrate this result, consider the formula Φ = EϕUk
∼cψ

and assume that (q, v) |= Φ, i.e. there exists a run ρ =
((qi, vi, ti))i≥0 from (q, v) satisfying ϕUk

∼cψ. The consistency
of ∼= for TCTLΔ timed logics, means that there exists an
equivalent run ρ′ from (q, v′) which also satisfies ϕUk

∼cψ, with
v, v′ are in the same region.

For this, the equivalence over runs is defined as follows
[13]: Given a TA A, two runs ρ = ((qi, vi, ti))i≥0 and
ρ′ = ((q′i, v

′
i, t

′
i))i≥0 are equivalent (written ρ ∼=∗ ρ′) if

1) for all i ≥ 0, qi = q′i ,
2) for all i ≥ 0, (vi, ti) ∼=MA (v′i, t

′
i),

3) for all 0 ≤ j < i, (i) frac(tj) < frac(ti) iff frac(t′j) <
frac(t′i)
and (ii) frac(tj) = frac(ti) iff frac(t′j) = frac(t′i).

Such that the equivalence ∼= is extended to pairs (vi, ti) as
follows: (vi, ti) ∼= (v′i, t

′
i) iff (1) vi ∼= v′i, (2) �ti� = �t′i� and

frac(ti) = 0 iff frac(t′i) = 0 and (3) for each clock x ∈ X ,
(i) frac(vi(x)) < frac(ti) iff frac(v′i(x)) < frac(t′i) and (ii)
frac(vi(x)) = frac(ti) iff frac(v′i(x)) = frac(t′i).

The equivalence on runs used in [3] to prove that
regions are compatible with TCTL formulae only requires
conditions (ER 1) and (ER 2). This is however not sufficient
for proving the compatibility of regions with TCTLΔ

formulae. Indeed, back to the Example 1 and consider the
two following runs (Fig. 3), which are equivalent in [3]:

ρ : (q0, (0, 0))
0.1−→→a (q1, (0.1, 0))

0.8−→→a (q2, (0.9, 0.8))
0.3−→→a

(q3, (1.2, 0)) . . .

ρ′ : (q0, (0, 0))
0.8−→→a (q1, (0.8, 0))

0.1−→→a (q2, (0.9, 0.1))
1.05−→→a

(q3, (1.95, 0)) . . .

A :

q0
P

q1
P

q2
¬P

q3
P

x < 1

y := 0

x < 1 x < 2 ∧ y > 1

y := 0

Figure 3: Example of equivalence over runs.

The runs ρ and ρ′ satisfy conditions (ER 1) and (ER 2) but the delays
spent in state q2 where P does not hold are respectively 0.3 and 1.05,
so that ρ |= G1P whereas ρ′ �|= G1P .

This is why we need the stronger equivalence above which also
requires condition (ER 3). Note that the proof of the equivalence

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

502 | P a g e
www.ijacsa.thesai.org

∼=MA consistency for TCTLΔ timed logics is given in [13].

B. Labeling algorithm
The main result of the labeling algorithm is reducing
the model-checking problem A |= Φ with a TA
A = 〈X,QA, qinit,→A, InvA, lA〉 and Φ ∈ TCTLΔ, to a
model-checking problem A′ |= Φ′ where A′ is a region graph (i.e.
a finite Kripke structure) and Φ′ is a CTL-like formula [13].

Let X∗ be the set of clocks X∪{z, zr, zl̄}. The three extra clocks are
used to verify timing constraints in the formula: z is used to handle
subscripts ∼ c in U modalities (as in TCTL model checking) and
the clock zl̄ (resp zr) is used to measure time elapsing when the left
(resp. right) part in Uk modalities is false (resp true).

Let MΦ be the maximal constant occurring in the timing constraints
in Φ and km be the maximal k occurring in a modality Uk in Φ. Let
M be max(MA,MΦ + km).

The region graph RA,Φ = (V,→, l, F) for A and Φ is defined as
usual over X∗ and M [3]: its set of states V is {(q, γ)|q ∈ QAandγ ∈
R
X∗
/∼=M}, the transitions correspond to action transitions (→a) in

A or delay transitions (→t, leading to the successor region denoted
by succ(γ)). The states are labeled with atomic propositions AP and
we also use additional propositions for the extra clocks: a state (q, γ)
is labeled with the proposition �y ∼ a� with y ∈ {z, zl̄, zr} and
0 ≤ a ≤ M , when γ |= y ∼ a (see [3], [12] for the detailed
construction of RA,Φ).

Labeling algorithm.: The algorithm consists in labeling the vertices
of RA,Φ with the subformulae of Φ they satisfy, starting from the
subformulae of length 1 and length 2 and so on.

Consider a formula Ψ of the form EϕlU
k
∼cϕr or AϕlUk∼cϕr . At this

step we know for every state (q, γ) of RA,Φ whether it satisfies (or
not) ϕl and ϕr (i.e. whether any (q, v) with v ∈ γ satisfies ϕl or/and
ϕr). First we define a variant of RA,Φ, called Rϕl,ϕr

A,Φ , where some
transitions are modified according to the truth value of ϕl and ϕr:

1) we replace the transitions (q, γ)→t (q, succ(γ)) by (q, γ)→a

(q, γ[zl̄ ← 0]) when (q, γ) |= ϕl, (q, succ(γ)) |= ¬ϕl and
γ �|= zl̄ = 0.

2) we replace the transitions (q, γ) →a (q′, γ′) by (q, γ) →a

(q′, γ′[zl̄ ← 0]) when (q, γ) |= ϕl, (q′, γ′) |= ¬ϕl.
3) we replace the transitions (q, γ)→t (q, succ(γ)) by (q, γ)→a

(q, γ[zr ← 0]) when (q, γ) |= ¬ϕr , (q, succ(γ)) |= ϕr and
γ �|= zr = 0.

4) we replace the transitions (q, γ) →a (q′, γ′) by (q, γ) →a

(q′, γ′[zr ← 0]) when (q, γ) |= ¬ϕr , (q, γ′) |= ϕr .

Due to these changes, in Rϕl,ϕr
A,Φ , the clock zl̄ (resp. zr) measures the

time elapsed since ¬ϕl (resp. ϕr) is true : they are reset when the
truth value of the corresponding formula changes. In the following
we will use two abbreviations:

�·· �ϕl
def
= ϕl ∨ �zl̄ ≤ k� �−− �ϕr

def
= ϕr ∧ �zr > k�

The first one states that ϕl holds or did hold less than k t.u. ago. And
the second one states that ϕr lasts for more than k t.u. We will also
use the abbreviation �−− �¬ϕl to denote ¬ϕl ∧ �zl̄ > k�: the formula ¬ϕl
has held for more than k t.u. And we use �··· · �¬ϕr for ¬ϕr ∨ �zr ≤ k�.

Therefore, the construction of the region graph Rϕl,ϕr
A,Φ allows us to

decide the values of �·· �ϕl and
�−−−− �
(¬ϕl), for any formula Ψ of the form

EϕlU
k
∼cϕr or AϕlU

k
∼cϕr . Furthermore, for all TA A and TCTLΔ

formula Ψ the labeling algorithm labels (q, γ) with Ψ in RA,Φ iff
(q, v) |= Ψ for any v ∈ γ [13].

The proof of this decidability result is based on a generalization of the
construction of the region graph for TCTL timed logics (as presented
in [6], [7]). Instead of it, and for reasons of efficiency to avoid
the state-space explosion problem, model-checkers like UPPAAL or

KRONOS use a symbolic analysis algorithm to explore finitely the
reachable state-space (this algorithm is called the “zone algorithm”).
The implementation of this algorithm uses a data structure initially
proposed by [24], the Difference Bounded Matrices, DBMs for short.

The aim of this paper is precisely to propose such an algorithm for
decidable TCTLΔ model-checking. The algorithm we propose is an
extension of the algorithm used in UPPAAL and KRONOS. Hence,
we will first recall the zone algorithm for TCTL timed logics. After
this brief presentation of a so much used algorithm, we will come
back to TCTLΔ timed logic and present our algorithm for its symbolic
model-checking. The remainder of the paper is devoted to present
a complete correctness proof of our algorithm and we describe its
implementation using the DBM data structure.

IV. CLASSICAL ZONE ALGORITHM, STATE OF THE ART

In this section, we describe the on-the-fly analysis algorithm, which
is implemented in some tools for the verification of classical timed
logics [14], [21], [33], [23], [2].

A. Zones
For timed automata, the set of configurations is infinite. To check this
model, it is therefore necessary to manipulate sets of configurations,
and therefore to provide a symbolic representation, called zone.
A zone is a set of valuations defined by a conjunction of simple
constraints x ∼ c or x − y ∼ c where x and y are clocks, ∼ is a
comparison sign, and c is a integer constant. In forward and backward
analysis, the objects that will be handled are pairs (q, Z) where q is
a control state of the automaton and Z a zone.

(q,Z) = {(q, v) | v ∈ Z}

On zones, multiple operations can be performed:

• Future of Z, defined by
−→
Z = {v + t | v ∈ Z ∧ t ∈ R≥0};

• Past of Z, defined by
←−
Z = {v − t | v ∈ Z ∧ t ∈ R≥0};

• Intersection of two zones, defined by Z∩Z′ = {v |v ∈ Z∧v ∈
Z′};

• Clock reset in a zone, defined by [Y ← 0]Z = {[Y ← 0]v |v ∈
Z};

• Inverse clock reset of a zone, defined by [Y ← 0]−1Z =
{v | [Y ← 0]v ∈ Z}.

These operations, defined through the first order formulas on the
zones, preserve zones [32].

x

y

1

2

1

1 210

Example 3. Consider the zone Z
drawn in (dark) gray on the fig-
ure beside (Fig. 4): Z is defined
by the clock constraint

1 < x < 4 ∧ 2 < y < 4 ∧
x− y < 1 ∧ y − x < 2.

Taking the operation Future of
Z,
−→
Z is drawn in light gray and

in dark gray; it is defined by the
clock constraint

Figure 4: Example of Zone.

x > 1 ∧ y > 2 ∧ x− y < 1 ∧ y − x < 2.

B. The Algorithm
We give now an idea about how it is possible to check the TCTL
properties [33]. The construction to be described avoids building

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

503 | P a g e
www.ijacsa.thesai.org

region graph, because such an approach would not be very effective,
and there’s no data structures really adapted to the regions in terms
of complexity. The idea of the algorithm [33] is to calculate for
each formula, its characteristic set defined as set of pairs (q, Z)
where q is a control state of the automaton and Z a zone, i.e.

[[ψ]] =
⋃

(q,Z)|=ψ
(q, Z) = {((q, v), w) | (q, v) |= ψ}

Where w is a valuation on clocks corresponding to the Until
operators in the TCTL formula.

The construction is by induction on the structure of the formula:

[[p]] = {((q, v), w) | q labeled by p}
[[True]] = {((q, v), w) | q is a state }
[[¬ϕ]] = [[True]] \ [[ϕ]]
[[ϕ1 ∨ ϕ2]] = [[ϕ1]] ∪ [[ϕ2]]
[[ϕ1 ∧ ϕ2]] = [[ϕ1]] ∩ [[ϕ2]]

It remains to describe the characteristic sets of formulas that have
the Until operator. For the formula Eϕ1U∼cϕ2, the characteristic set
is given by the following recurrent sequence [33]:

[[Eϕ1U∼cϕ2]] = EU([z ← 0][[ϕ1]], [[ϕ2]] ∩ [[z ∼ c]])

Where z is the clock corresponding to the operator U and
EU(R1, R2) =

⋃
i≥0

Ei with

{
E0 = R2

Ei+1 = Pre[R1](Ei) ∪ Pre(Ei)

Pre[R1](Ei) represents the set of configurations that allow to reach
Ei by letting time pass while staying in R1, while Pre(Ei) repre-
sents the configurations that allow to reach Ei by taking an action
transition.
A clock is attached to each U operator in the formula. it’s used to
handle subscripts ∼ c in Until modalities. We note that the above
analysis is in fact a backward analysis. We do not describe the
algorithm of Aϕ1U∼cϕ2 which also uses a backward analysis, but
slightly more complicated, it is described for example in [26].

V. BACK TO TCTLΔ TIMED LOGIC: SYMBOLIC
MODEL-CHECKING ALGORITHM

In this section, we propose a symbolic model-checking algorithm
which computes the characteristic sets of some TCTLΔ formulae and
checks their truth values using a backward analysis. This algorithm
extends the zone algorithm for TCTL timed logics. We also present
a complete correctness proof of this algorithm, and we describe its
implementation using the DBM data structure in the next section.

A. Modality Eϕ1U
k
∼cϕ2

For this modality, the approach we have opted is to split the semantics
of formula Eϕ1U

k
∼cϕ2 in two parts, the right and the left part (as

depicted in Fig. 5). The left part represents the subrun where ϕ1

is true everywhere except along negligible duration subpaths (≤ k),
until reaching the right part which represents the subrun where ϕ2

lasts long enough around a position (z ∼ c), and before this position
ϕ1 is true except along negligible duration subpaths.

z, zl̄ := 0 zr := 0 zr > kz ∼ c

|= ϕ2|= ϕ1 ∨ zl̄ ≤ k

EϕUk∼cϕ2 Left Part EϕUk∼cϕ2 Right Part

Figure 5: Illustration of Eϕ1Uk∼cϕ2 Modality.

1) Eϕ1U
k
∼cϕ2 Right part:

zr := 0 zr > kz ∼ c

Δt > k

|= ϕ2

|= ϕ1 ∨ zl̄ ≤ k

Figure 6: Illustration of Eϕ1Uk∼cϕ2 Right part.

First case: ∼∈ {<, ≤}
In this case, it is necessary and sufficient that constraint z ∼ c be
verified at the beginning of the subrun where ϕ2 lasts long enough
(> k). Thus all the right part of EϕUk∼cϕ2, as depicted in the figure
above (Fig. 6), can be reduced andx expressed using the following
TCTL formula :

(z ∼ c) ∧ [zr ← 0](E ϕ2 U (ϕ2 ∧ zr > k))

Second case: ∼∈ {>, ≥,=}
In this case, we will split the subrun where ϕ2 is true for more than
k t.u into two parts, one satisfying (ϕ1 ∨ zl̄ ≤ k), followed by the
other which satisfying z ∼ c at its first position as depicted in the
figure above (Fig. 6). Thus, the semantic of the EϕUk∼cϕ2 Right part
is deduced from Definition 3 as follows:

Let s be a state of some TTS T = 〈S, sinit,→, l〉 which satisfies the
EϕUk∼cϕ2 Right part, written s |= RP(Eϕ1U

k
∼cϕ2), we have :

s |= RP(Eϕ1U
k
∼cϕ2) iff ∃ σ ∈ Exec(s) s.t. μ̂(σ) > k

∧ σ |= ϕ2 ∧ (∃p ∈ σ | sp |= z ∼ c)
∧ ∀p′ <σ p, sp′ |= ϕ1 ∨ zl̄ ≤ k

Now, we propose and prove that the following sequence is increasing
by inclusion, stationary, and its least upper bound represents the set
of all symbolic states (i.e., characteristic sets defined in section 4.2,
as set of pairs (q, Z) where q is a control state of the automaton and
Z a zone) that satisfying RP(Eϕ1U

k
∼cϕ2):

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Y0 = [[(z ∼ c) ∧ (E ϕ2 U (ϕ2 ∧ zr > k))]]

Yn+1 = Yn ∨
((

[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0](Yn ∧ ¬ϕ1)
)

∨
(
[[ϕ2 ∧ ϕ1]] � (Yn ∧ ϕ1)

)

∨
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤ k)]] � Yn

))

Note that zr is reset when the stationary value of the sequence
Yn is reached, i.e. after that the set of symbolic states satisfying
RP(Eϕ1U

k
∼cϕ2) is computed.

The recurrent sequence Yn computes for each iteration the predeces-
sors of current states represented by Yn. As we said in section 3.2,
the clock zl̄ measures time elapsing when ϕ1 is false, so it will be
reset at each transition from set of states satisfying ϕ1 to another
satisfying not ¬ϕ1. Without losing information about clock zl̄, and
in order to further optimize our sequence, zl̄ can also be reset when
transition from set of states satisfying ϕ1 to set of states satisfying
ϕ1, and therefore the sequence Yn becomes as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y0 = [[(z ∼ c) ∧ (E ϕ2 U (ϕ2 ∧ zr > k))]]

Yn+1 = Yn ∨
((

[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0]Yn
)

∨
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤ k)]] � Yn

))

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

504 | P a g e
www.ijacsa.thesai.org

Now we define the operator � as follows:

Definition 4 (Predecessor operator �). Given a TA A, a TTS T =
〈S, sinit,→, l〉, an alphabet Σ which denotes a finite set of actions and
two characteristic sets Q1 and Q2. Calculate Q1�Q2 is to determine:

• Q1 � Q2 : ◦ All the instantaneous predecessors of Q2

states that verify Q1, i.e. the states satisfying
Q1 and can reach Q2 by an action transition
denoted Q1 �

a Q2.

◦ Union, all temporal predecessors of Q2 that
verify Q1, i.e. all states that can reach a state
of Q2 by a delay transition, such that all
intermediates states are in Q1.
. q ∈ Q1 �

t Q2 ⇔ q ∈ Q1 ∧ ∃t > 0 s.t.
. q + t ∈ Q2 and ∀t′ < t q + t′ ∈ Q1

Back to our sequence Yn, it can be written as follows :

{
Y0 = [[(z ∼ c) ∧ (E ϕ2 U (ϕ2 ∧ zr > k))]]
Yn+1 = g(Yn)

Such that: g(Y) = Y ∨
((

[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0]Y
)

. ∨
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤ k)]] � Y

))

The particularity of the backward analysis is that the iterative calcu-
lating described by the sequence Yn terminates, the reason is quite
simple; it is fairly easy to show that if Z′ is a zone and that this
zone is an union of regions, then the zone Z = g(Z′) is not only a
zone, but also is an union of regions [1]. As there’s a finite number
of regions, the number of pairs (q, Z) that can be computed in a
backward analysis is finite.

Thus we show that the sequence Yn is increasing by inclusion,
stationary, and its least upper bound represents the characteristic set
of RP(Eϕ1U

k
∼cϕ2):

[[RP(Eϕ1U
k
∼cϕ2)]] = [zr ← 0]Sup Yn

Proof: (sketch.). In order to prove this result we show at first
that the least upper bound of the sequence Yn is the least fixpoint of
g.

Let be E the set of symbolic states defined as :

E = {(q, Z) | q ∈ QA and Z is a Zone}

We know that E is a finite set, hence the power set P (E) is also
finite.

Furthermore, the first term of Yn is given as the characteristic set of
a TCTL formula, then we have Y0 ∈ P (E). As all operations in the
function g preserve zones [32], so ∀n ∈ N Yn = gn(Y0) ∈ P (E).

The sequence Yn is monotonic by inclusion, because Yn ⊆ Yn+1

∀n ∈ N. Thus Yn is monotonic in the finite set P (E), so Yn is
stationary, i.e. ∃ r ∈ N such that ∀ n ≥ r, Yn = Yr.

Moreover, since (P (E),⊆) is a complete partially ordered set, then
its finite subset (W,⊆) defined as W = {Y0, Y1, ..., Yn, ...} is also
a complete totally ordered set.

Also, g : W �−→ W is a monotonic (order-preserving) function,
because ∀ Y, Y ′ ∈ W , if Y ⊆ Y ′ we have: g(Y) ⊆ g(Y ′)
(immediate using the definition of the operator �).

Since in finite sets, monotonic function is always Scott-continuous,
so using Kleene’s fixed-point theorem, the least fixpoint of g is the
least upper bound of the sequece gn(Y0) = Yn, such that Y0 is the
least element of W (intersection of its elements).

Sup Yn = μ.Y.g(Y)

On another side, if we prove that [[RP(Eϕ1U
k
∼cϕ2)]]

= [zr ← 0]μ.Y.g(Y), we have then the result we’re looking for.

Let be Q = [[RP(Eϕ1U
k
∼cϕ2)]].

1. First of all we show that Q is a fixpoint of g : Y → g(Y). We
prove that:

⎧⎪⎪⎨
⎪⎪⎩

Q = g(Q), i.e.:

Q = Q ∨
(
[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0]Q

)
∨
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤ k)]] � Q

)

⊆ / We have obviously Q ⊆ g(Q)

⊇ / Let q ∈ Q∨
(
[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0]Q

)
∨
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤

k)]] � Q
)

, we prove that q ∈ Q = [[RP(Eϕ1U
k
∼cϕ2)]]

� Suppose that q ∈
(
[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0]Q

)
, then q ∈ [[ϕ2 ∧ ϕ1]]

and ∃q′ ∈ [zl̄ ← 0]Q, ∃α ∈ R
∗
+ ∪ Σ s.t. :

q �α q′, and if α = t > 0, we have ∀t′ < t q + t′ ∈ [[ϕ2 ∧ ϕ1]]

Moreover, q′ ∈ [zl̄ ← 0]Q = [zl̄ ← 0][[RP(Eϕ1U
k
∼cϕ2)]], i.e.:

∃σ ∈ Exec(q′) s.t. μ̂(σ) > k ∧ σ |= ϕ2

∧ (∃p ∈ σ | sp |= z ∼ c) ∧ ∀p′ <σ p, sp′ |= ϕ1 ∨ zl̄ ≤ k

So whatever the type of the transition α, action or delay, we can
verify that the subrun σ′ defined as: σ′ = (q �α q′).σ also verify :

μ̂(σ′) > k ∧ σ′ |= ϕ2

∧ (∃p ∈ σ′ | sp |= z ∼ c) ∧ ∀p′ <σ′ p, sp′ |= ϕ1 ∨ zl̄ ≤ k

Given that σ′ ∈ Exec(q), so we have q ∈ [[RP(Eϕ1U
k
∼cϕ2)]], i.e.:

q ∈ Q.

� Suppose that q ∈
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤ k)]] � Q

)
, in the same

manner as the previous proof, we show taht q ∈ Q.

Consequently it follows that: ∀q ∈ g(Q) we have q ∈ Q, i.e.:
g(Q) ⊆ Q. Hence the result Q = g(Q), which means that
Q = [[RP(Eϕ1U

k
∼cϕ2)]] is a fixpoint of g : Y → g(Y).

2. Now we prove that Q = [zr ← 0]μ.Y.g(Y):

� Let q ∈ Q, so: ∃σ ∈ Exec(q) s.t. μ̂(σ) > k ∧ σ |= ϕ2

∧ (∃p ∈ σ | sp |= z ∼ c) ∧ ∀p′ <σ p, sp′ |= ϕ1 ∨ zl̄ ≤ k

In other words, ∃σ ∈ Exec(q) : σ = q �α0 q1 �
α1 ... �αi−1 qi � ...,

with αi ∈ R
∗
+ ∪ Σ, and zr is reset at the beginning of σ, such that

qi ∈ Y0 = [[(z ∼ c) ∧ (E ϕ2 U (ϕ2 ∧ zr > k))]], and ∀j < i, we
have:{

qj |= ϕ2 ∧ (ϕ1 ∨ zl̄ ≤ k), if αj ∈ Σ
qj + t′ |= ϕ2 ∧ (ϕ1 ∨ zl̄ ≤ k), ∀t′ < t if αj = t ∈ R

∗
+

Let be qi−1 from the subrun σ, we have qi−1 �
αi−1 qi. So qi−1 is

a predecessor of qi ∈ Y0, that verifies ϕ2 ∧ (ϕ1 ∨ zl̄ ≤ k). Then,
according to the definition of the function g, qi−1 ∈ g(Y0) = Y1.

By the same reasoning we deduce that qi−2 ∈ g2(Y0) = Y2. This
is repeated until reaching q ∈ [zr ← 0]gi(Y0) = [zr ← 0]Yi, i.e.
Q ⊆ [zr ← 0]Yi. As Yi ⊆ Sup Yn = μ.Y.g(Y), then Q ⊆ [zr ←
0]μ.Y.g(Y).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

505 | P a g e
www.ijacsa.thesai.org

Moreover Q is already a fixpoint of g, i.e. μ.Y.g(Y) ⊆ Q, which
means that [zr ← 0]μ.Y.g(Y) ⊆ [zr ← 0]Q = Q.

Hence, Q = [[RP(Eϕ1U
k
∼cϕ2)]] is the least fixpoint of g : Y → g(Y):

[[RP(Eϕ1U
k
∼cϕ2)]] = [zr ← 0]μ.Y.g(Y)

Since we proved that the least fixpoint of g is the least upper bound
of the sequence Yn, we have finally:

[[RP(Eϕ1U
k
∼cϕ2)]] = [zr ← 0]Sup Yn

2) Eϕ1U
k
∼cϕ2 Left part:

z, zl̄ := 0 zr := 0 zr > kz ∼ c

|= ϕ2|= ϕ1 ∨ zl̄ ≤ k

EϕUk∼cϕ2 Left Part EϕUk∼cϕ2 Right Part

Figure 7: Illustration of Eϕ1Uk∼cϕ2 Left part.

Now we propose and prove that the characteristic set of Eϕ1U
k
∼cϕ2

(deduced from the left part modality Fig. 7) is given by least upper
bound of the following stationary and increasing (by inclusion)
sequence:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

X0 = [[RP(Eϕ1U
k
∼cϕ2)]]

Xn+1 = Xn ∨
((

[[ϕ1]] � [zl̄ ← 0]Xn
)

∨
(
[[(¬ϕ1 ∧ zl̄ ≤ k)]] � Xn

))

Where z, zl̄ are reset when the stationary value of the sequence Xn is
reached, i.e. after that the set of symbolic states satisfying Eϕ1U

k
∼cϕ2

is computed.

Proof: (sketch.). We show in the same way as the previous proof
that: [[Eϕ1U

k
∼cϕ2]] = μ.X.f(X), s.t. :{

X0 = [[RP(Eϕ1U
k
∼cϕ2)]]

Xn+1 = f(Xn)

Such that:

f(X) = X ∨
((

[[ϕ1]] � [zl̄ ← 0]X
)
∨
(
[[(¬ϕ1 ∧ zl̄ ≤ k)]] � X

))
.

Therefore we have the following result:

[[Eϕ1U
k
∼cϕ2]] = [z ← 0][zl̄ ← 0](Sup Xn)

Note that when computing iterations of the sequence Xn (resp Yn),
the stop condition is given by convergence to the fixed point of f
(resp g), i.e. Xn+1 = Xn (resp Yn+1 = Yn).

VI. IMPLEMENTATION OF THE ALGORITHM USING DBMS

To prove that the DBMs are appropriate to implement algorithms
proposed in the previous section, we will show how to compute using
the DBMs the new operations on zones appearing in the TCTLΔ

model-checking algorithm. Indeed, we first recall the main features
of the DBM data structure, then we give an effective method for
computing the operation Q1 � Q2. We present after pseudocode for
Eϕ1U

k
∼cϕ2 Model-Checking algorithm.

A. The Implementation: the DBM Data Structure
In order to implement the TCTL model-checking algorithm, we need
a data structure to represent the zones and this data structure must
allow to test for inclusion of zones and to compute easily the different
operations used in the algorithm, that is the intersection of two
zones, the past of a zone, the image of a zone by a reset and the
normalization of a zone. Tools like UPPAAL or KRONOS use the
data structure proposed by Dill in [24], the DBM data structure. A
detailed presentation of this data structure can be found in [20].

A difference bounded matrice (say DBM for short) for n clocks is
an (n+ 1)-square matrice of pairs:

(m;≺) ∈ V = (Z× {<,≤}) ∪ {(∞;<)}.
A DBM M = (mi,j ;≺i,j)i,j=1...n defines the following subset of
R
n (the clock x0 is supposed to be always equal to zero, i.e. for

each valuation v, v(x0) = 0):

{v : {x1, ..., xn} −→ R | ∀ 0 ≤ i, j ≤ n, v(xi)− v(xj) ≺i,j mi,j}

where γ < ∞ means that γ is some real (there is no bound on it).
This subset of R

n is a zone and will be denoted, in what follows,
by [[M]]. Each DBM on n clocks represents a zone of Rn. Note that
several DBMs can define the same zone.

Example 4. The zone defined by the equations x1 > 3 ∧ x2 ≤
5 ∧ x1 − x2 < 4 can be represented by the two DBMs⎛

⎝(0,≤) (−1,≤) (0,≤)
(4,≤) (0,≤) (2,≤)
(5,≤) (0,≤) (0,≤)

⎞
⎠ and

⎛
⎝(0,≤) (−1,≤) (0,≤)
(4,≤) (0,≤) (2,≤)
(5,≤) (0,≤) (0,≤)

⎞
⎠

Thus the DBMs are not a canonical representation of zones. Moreover,
it isn’t possible to test syntactically whether [[M]] = ∅ or [[M1]] =
[[M2]]. A normal form has thus been defined for representing zones.
Its computation uses the Floyd-Warshall algorithm and some syntactic
rewritings (see [24], [20] for a description of this procedure). In what
follows, we denote by Φ(M) the normal form of M . Before stating
some very important properties of the normal form, we define a total
order on V in the following way: if (m;≺), (m′;≺′) ∈ V, then
(m;≺) ≤ (m′;≺′) ⇐⇒⎧⎨
⎩
m < m′

or
m = m′ and either ≺=≺′ or ≺′ =≤

Of course, for each m ∈ Z, it holds that m < ∞. We define >,≥
and < in a natural way. These orders are extended to the DBMs in the
following way: let M = (mi,j ;≺i,j)i,j=0...n and M ′ = (m′

i,j ;≺′
i,j

)i,j=0...n be two DBMs, then

M ≤M ′ ⇐⇒ for evry i, j = 0...n, (mi,j ;≺i,j) ≤ (m′
i,j ;≺′

i,j).

We can now state some (very useful) properties of normal forms. If
M and M ′ are DBMs, then:

(i) [[M]] = [[φ(M)]] and φ(M) ≤M,
(ii) [[M]] ⊆ [[φ(M)]] ⇐⇒ φ(M) ≤M ′ ⇐⇒ φ(M) ≤ φ(M ′)

The last point expresses the fact that the test for inclusion of zones
can be checked syntactically on the normal forms of the DBMs
(representing the zones).
Normal forms of DBMs can be characterized in a natural way. if
M = (mi,j ;≺i,j)i,j=0...n is a DBM such that [[M]] �= ∅, then the
two following properties are equivalent:

1) M is in normal form,
2) for every i, j = 0...n, for every real −mj,i ≺j,i r ≺i,j mi,j ,

there exists a valuation v ∈ [[M]] such that v(xj)− v(xi) = r
(still assuming that v(x0) = 0).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

506 | P a g e
www.ijacsa.thesai.org

This property expresses the fact that if a DBM is in normal
form, then no constraint of this DBM can be tightened using the
Floyd-Warshall algorithm.

Computation of Some Operations on DBMs. As we argued at
the beginning of the section, the data structure used to represent
zones must also be appropriate to compute all the operations on
zones that are used by the TCTL model-chacking algorithm, namely
future, past, intersection, image by resets and normalization. These
operations on DBMs are described nicely in [20], here we recall
them quickly.

Intersection. Assume that M = (mi,j ;≺i,j)i,j=1...n and
M ′ = (m′

i,j ;≺′
i,j)i,j=1...n are two DBMs in normal form. Then,

defining M ′′ = (m′′
i,j ;≺′′

i,j)i,j=1...n by

(m′′
i,j ;≺′′

i,j) = min
(
(mi,j ;≺i,j), (m′

i,j ;≺′
i,j)

)
for every indexes

i, j = 0...n.

We get that [[M ′′]] = [[M]] ∩ [[M ′]]. Note that it can be the case that
M ′′ is not in normal form.

Future. Assume that M = (mi,j ;≺i,j)i,j=1...n is a DBM in normal
form. We define the DBM

−→
M = (m′

i,j ;≺′
i,j)i,j=1...n by:{

(m′
i,j ;≺′

i,j) = (mi,j ;≺i,j) if j �= 0
(m′

i,0;≺′
i,0) = (∞;<)

We get that [[
−→
M]] =

−−→
[[M]] and that the DBM

−→
M is in normal form.

Past. Assume that M = (mi,j ;≺i,j)i,j=1...n is a DBM in normal
form. We define the DBM

←−
M = (m′

i,j ;≺′
i,j)i,j=1...n by:{

(m′
i,j ;≺′

i,j) = (mi,j ;≺i,j) if i �= 0
(m′

0,j ;≺′
0,j) = (0;≤)

We get that [[
←−
M]] =

←−−
[[M]] and note that it can be the case that

←−
M is

not in normal form.

Image by resets. Assume that M = (mi,j ;≺i,j)i,j=1...n is a DBM
in normal form. We define the DBM Mxk :=0 = (m′

i,j ;≺′
i,j)i,j=1...n

by: ⎧⎪⎨
⎪⎩

(m′
i,j ;≺′

i,j) = (mi,j ;≺i,j) if i, j �= k
(m′

k,k;≺′
k,k) = (m′

0,k;≺′
0,k) = (m′

k,0;≺′
k,0) = (0;≤)

(m′
i,k;≺′

i,k) = (mi,0;≺i,0) if i �= k
(m′

k,i;≺′
k,i) = (m0,i;≺0,i) if i �= k

We get that [[Mxk :=0]] = [xk ← 0][[M]] and that the DBM Mxk:=0

is in normal form.

DBM Normal form (Zone Normalization). The DBM normal form
can be computed using a shortest path algorithm. Floyd-Warshall
algorithm is often used to transform DBM to canonical form. We
define the DBM Φ(M) = (m′

i,j ;≺′
i,j)i,j=1...n by:

(m′′
i,j ;≺′′

i,j) = min
(
(mi,j ;≺i,j), (m′

i,k;≺′
i,k) + (m′

k,j ;≺′
k,j)

)
for every index k = 0...n.

We get that Φ(M) the normal form of M .
Note that to manipulate DBMs efficiently we need two operations
on bounds: comparison and addition. We define that (m1;≺1) <
(m2;≺2) if m1 < m2 and (m;<) < (m;≤). Further we define
addition as (m1;≤) + (m2;≤) = (m1 + m2;≤) and (m1;<) +
(m2;≺2) = (m1 +m2;<).

B. Computing the operator �
We present now an effective method for computing the operation
Q1 �Q2, where Q1 and Q2 are characteristic sets represented by sets
of symbolic states of the form

⋃
q

(q, Zq
i), for i = 1, 2. The method

consists in determining all instantaneous and temporal predecessors
as follows:

1) Instantaneous predecessors:

Let q1, q2 ∈ QA be two control states, e = q1
g,r−→A q2 an edge from

q1 to q2. Let (q2, Z2) be a symbolic state. We have [33] :

pree(q2, Z2) =
(
q1, g ∧ [r ← 0](Z2)

)

i.e., pree(q2, Z2) is the symbolic state representing predecessors,
through instantaneous transition via the edge e, of states characterized
by (q2, Z2).

Example 5. Let A be the timed automaton depicted below (Fig. 8),
with two clocks x and y.

q0 q1 q2 q3 q4

q5

a

x:=0

b

y:=0

d, y=10

y:=0

e,y=20

c, y≤10, y:=0 c, y<20, y:=0

y≤10 y≤20

Figure 8: Timed automaton with two clocks.

The symbolic state that characterizes instantaneous predecessor of the
symbolic state (q, Z) = (q5, y = 0∧ z > 35) through the edge from
q2 to q5, is calculated as follows:

preq2,q5(q, Z) = (q2, y ≤ 10 ∧ [y ← 0](y = 0 ∧ z > 35))
= (q2, y ≤ 10 ∧ (0 = 0 ∧ z > 35))
= (q2, y ≤ 10 ∧ z > 35)

Therefore, for a symbolic state (q, Z), we have :

pre(q,Z) =
⋃
e∈E

pree(q, Z)

i.e. pre(q,Z) is the set of symbolic states that characterizes all
instantaneous predecessors of the symbolic state (q, Z).

2) Temporal predecessors:

Let (q, Z1) and (q, Z2) be two symbolic states. We define:

(q, Z1) �t (q, Z2) = (q,∃t > 0 s.t. (Z2 + t ∧ ∀t′ < t Z1 + t′))

i.e. (q, Z1) �t (q, Z2) represents temporal predecessors of states
characterized by (q, Z2), such that all intermediates valuations satisfy
Z1.

Furthermore, Yovine proved in [33] that (q, Z1) �t (q, Z2) is also
a symbolic state. Indeed he demonstrated that quantifiers can be
eliminated and then the result is a timing constraint.

Example 6. Let Z1 and Z2 be zones defined as:

Z1 = (0 < x ∨ 0 < y)
Z2 = (y ≤ 10 ∧ 35 < z)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

507 | P a g e
www.ijacsa.thesai.org

Back to the timed automaton depicted in Example 5, the symbolic
state (q2, Z1) �t (q2, Z2) is calculated as follows :

∃t > 0 s.t.
(
(y + t ≤ 10 ∧ 35 < z + t) ∧

∀t′ < t (0 < x+ t′ ∨ 0 < y + t′)
)

The universal quantifier can be written in existential quantifier. We
obtain:

∃t > 0 s.t.
(
(y + t ≤ 10 ∧ 35 < z + t) ∧
¬∃t′ ≥ 0 (t′ < t ∧ ¬(0 < x+ t′ ∨ 0 < y + t′))

)
Which is equivalent to

∃t > 0 s.t.
(
(y + t ≤ 10 ∧ 35 < z + t) ∧
¬∃t′ ≥ 0 (t′ < t ∧ x+ t′ ≤ 0 ∧ y + t′ ≤ 0)

)
It is possible to eliminate the quantifier [33]

∃t > 0 s.t.
(
(y + t ≤ 10 ∧ 35 < z + t) ∧
¬(0 ≤ t′ < t ∧ x+ t′ ≤ 0 ∧ y + t′ ≤ 0)

)
From which we deduce

∃t > 0 s.t.
(
(y + t ≤ 10 ∧ 35 < z + t) ∧ ¬(x ≤ 0 ∧ y ≤ 0)

)
Whose negation is

∃t > 0 s.t.
(
(y + t ≤ 10 ∧ 35 < z + t) ∧ (0 < x ∨ 0 < y)

)
The quantifier is removed by the same procedure. The result is then:

(q2, Z1) �t (q2, Z2) =
(
q2, (y ≤ 10 ∧ y − z < −25)

)

Finally, using operators pre and �t it is possible to compute the
operation Q1 � Q2. Therefore, we reduce all operations appearing in
the TCTLΔ model checking algorithm to known operations on zones,
which are obviously implemented through the DBM data structure.

C. Pseudo-Code for Eϕ1U
k
∼cϕ2 Model-Checking algorithm

We now give the pseudo-code for Model-Checking algorithm of
Eϕ1U

k
∼cϕ2 modality.

Algorithm 1 Model-Checking of Eϕ1U
k
∼cϕ2 Modality

1: function RIGHT PART(Eϕ1U
k
∼cϕ2 : TCTLΔ)

2: // TCTL formula
3: TargetSet := [[(z ∼ c) ∧ (Eϕ2U(ϕ2 ∧ zr > k))]];
4:
5: repeat
6: CurrentSet := TargetSet;
7: TargetSet := TargetSet ∪ CurrentSet;
8: TargetSet := TargetSet ∪

(
[[ϕ2 ∧ ϕ1]] � [zl̄ ← 0] CurrentSet

)
;

9: TargetSet := TargetSet ∪
(
[[ϕ2 ∧ (¬ϕ1 ∧ zl̄ ≤ k)]]� CurrentSet

)
;

10: until TargetSet = CurrentSet
11: return [zr ← 0]TargetSet;
12: end function
13:
14: function CHARACTERISTIC SET(Eϕ1U

k
∼cϕ2 : TCTLΔ)

15: TargetSet := RIGHT PART(Eϕ1U
k
∼cϕ2);

16:
17: repeat
18: CurrentSet := TargetSet;
19: TargetSet := TargetSet ∪ CurrentSet;
20: TargetSet := TargetSet ∪

(
[[ϕ1]] � [zl̄ ← 0] CurrentSet

)
;

21: TargetSet := TargetSet ∪
(
[[¬ϕ1 ∧ zl̄ ≤ k]]� CurrentSet

)
;

22: until TargetSet = CurrentSet
23: return [z ← 0][zl̄ ← 0]TargetSet;
24: end function

VII. CONCLUSION

In this paper, we proposed a symbolic model-checking algorithm
that computes the characteristic sets of some TCTLΔ formulae and
checks their truth values. Moreover, we gave an accurate description
of an implementation of our algorithm using zones and DBMs, the
same approach as the one used in model-checkers like UPPAAL
or KRONOS, in order to avoid the state-space explosion problem
caused by the explicit construction of region graphs. Indeed, to get
a tool from this algorithm, no much work is now necessary : the
computation of each step of the algorithm is precisely described in
this paper. Moreover, our algorithm appears really as an extension of
the zone algorithm for TCTL timed logic, and its complexity is not
more important.

Thus, this work is the link that was missing between the theoretical
work did by (Houda Bel Mokadem et al.) to abstract transient events
in [13] (namely decidability and expressiveness) and a tool that would
deal with TCTLΔ timed logic.

REFERENCES

[1] L. Aceto, P. Bouyer, A. Burgueño, and K. G. Larsen. The power of
reachability testing for timed automata. Theoretical Computer Science,
300(1–3):411–475, 2003.

[2] R. ALUR. Timed automata. In In Proc. 11th Int. Conf. Computer Aided
Verification (CAVâ99), Trento, Italy, July 1999, vol. 1633 of Lecture
Notes in Computer Science, pp. 8â22. Springer-Verlag, 1999.

[3] R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-
time. Information and Computation, 104(1):2–34, 1993.

[4] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho,
X. Nicollin, A. Olivero, J. Sifakis, and S. Yovine. The algorithmic
analysis of hybrid systems. Theoretical Computer science, 138(1):3–
34, 1995.

[5] R. Alur, C. Courcoubetis, and T. A. Henzinger. Computing accumulated
delays in real-time systems. Formal Methods in System Design,
11(2):137–156, 1997.

[6] R. Alur and D. Dill. Automata for modeling real-time systems. In
Proc. 17th International Colloquium on Automata, Languages and
Programming (ICALP’90), volume 443 of Lecture Notes in Computer
Science, pages 322–335. Springer, 1990.

[7] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer
Science (TCS), 126(2):183–235, 1994.

[8] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing
punctuality. Journal of the Association for Computing Machinery
(JACM), 43(1):116–146, 1996.

[9] R. Alur and T. A. Henzinger. Logics and models of real-time: a survey.
In Real-Time: Theory in Practice, Proc. REX Workshop 1991, volume
600 of Lecture Notes in Computer Science, pages 74–106. Springer,
1992.

[10] R. Alur, S. La Torre, and G. J. Pappas. Optimal paths in weighted timed
automata. In Proc. 4th International Workshop on Hybrid Systems:
Computation and Control (HSCC’01), volume 2034 of Lecture Notes
in Computer Science, pages 49–62. Springer, 2001.

[11] G. Behrmann, A. Fehnker, Th. Hune, K. G. Larsen, P. Pettersson,
J. Romijn, and F. Vaandrager. Minimum-cost reachability for priced
timed automata. In Proc. 4th International Workshop on Hybrid
Systems: Computation and Control (HSCC’01), volume 2034 of Lecture
Notes in Computer Science, pages 147–161. Springer, 2001.

[12] H. Belmokadem, B. Bérard, P. Bouyer, and F. Laroussinie. A new
modality for almost everywhere propeties in timed automata. In Proc.
16th International Conference on Concurrency Theory (CONCUR05),
volume LNCS 3653, pages 110–124. Springer, 2005.

[13] H. Belmokadem, B. Bérard, P. Bouyer, and F. Laroussinie. Timed tem-
poral logics for abstracting transient states. In Proc. 4th International
Symposium on Automated Technology for Verification and Analysis.
Springer., 2006.

[14] J. BENGTSSON and F. LARSSON. Uppaal, a tool for automatic
verification of real-time systems. In Masterˆas thesis, Department of Computer

Science, Uppsala University (Sweden). ISSN 0283-0574, 1996

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

508 | P a g e
www.ijacsa.thesai.org

[15] P. Bouyer, Th. Brihaye, and N. Markey. Improved undecidability results
on weighted timed automata. Information Processing Letters, 2006. To
appear.

[16] P. Bouyer, E. Brinksma, and K. G. Larsen. Staying alive as cheaply
as possible. In Proc. 7th International Workshop on Hybrid Systems:
Computation and Control (HSCC’04), volume 2993 of Lecture Notes
in Computer Science, pages 203–218. Springer, 2004.

[17] Th. Brihaye, V. Bruyère, and J.-F. Raskin. Model-checking for weighted
timed automata. In Proc. Joint Conference on Formal Modelling
and Analysis of Timed Systems and Formal Techniques in Real-Time
and Fault Tolerant System (FORMATS+FTRTFT’04), volume 3253 of
Lecture Notes in Computer Science, pages 277–292. Springer, 2004.

[18] V. Bruyère, E. Dall’Olio, and J.-F. Raskin. Durations, parametric
model-checking in timed automata with presburger arithmetic. In Proc.
20th Annual Symposium on Theoretical Aspects of Computer Science
(STACS’03), volume 2607 of Lecture Notes in Computer Science, pages
687–698. Springer, 2003.

[19] Z. Chaochen, C. Hoare, and A. Ravn. A calculus of duration.
Information Processing Letters, 40(5):269–276, 1991.

[20] E. CLARKE, O. GRUMBERG, and D. PELED. Model-checking. In
The MIT Press, Cambridge, Massachusetts. Springer-Verlag, 1999.

[21] C. DAWS. Analyse par simulation symbolique des systÃ¨mes tempo-
risÃ c©s avec kronos. In Research report. Verimag, 1997.

[22] C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool KRONOS.
In Proc. Hybrid Systems III: Verification and Control (1995), volume
1066 of Lecture Notes in Computer Science, pages 208–219. Springer,
1996.

[23] C. Daws and S. Tripakis. Model-checking of real-time reachability
properties using abstractions. In In Proc. 4th Int. Conf. Tools and
Algorithms for the Construction and Analysis of Systems, vol. 1384
of Lecture Notes in Computer Science, pp. 313â329. Springer-Verlag.,
1998.

[24] D. DILL. Timing assumptions and verification of finite-state concurrent
systems. In In Proc. the Workshop Automatic Verification Methods for
Finite State Systems, vol. 407 of Lecture Notes in Computer Science,
pp. 197â212. Springer-Verlag., 1989.

[25] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. HYTECH: the next gen-
eration. In Proc. 16th IEEE Real-Time Systems Symposium (RTSS’95),
pages 56–65. IEEE Computer Society Press, 1995.

[26] T. A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic
model-checking for real-time systems. Information and Computation,
111(2):193–244, 1994.

[27] Th. A. Henzinger. The theory of hybrid automata. In Proc. 11th Annual
Symposim on Logic in Computer Science (LICS’96), pages 278–292.
IEEE Computer Society Press, 1996.

[28] Y. Kesten, A. Pnueli, J. Sifakis, and S. Yovine. Decidable integration
graphs. Information and Computation, 150(2):209–243, 1999.

[29] R. Koymans. Specifying real-time properties with metric temporal logic.
Real-Time Systems, 2(4):255–299, 1990.

[30] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a nutshell. Journal of
Software Tools for Technology Transfer (STTT), 1(1–2):134–152, 1997.

[31] J. Ouaknine and J. Worrell. On the decidability of Metric Temporal
Logic. In Proc. 20th IEEE Symposium on Logic in Computer Science
(LICS’05), 2005.

[32] A. SCHRIJVER. Theory of linear and integer programming. In
Interscience Series in Discrete Mathematics and Optimization. Wiley,
1998.

[33] S. YOVINE. Model checking timed automata. In In School on
Embedded Systems, vol. 1494 of Lecture Notes in Computer Science.
Springer-Verlag, 1998.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 5, 2016

509 | P a g e
www.ijacsa.thesai.org

