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Abstract—In this paper the possibility of the 

electroencephalogram (EEG) compressed sensing based on 

specific dictionaries is presented. Several types of projection 

matrices (matrices with random i.i.d. elements sampled from the 

Gaussian or Bernoulli distributions, and matrices optimized for 

the particular dictionary used in reconstruction by means of 

appropriate algorithms) have been compared. The results are 

discussed from the reconstruction error point of view and from 

the classification rates of the spelling paradigm. 
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I. INTRODUCTION 

In recent years, compressed sensing (CS) has attracted 
considerable attention in areas like applied mathematics, 
computer science, and electrical engineering by showing that, 
in certain conditions, it is possible to surpass the traditional 
limits of sampling theory. CS builds upon the fundamental fact 
that many signals can be represented using only a few non-zero 
coefficients in a suitable basis or dictionary. Nonlinear 
optimization can then be used to recover such signals from 
very few measurements [1].The concept of compressed sensing 
is an example of practical use of new mathematical results. The 
difficulties for using in applications of such results are related 
to the way such concepts are understood, in a more or less 
intuitive manner, in order to facilitate the fusion between 
theory and applications. 

The literature of recent years shows an impressive number 
of papers in the CS field, covering both 1D and 2D medical 
signals. Among the 1D signals the most frequently used in CS 
applications are the electrocardiogram (ECG) and 
electroencephalogram (EEG) since they are most used in the 
medical world as well. In the case of EEG signals, there is 
often a need of records for longer periods of time (i.e., during 
the night) or for a large number of channels. 

A brain computer interface (BCI) is a communication 
system that does not depend on the normal exit ways towards 
peripheral nerves and muscles. The development of a BCI or a 
system based on the communication by means of the 
electroencephalographic signals (EEG) is capable to connect 
directly the human brain with the computer. Using the EEG 
signal as a communication vector between human and machine 
is one of the new challenges in signal theory. The main 

element of such a communication system is known as “Brain 
computer interface - BCI”. The purpose of the BCI is to 
translate the human intentions – represented as suitable signals 
– into control signals for an output device, e.g. a computer or a 
neuro-prosthesis. A BCI must not depend on normal output 
traces of peripheral nerves and muscles. In the last two decades 
many studies have been carried out to evaluate the possibilities 
of using the recorded signals from the scalp (or from the brain) 
for a new technology than does not imply the control of the 
muscles [2] [3]. 

The BCI that uses the EEG signal is capable of measuring 
the human brain activity, detecting and discriminating certain 
specific features of the brain. The recent advances in BCI 
research widened the possibilities of applicability domains. 

In this paper, we propose a compression method for EEG 
signals based on CS using universal EEG specific mega-
dictionaries. In order to validate the proposed method, there 
were used the EEG recordings from the competition for 
Spelling, BCI Competition III Challenge 2005 - Dataset II. In 
order to rate the reconstructed signal, both quantitative and 
qualitative types of evaluation were used. As qualitative 
evaluation, we used the classification rate for the watched 
character based on P300 detection in the case of the spelling 
paradigm applied on the reconstructed EEG signals and using 
the winning scripts (Alain Rakotomamonjy [4]). For 
quantitative evaluation, there were used distortion measures 
such as PRD (percent of root-mean-square difference) and 
PRDN (namely PRD normalized) between the reconstructed 
and original signals. 

II. BRAIN COMPUTER INTERFACE - P300 SPELLER 

PARADIGM 

P300 speller paradigm uses the P300 waves that are 
expressions of event related potential produced during decision 
making process. P300 has two subcomponents (as shown in 
Fig.1 a): the novelty P3 (also named P3a), and the classic P300 
(renamed as P3b). P3a is a wave with positive amplitude and 
peak latency between 250 and 280 ms; the maximum values of 
the amplitude are recorded for the frontal/central electrodes. 
P3b has also positive amplitude with a peak around 300 ms; 
higher values are recorded usually on the parietal areas of the 
brain. Depending on the task, the latency of the peak could be 
between 250 and at least 500 ms. 
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One of the first examples for BCI is the algorithm proposed 
by Farwell and Donchin [5] that relies on the unconscious 
decision making processes expressed via P300 in order to drive 
a computer. 

 

 
Fig. 1. P300 wave and the classical P300 spelling paradigm described by 

Farwell-Donchin 1988 

The P300 speller paradigm was described in [5]. The 
subject should watch a 6x6 matrix containing all letters and 
digits (as shown in Fig.1 b) and should focus the attention on 
characters from a given word. The protocol contains several 
stages: 

Step 1: the matrix is presented to the subject for 2.5 
seconds; 

Step 2: all lines and all columns are highlighted randomly 
and alternatively each for 100ms. 

The procedure consists in repeating step 2 for 15 times (15 
epochs) for each char-acter, followed by a pause of 2.5 seconds 
(step 1).  For each given character, there will be 6x2x15=180 
intensifications:  2x15 will contain the target character (once 
when the column is highlighted, second for the line it belongs 
to, repeated for 15 epochs) and the rest will not contain it. 

For the BCI III competition the dataset has been recorded 
from two different subjects in five sessions each and signals 
have been bandpass filtered in the range 0.1 - 60Hz and 
digitized at 240Hz. Each session is composed of runs, and for 
each run, a subject is asked to spell a word. For a given 
acquisition session, all EEG signals of a 64-channel scalp have 
been continuously collected. The train set contained 85 

characters and the test set 100 characters for each of the two 
subjects. A more detailed description of the dataset can be 
found in the BCI competition paper [6]. 

The competition winners, Alain Rakotomamonjy and 
Vincent Guigue propose a method that copes with such 
variability through an ensemble of classifiers approach [4]. 
Each classifier is composed of a linear Support Vector 
Machine trained on a small part of the available data and for 
which a channel selection procedure has been performed. They 
succeeded a classification rate of 95.5% for 15 sequences and 
73.5% for 5 sequences [4]. 

III. COMPRESSED SENSING 

In case of a vector 
nx  which can be represented using 

only few elements from the basis defined by the columns of the 

matrix
nxnB  , the x  vector can also be written as: 

Bx 
 

where   is the sparse decomposition of x  in B. 

The approach of compressed sensing assumes to take only 
a set of m measurements of x which can be obtained by 

projecting x  on m  random vectors with nm  . By 

considering these vectors as the lines of a matrix
mxnP  , 

the acquisition operation is described by the equation: 

 APBPxy  . 

The product PBA   is also called effective dictionary and 
with this notation the known form of CS is expressed as: 

Ay 
. 

This equation shows how the sparse vector   is acquired 

by means of matrix A . The name “compressed sensed” 
indicates that the number of projection vectors m is much 

smaller than the signal dimension n . 

The key problem of CS is the recovery of the sparse n -

dimensional vector    from the nm   projections 

contained by y . The system of equations is undetermined, but 

the number k  of nonzero elements of   is small under the 

sparsity hypothesis nmk  . From  , the original signal 

x  can be obtained using the equation Bx  . 

CS uses the property of the signal that it is sparse in a 
certain basis. A fundamental result published in [7], [8] is: if   

has enough entries with value zero and matrix A fulfills certain 
conditions, then   is the sparsest solution of the acquisition 

system of equations. Namely,   can be obtained as a solution 

of the following optimization problem with constrains: 




Aytosubject
p

 minargˆ  

For the most common values of p ,  0p  and 1p , 

this becomes: 
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Aytosubject 
0

minargˆ  

or: 


Aytosubject 
1

minargˆ  

The first case, where the 
0l  norm is used, is an NP-hard 

problem [9] and this requires an algorithm of non-polynomial 
complexity for solving it; NP-hard problems are practically 
impossible to be solved for usual dimension of data. The 

second case that uses the 1l  norm is known as Basis Pursuit 

[10]. BP is a convex optimization problem that can be 
reformulated as a linear programing problem for which there 
are available many efficient algorithms. 

IV. METHOD 

The key element in the success of signal compression based 
on compressed sensing is the right choice of the dictionary 
based on which the reconstruction will be done.  Generally, the 
ECG and EEG biomedical signals don’t have a very high 
sparsity in standard dictionaries. Due to their specificity, in the 
case of ECG signals the alignments of waveforms from which 
the dictionary atoms are selected with respect to the R wave or 
QRS complex improve very much the results. For EEG signals, 
alignments are difficult or even impossible since they do not 
usually contain repetitive elements in the time domain. Thus, 
the EEG signals might be discussed in the frequency domain as 
well. 

In the case of the BCI spelling experiment, a temporal 
change in the waveforms, the P300, has been observed after 
about 300ms after the stimulus. This temporal behavior has 
been clearly put into evidence by averaging several EEG 
signals with the natural alignment represented at the moment 
when the stimulus was applied. This temporal alignment based 
on the start time of the stimulus and tacking into account that 
P300 appears after about 300 milisec does not allow a real time 
compressed acquisition. For this alignment, preprocessing is 
needed for both the acquisition and the decompression of the 
signal. The introduction of preprocessing at acquisition has as a 
major drawback the elimination of the advantage of the 
compressed sensed technique, namely, very low complexity of 
calculations in the acquisition stage. 

Starting from the above statements, we tested the 
possibility to build a universal mega-dictionary consisting of 
EEG segments from all 64 channels. Thus, there were selected 
for each channel three atoms, consisting in EEG segments from 
the corresponding channel, so in total one obtained a dictionary 
made up of 3x64 = 192 atoms. The size of the dictionary is 
192x240, because each atom has the size of 240. For the 
construction of the dictionary, the training signal from the 
paradigm of spelling was used. The testing of the method was 
done using EEG test signals which consist in compressed 
sensed EEG signals [11]. 

As acquisition matrix, we tested three types of matrix: 

 Bernoulli matrix with elements -1, 0 and 1 

 Random matrix 

 optimized matrix depending on dictionary [12] - 
(product of random matrices and the dictionary 
transposed) 

Compared with [11] where it was made an analysis of the 
dictionaries used in the reconstruction phase in this work is 
intended to analyze the projection matrix used in the 
compression stage. 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

For the evaluation of the analyzed methods we used the 
dataset II of the BCI Competition III 2005 -P300 Spelling. 

For compression evaluation we used the compression rate 
(CR) defined as the ratio between the number of bits needed to 
represent the original and the compressed signal. 

comp

orig

b

b
CR   

To validate the compression we evaluated the distortion 
between the original and the reconstructed signals by means of 
the PRD and PRDN (the normalized percent-age root-mean-
square difference):  
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xnxnxnxPRDN
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where )(nx  and )(~ nx  are the samples of the original and 

the reconstructed signals respectively,   is the mean value of the 
original signal, and N is the length of the window over which 
the PRDN is calculated. 

For qualitative evaluation of the method based on the 
classification rate in spelling paradigm, we used scripts from 
the winners, A. Rakotomamonjy and V. Guigue [4] (the scripts 
implement classification based on all 64 EEG channels). 

For the construction of the dictionary, we used the training 
EEG signals from subjects A and B, respectively, and for the 
testing of the proposed method we used the test EEG signal 
from subject B. 

Next we will present the results of EEG signals 
decompression from subject B. The results will be presented 
both as a measure of distortion of the original and decom-
pressed EEG as well as the classification rate in spelling 
paradigm. 

Thus, Table 1 presents the classification results in paradigm 
spelling using original data and software from [4]. It shows an 
average classification using all channels of 89.37% and on 
most individual channels there is a classification rate of 93%. 
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TABLE I.  CLASSIFICATION PERFORMANCE%  IN P300 SPELLING FOR 

ORIGINAL DATA (FOR B SUBJECT) AND SOFT FROM [4] 

P300 Spelling - classification performance %  

Original data – uncompressed and classificated by A. Rakotomamonjy 

and V.Guigue 

36 53 61 68 73 78 83 82 84 88 91 93 90 90 93 93 93 93 93 93 93 93 93 93 93 

93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 

93 93 93 93 93 93 93 93 93 93 93 93 93 93  Average Classification% =  

89.37% 

Tables 2 - 4 presents the classification results for all 64 
channels for a compression of 10:1, respectively 5:1 for subject 
B and Bernoulli matrix vs. random matrix vs. optimized matrix 
depending on dictionary. 

TABLE II.  CLASSIFICATION PERFORMANCE%  IN P300 SPELLING FOR 

RECONSTRUCTED EEG SIGNAL WITH SOFTWARE FROM [4] FOR A 

COMPRESSION CR = 10:1 RESPECTIVELY CR = 5:1 SUBJECT B AND 

BERNOULLI MATRIX 

P300 Spelling - classification performance %  for  subject B and Bernoulli 

matrix 

CR = 10:1 

24 34 48 55 55 62 63 66 73 76 79 81 83 83 87 87 87 87 87 87 87 87 87 87 87 
87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 87 

87 87 87 87 87 87 87 87 87 87 87 87 87 87 

 Average Classification% =81.75%  
PRD_mean = 53.6 

PRDN_mean =54.54 

CR = 5:1 

33 45 58 63 70 75 80 80 88 86 88 94 91 92 92 92 92 92 92 92 92 92 92 92 92 

92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 
92 92 92 92 92 92 92 92 92 92 92 92 92 92 

Average Classification% = 88.17%  

PRD_mean = 40.26  

PRDN_mean = 40.93 

TABLE III.  CLASSIFICATION PERFORMANCE%  IN P300 SPELLING FOR 

RECONSTRUCTED EEG SIGNAL WITH SOFTWARE FROM [4] FOR A 

COMPRESSION CR = 10:1 RESPECTIVELY CR = 5:1 SUBJECT B AND 

ACQUISITION MATRIX BY TYPE RANDOM 

P300 Spelling - classification performance %  for  subject B and random 

matrix 

CR = 10:1 

26 33 44 52 57 62 59 67 76 80 80 80 82 85 86 86 86 86 86 86 86 86 86 86 86 
86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86 

86 86 86 86 86 86 86 86 86 86 86 86 86 86 

Average Classification% = 80.98 %  
PRD_mean = 53.63 

PRDN_mean = 54.57 

CR = 5:1 

23 41 52 59 70 74 79 83 87 88 86 90 87 86 90 90 90 90 90 90 90 90 90 90 90 
90 90 90   90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 

90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 

Average Classification% = 86.01%  

PRD_mean = 39.74 

PRDN_mean = 40.38 

TABLE IV.  CLASSIFICATION PERFORMANCE%  IN P300 SPELLING FOR 

RECONSTRUCTED EEG SIGNAL WITH SOFTWARE FROM [4] FOR A 

COMPRESSION CR = 10:1 RESPECTIVELY CR = 5:1 SUBJECT B AND OPTIMIZED 

MATRIX DEPENDING ON DICTIONARY 

P300 Spelling - classification performance %  for  subject B and optimized 

matrix depending on dictionary 

CR = 10:1 

33 49 59 62 71 75 81 84 88 90 91 95 93 93 97 97 97 97 97 97 97 97 97 97 97 
97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 97 

97 97 97 97 97 97 97 97 97 97 97 97 97 97 

Average Classification% =92.40%  

PRD_mean = 42.32 

PRDN_mean = 43.07 

CR = 5:1 

34 48 58 66 74 79 82 83 86 90 89 90 90 91 94 94 94 94 94 94 94 94 94 94 94 

94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 94 
94 94 94 94 94 94 94 94 94 94 94 94 94 94 

Average Classification% = 90% 

PRD_mean = 29.28 

PRDN_mean = 29.77 

TABLE V.  CLASSIFICATION PERFORMANCE%  IN P300 SPELLING FOR 

RECONSTRUCTED EEG SIGNAL WITH SOFTWARE FROM [4] FOR A 

COMPRESSION CR = 12:1 AND OPTIMIZED MATRIX DEPENDING ON 

DICTIONARY VS. RANDOM MATRIX 

P300 Spelling - classification performance %  for  subject B for CR = 12:1 

CR = 12:1  optimized matrix depending on dictionary 

33 46 53 61 66 70 76 79 83 84 87 87 88 87 91 91 91 91 91 91 91 91 91 91 91 

91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 91 
91 91 91 91 91 91 91 91 91 91 91 91 91 91 

 Average Classification% =86.71%  

PRD_mean = 46.28 

PRDN_mean =47.12 

CR = 12:1  random matrix 

12 25 31 39 42 46 47 59 65 69 71 76 76 74 79 79 79 79 79 79 79 79 79 79 79 

79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 

79 79 79 79 79 79 79 79 79 79 79 79 79 79 

Average Classification% = 73.15%  

PRD_mean = 58.81  

PRDN_mean = 59.84 

Results obtained with Bernoulli matrix are comparable to 
those achieved with random matrix. But when using optimized 
matrix depending on dictionary results are much improved, 
being comparable to results obtained with original signals. If 
we strictly reference to the classification rate in paradigm of 
spelling, classification rates are obtained even improved for CR 
= 10: 1 and 5: 1. 
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TABLE VI.  THE TOPOGRAPHY OF PRDN FOR EEG COMPRESSED SENSING 

(CR = 5:1 AND RESPECTIVELY CR = 12:1  FROM UP TO DOWN) 

 

 

VI. CONCLUSIONS 

In this paper a comparative analysis of the results obtained 
using several types of projection matrices (matrices with 
random i.i.d. elements sampled from the Gaussian or Bernoulli 
distributions, and matrices optimized for the particular 
dictionary used in reconstruction by means of appropriate 
algorithm) and a mega-dictionary for EEG signals compressed 
sensing is presented. For the evaluation of the proposed 
method we used the dataset from the BCI Competition III 2005 
- P300 Spelling. In order to evaluate the results of the EEG 
signal reconstruction the PRDN was used in parallel with the 
classification rate of the spelling paradigm assessed using the 
scripts from the winner of the competition (the version of 
classification using all 64 channels). The best results were 

obtained with matrices optimized for the particular dictionary 
used in reconstruction. 

Thus, for the mega-dictionary the best results in terms of 
classification at the spelling paradigm are obtained for CR = 
5:1 and 10:1 when the achieved classification rate was 90%, 
respectively, 92% (for the original signals the classification 
rate was 89.37%). In terms of error, the PRDN was 29.77 for 
the 5:1 compression and PRDN = 42.32 for the 10:1 case. 

The results demonstrate that the proposed method with 
mega-dictionary and optimized matrix depending on dictionary 
provides greatly improved results compared to the standard 
matrices. 

ACKNOWLEDGMENT 

This work was supported by a grant of the Romanian 
National Authority for Scientific Research and Innovation, 
CNCS – UEFISCDI, project number PN-II-RU-TE-2014-4-
0832 “Medical signal processing methods based on 
compressed sensing; applications and their implementation.” 

REFERENCES 

[1] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, 
"Introduction to Compressed Sensing," in Compressed Sensing: Theory 
and Applications, Cambridge University Press, 2012. 

[2] Blankertz, B., BCI competition III webpage [Online]. Available: 
http://ida.first.fraunhofer.de/projects/bci/competition III 

[3] Blankertz, B., Mueller, K.-R., Curio, G., Vaughan, T., Schalk, G., 
Wolpaw, J., Schloegl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., 
Schroeder, M., Birbaumer, N., The BCI competition 2003: Progress and 
perspectives in detection and discrimination of EEG single trials, IEEE 
Trans. Biomed. Eng, vol. 51, no. 6, pp. 1044–1051 (2004). 

[4] A. Rakotomamonjy, V. Guigue, BCI Competition III: Dataset II- 
Ensemble of SVMs for BCI P300 Speller, IEEE Transactions 
on   Biomedical Engineering,Vol:55, Issue: 3, pp. 1147 – 1154, 2008. 

[5] Farwell L.A., Donchin, E. Talking off the top of your head: toward a 
mental prosthesis utilizing event-related brain potentials. 
Electroencephalography & Clinical Neurophysio.. 70(6):510-23, 1988 

[6] Data Acquired Using BCI2000's P3 Speller Paradigm 
(http://www.bci2000.org) 

[7] D. L. Donoho and M. Elad, “Optimally sparse representation in general 
(nonorthogonal) dictionaries via l1 minimization,” Proceedings of the 
National Academy of Sciences, vol. 100, no. 5, pp. 2197–2202, 2003. 

[8] D. Donoho, M. Elad, and V. Temlyakov, “Stable recovery of sparse 
overcomplete representations in the presence of noise,” IEEE 
Transactions on Information Theory, vol. 52, no. 1, pp. 6–18, Jan. 2006. 

[9] B. K. Natarajan, “Sparse approximate solutions to linear systems,” 
SIAM J. Comput., vol. 24, no. 2, pp. 227–234, Apr. 1995. 

[10] E. Candes and T. Tao, “Decoding by linear programming,” IEEE 
Transactions on Information Theory, vol. 51, pp. 4203–4215, 2005. 

[11] M. Fira, V. A. Maiorescu, L. Goras, “The Analysis of the Specific 
Dictionaries for Compressive Sensing of EEG Signals”, Proceedings of 
the ACHI 2016, Venice, Italy, 2016 

[12] Cleju N., Fira M., Barabasa C., Goras L., Robust reconstruction of 
compressively sensed ECG patterns, ISSCS 2011 (The 10-th 
International Symposium on Signals, Circuits and Systems), 30 June – 1 
July 2011, Iasi, pp. 507-510, 2011 

 

PRDN mean Topography

 

 

0

10

20

30

40

50

60

70

80

PRDN mean Topography

 

 

0

10

20

30

40

50

60

70

80

http://www.bci2000.org/

