
(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

189 | P a g e

www.ijacsa.thesai.org

Improving Service-Oriented Architecture Processes in

Process of Automatic Services Composition Using

Memory and QF, QWV Factor

Behnaz Nahvi

Department of Computer Engineering

 Science and Research Branch

Islamic Azad University

Tehran, Iran

Jafar Habibi

Department of Computer Engineering

Sharif University of Technology

Tehran, Iran

Abstract—The application of service-orientated architecture

in organizations for implementation of complicated workflows in

electronic way using composite web services has become

widespread. Thus, challenging research issues have also been

raised in this regard. One of these issues is constructing

composite web services by workflows. These workflows are

composed of existing web services. Selections of a web service for

each of workflow activities and fulfilling users’ conditions is still

regarded as a major challenge. In fact, selection of a web service

out of many such web services with identical function is a critical

task which generally depends on composite evaluation tool of

QoS. Previously proposed approaches do not consider exchange

restrictions on the composition process and internal processes of

architecture and previous experiences, and they ignore the fact

that value of many of QoSs depends on the time of

implementation. Selection of web services only based on QoS

does not bring about optimal composite web service. Thus, till

now, no solution has been proposed that performs composition

process automatically or semi-automatically in optimal manner

Objective: identification of existing concerns on composition

of services and then designing a framework to provide a solution

which consider all concerns and finally performing tests in order

to examine and evaluate proposed framework

Method: in the proposed framework, elements affecting

management of service-oriented architecture processes are

organized according to a logical procedure. This framework

identifies processes of this style of architecture based on

requirements in service-oriented architecture processes

management and according to qualitative features in this area. In

the proposed framework, in addition to using existing data in the

problem area, existing structure and patterns in the area of

software architecture are also utilize, and management processes

in service-orientated architecture are improved based on

propriety of available requirements. QWV are qualitative

weighted dynamic features which indicate priority of users, and

QF is quality factor of service at the time of implementation

which is weighted in the framework. These factors are used for

constructing composite web service. Multifactor computing is

known as a natural computational system for automating the

interaction between services. The factors in multi-agent systems

can be used as the main reliable mechanism for the control which

usually use data exchange for accelerating their evaluations. For

identification of all concerns in the solution space, many aspects

should be examined. To this end, classes of agents are defined

which investigate these aspects in the form of four components

using repository data.

Results: proposed framework was simulated by Arena

software and results showed this framework can be useful in

automatic generation of needed services and meet all concerns at

the same time. Results support that using agents in the model

increased speed of accountability and satisfaction of users as well

as system efficiency.

Keywords—Service-orien ted architecture; process

management; multi-agent systems

I. INTRODUCTION

Service-orientated architecture provides a collection of
designing principles for operationalization and implementation
of automatic commercial process in heterogeneous
environments[1]. Service-oriented architecture includes
management of applications, services, processes, firmware,
infrastructures and software tools in line with business
objectives. Service-oriented architecture process management
is classified into service-oriented architecture lifecycle
management, service management, service change
management, service composition management and service
interaction management, service registries and exploration
management. Service-oriented architecture management is
actually a multi-faceted task which covers IT management and
Business Service Management. There are several ways for
implementing SOA, but the most famous and most popular
way are run by Web Service technology[2] that depends on
infrastructure of World Wide Web and use of open XML
standards such as SOAP, WSDL. Another benefit of using web
services is their interoperability between different
heterogeneous organizations or units [3].

Over recent years, the number of web services with
identical performance and different quality has increased and is
still growing [4] which leads to increased complexity of
composition[5]. Cost and efforts for constructing composite
services in manual way is certainly higher than composition
cost as automatically[6]. The other reason which increases cost
of manual effort compared to automatic efforts is that usually
demands are issued continuously or previous demands are
changed. Thus, there is need for techniques which
automatically compose services and reduce cost and effort to
respond to needs of user[7]. Composition of services based on
QoS is one of the issues raised in service-oriented architecture.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

190 | P a g e

www.ijacsa.thesai.org

Most of the available methods consider QoS as static. It means
that fixed values are considered for QoS values in all user
demands over the time. While value of these features depends
on the time and have different values depending idea of the
user on different applications.

Generally, the lifecycle of a composite web service
includes three stages: 1. Design, 2. Implementation and
supervision, 3. Re-engineering [8, 9]. In the first stage, obvious
features of composite web service are identified. In the second
stage, at the time of design and supervision, addressing and
implementation of composite web services and finding
solutions and errors which emerge in this stage is done.
Finally, in re-engineering stage, features of composite services
are modified which depends on the data obtained from second
stage. The solutions for performing this process are also
provided as dynamic (like[10]) which are capable of review in
composite web service immediately after second stage
(dynamic binding). In this paper, a model is proposed which
considers three stages of lifecycle of composite service
construction. First stage is described in more details in this
paper, and subsequent stages are extended in the future works.

In the proposed model, three stages are organized by agents
in four components and depository. Ten classes of agents are
embedded in components and perform their tasks using
depositories. In the stage of design, user interface agent
provides the demand for application agent following taking
user demands and transforming them to standard format. The
application agent turns user’s need to tasks and workflow of
composite web service is generated. Second stage, that is,
discovery of suitable candidate services for each activity, is
done by registry factor. For accelerating this operation in the
proposed model, services are grouped in sub-domains
considering their functions by grouping agent in design stage.
Registry agent searches for relative service for each task in
sub-domains. If corresponding service is not found, it searches
for previous composite services in the system memory, i.e.
solution depository. In case of not finding suitable service,
demand is referred to the composer agent service composer
should generate workflow manually or semi-automatically.
This workflow is logically as an ordered set of activities that
each activity is performed by an atomic service. Following
selection of suitable candidate services for taking part in
composition operation, third stage is performed. That is,
selection of the best service out of candidate services for taking
part in composition. Registry agent does selection under
supervision of manager agent using genetic algorithm
considering dynamic values of QoS and QF. QoSs are
regularly updated by evaluator agent. QWV is qualitative
features vector considered by the user, which indicates
significance of each feature in the view of user. Quality of
service in web services (QoS) includes some non-operating
characteristics such as cost performance, runtime, the
availability, performance and security success rate[11]. QWV
is weighted value of QoS which is dynamic and is weighted
over the time according to priorities of user by operating user
interface and provides optimization. Value related to service
quality factor (QF) denotes quality of service implementation
and availability of service. It is stored in model memory and
updated by registry agent in Meta data of system. Following

selection of suitable service out of candidate services, last stage
of design is finished. Second phase of lifecycle, i.e.
implementation and supervision, is followed by service agent,
management agent, and security agent, and processes related to
third cycler of composite web service lifecycle is performed in
SME component. In our model, agents are put in components
and they perform respective operations using depositories
which are the same as model memory. The purpose is
generating composite service which has non-functional
features optimal for user. As explained in previous paragraph,
designing composite service is a time-consuming and complex
process, and if it can be accomplished automatically, certainly
less costs and efforts are needed compared to manual
manner[6].

Service-oriented architecture lifecycle management, service
management, service changes management, service
composition management, service interaction management, and
service registries and exploration management is done by
agents in the model. Multi-agent system performs a
combination of managerial affairs in service-oriented
architecture. Data needed by the system are extracted by agents
and embedded in the Meta data depository. These data are
updated and managed in registry service table, and they would
be used at the time of implementation.

Overall goal of previous works is finding administrative
workflow which can generate services in a composite web
service to reach requested functionality. The other point is the
way of selecting services out of candidate services which has
been done for predefined workflow to reach non-functionality
tasks as QoS. In the previous works, agents have not be used
comprehensive in the whole architecture processes [12, 13].
They used multi-agent system as intelligent control layer for
managing affairs. Establishment of interaction among services
[14] and manipulating handling changes [15] are among tasks
which led to emergence of agents in architecture composition.

In summary, the proposed framework deals with
classification of service-oriented architecture processes. In
service composition part, using quality factor definition it was
practically shown that agents can make service-oriented
architecture activities considerably more effective and efficient
by applying management and control over model components
and storage and updating model knowledge in depositories.
Eeach part in the future model will be provided for
optimization of these processes in model components and
depositories. Works done for this paper are explained in detail
in the following:

1) Firstly efforts for automatic composition of services

were reviewed and analysed and existing concerns and gaps

were identified.

2) Existing processes in service-oriented architecture

were identified and they were structured in the proposed

model.

3) Agents were used for improving processes in the

architecture.

4) Internal memory was added to the system by adding

depositories to the framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

191 | P a g e

www.ijacsa.thesai.org

Priorities of this framework over previous methods include
as follows:

1) Quality factor (QF) indicates framework’s evaluation

of provided services which is more reliable criterion for

selection of optimal services beside QoS which is provided by

service generator dynamically known as QWV.

2) Weighing quality factor (QF) by agents in the

framework allows evaluation of services in implementation

stage.

3) QWV is weighed by user interface factor and includes

user priorities using updated values of QoS, and this value is

used by composer agent for constructing composite service.

4) Composer agent identifies the best existing

compositions using compliance function, in which use QoS,

user priorities, and framework evaluation of the service is also

considered. It is performed by genetic algorithm. The best

composition is referred to the registry agent. Using QF and

QWV factors makes genetic algorithm more effective

compared to similar works in selection of the best composite

services.

5) For filling the existing gaps in composition issue, this

paper provides a framework which considers all issues in

architecture. Using agents beside depositories reduces

necessity for relationship between framework and user and it

allows automatic generation of composite web service to meet

user needs and covers all existing concerns in composition

issues.
It is known that composition is a multipurpose problem.

Thus, in the proposed model, it is attempted to consider several
problems simultaneously in the composition. A new approach
is provided for multipurpose problem and currently a
comprehensive introduction and experimental approach for it is
discussed. In automatic multipurpose composition there are
some concerns. Proposed framework considers composition
with all aspects. For composition, a fitness function is used and
QF and QWV are embedded in it. Agents are used for
implementing GA in order to update variables. Features of the
proposed model is different from most of traditional methods
and can be used for other multipurpose problems with similar
features. As in the proposed framework, specific philosophy
and view is used in classification of architecture management
processes, needed issues are described in explanation of the
model.

In the following, the paper is organized as follows: in the
second section, previous works are reviewed and the concepts
used in proposed framework are described in the third section.
Standard of service definitions in the framework and ranking
services are also described. In the fourth section, for evaluation
of the framework, curriculum of second semester 2015 – 2016
in Islamic Azad University of Karaj is implemented in the
framework and the last section is devoted to conclusions and
future work.

II. REVIEW OF LITERATURE

In this section, previous studies and works are reviewed.
Many works have been conducted on service changes
management area which [16] can be an example. In[3] using

intelligent solution for finding optimal solution is suggested. In
Table 1 part of works on service composition area is shown.
Service composition issue is divided into two main fields
including service selection and service composition[17]. In
Figure 1, service selection methods are classified according
to[18]. In composition of services, each selected service has
specific administrative capability and it is unique. These
services should be implemented in the form of a composite
service and provide needed capabilities. Workflow implicitly
makes this composite service. For composition of works, both
semantic links and key terms comparison can be used.
Semantic links will be used in the future works.

TABLE I. A COMPARISON TABLE FOR CURRENT WORKS

U
sin

g

o
p

tim
iza

tio
n

a
lg

o
r
ith

m
s

C
o

-a
g

e
n

t

S
e
m

a
n

tic

B
a

se
d

Q
o

S
_
 A

w
a

re

approach Author

Yes No No Yes
Heuristic

algorithm
Mohammed, et al. [19]

Yes No No Yes

ant colony

optimization

algorithm
. Wang, et al. [20]

Yes No No Yes
bee
colony

approach
X. Wang, et al. [21]

Yes No No Yes
particle swarm
optimization

algorithm
T. Zhang [22]

Yes No No Yes

particle swarm

optimization
algorithm

V. S. Jeure et al. [23]

Yes No No Yes
Immune

algorithm
X. Zhao, et al. [24]

No No Yes Yes

Semantic-based

BusinessProcess

Execution

Engine

M. Fahad, et al.[25]

III. CONCEPT OF PROPOSED FRAMEWORK

Fig. 1. Web service selection approaches [18]

Selection approch

Optimization approch Decision making approch

Evolutionary based
Non-Evolutionary

based

Pattern Base

Greedy

Botton-up approach

Discard subsets

Pattern Base

Non-Pareto technic Pareto-based technic

PSO

Outranking appoach

GA

multi-attribute utility

theory

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

192 | P a g e

www.ijacsa.thesai.org

In this section, assumptions, symbols and icons used in the
model are described. The proposed model is composed of
components and depositories. Each component is a computing
entity which is an interconnected collection of the system
functionality requirements. Components communicate through
one or more ports to the environment. Ten categories of agents
help components so that system requirements are removed. The
overall structure of the proposed framework has been shown in
Figure 2. Business Process Management (BPM) is take from
stakeholders by user interface agent and it is stored in this
component under Request For Change (RFC) standard form.
Requirements in this framework are stated under title of RFC
so that it can be integrated to ITIL framework in the future.
Problem definition in the proposed framework is defined by
RFC which is an ordered triple: RFC (T, QWV, C)

Fig. 2. The structure of the proposed framework

 T specifies a set of works composed of
∑
 where n denotes total number of works.

Application agent is responsible for developing
workflow in BPM component. Service workflows are
implemented by modeling languages (BPEL)[19].
Application agent produces and manages problem
statement, that is, RFC (Figure 3).

 QWV is weighted vector of QoS which specifies user
priorities on qualitative features of service (QoS) that
is composed of: QWV = <qw1, qw2, qw3, …, qwm>

m denotes number of qualitative features which are
important for system in the framework and are obtained by
manager agent at the beginning of the work based on the
results taken by application agent. User priorities are reflected
in this weighted vector.

 Constraints (C) determine constraints specified by the
user.

 In terms of emission of changes in service depository in
the framework, our design is taken from active
depository style. Some services have been specified in
depository which are informed of specific events shared
in the depository. These services inform changes in
service depository to DMC component.

Situational Method Engineering (SME) component
reengineers in lifecycle of composite web service using method

chunks. Decision-Making Center (DMC) component has axial
stats in proposed framework. In this component, different
concepts are put together and general goals of framework are
realized. In fact, it can be stated DMC component has decision
making status in the framework.

Fig. 3. BPM components structure

Manager agent contains a series of principles, rules,
guidelines, tools and previous experiences (located in
depositories) which decision making is done using them.
Overall this component is shown in Fig 4. Manager agent in
this component makes decision considering priorities of QWV
and QoS stakeholders for retrieval of agents[26]. Solution
repository component plays key role in realization of approach
based on the pattern adopted in framework. Significant point in
proposed framework is that it has learning capability and
solution repository is raised as one of the memories of this
intelligent framework. In other words, this component of
architecture can be extended by new solutions. In addition,
possibility for correction or changing existing solutions is also
available. In relation with the way of storing these solutions,
registry agent with the help of grouping agent, models
solutions in the form of modeling language BPMN. BPMN can
be transformed into BPEL standard. Thus, maximum
compatibility and standardization in the framework is prepared
and it allows that business processes are easily developed with
extending solutions.

In the proposed framework, each service is connected to a
standardizer known as common rules database (CRD). This
unit is a basis of existing rules and norms, related to application
case, which is embedded in the proposed framework in order to
chat and negotiate with CRD connected to different services.
Proposed framework is shaped based on reference layering of
service-oriented architecture[27, 28]. Multi-agent system is
used for improving service-oriented architecture processes
(Figure 5). In evaluator component, registry agent scores
services, business processes and solutions considering their
qualitative features, and turns QoS value from static to
dynamic state. Here two working areas are distinguished. First
area supervises measurement of qualitative features. Second
area scores these cases given their qualitative features. In fact,
in the first area, measurement and identification of qualitative
features is dealt and on the other hand, multivariate decision
making is faced in the second area. In relation with
measurement of qualitative features, expertness is the most
important point (Figure 6). In other words, considering
complexity and qualitative of these criteria, human agent or
expertness role is bolded. The methods which have addressed
this issue have used scenario-based techniques and in addition
they have also utilized controlling and screening tools. In the

Runtime and monitoring

Guideline

s

Post

morterms

Ruless

RFC

Services

Business
process

Solutions

BPM SME

Evaluator

DMC

Method

Chunks

CRD

Component

Repository

Quality attribute

Re-Engineering

Design

BPM

Request

Internal storage

Generate

RFC

Manage

RFC

RFC

DMC

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

193 | P a g e

www.ijacsa.thesai.org

future works, a fuzzy system will be used in this section for
measuring qualitative features.

Fig. 4. DMC components structure

Fig. 5. DMC components structure

In relation with scoring services, business processes and
solutions, there are different approaches, which somehow are
based on scoring by experts In the proposed framework,
scoring is delegated to registry agent, which performs scoring
by combination of results obtained from solutions depository
and QF and results taken from BPM component. The value
related to QF, QWV is also updated in this component.

A. Defining Service in Framework

In order to assure comprehensibility of service by the
machine and automatic relationship without human
intervention, each service is defined in the framework by
tuples.

Tuple :(ID,I,O,P,E,NF)

Fig. 6. Scoring the values of QoS, by experts

Values of this senary tuple are described in the following:

ID: its value is unique and specifies identity and name of
service.

I: it specifies service input. It determines requirements
needed by the service at the retrieval time for successful
invoking the service.

O: It specifies service output when the service is invoked
successfully.

Fig. 7. Repository Service in the proposed framework

P: pre- requirements; a collection of conditions which
should be prepared prior to service retrieval so that service is
invoked successfully.

E: Result; a set of conditions that must exist following
successful invoking the service.

Data conversion services which are responsible for the task
of converting between different technologies are among these
services which has been shown in Fig 7.

NF: Specifies non-functional features of service which
include QoS and QF, and compliance function will be defined
for it considering each problem.

B. Ranking Services

The core of automatic composition of services is based on
algorithm for ranking QoS of services according to user
demand and service composition algorithm (Algorithm 1).
Values related to QoS of each service is weighted at the time of
service recording by service generator in registry table. Agents
in the framework are responsible for supervision over these
features and if necessary, these values are updated by service
agent. QWV value is recorded in features depository following
imposing weights by application interface.

RFC

Solutions

 Generate

Solution In

BPEL
Store

Service Invok

e

Guidelines

Post

morterms

Ruless

DMC

Composer

Agent

Registry

Agent

Grouping

Agent

Manager

Agent

Service

Agent

Multi agent system

Compose

service

Implement User preference

based service ranking

Q
o

S
-b

ased
 selectio

n

Web service

discovery

Creating

workflow

Requirement

analysis

Subdomain A

Subdomain B

Subdomain C

Subdomain N

Create

Subdomain

Assign

service into

subdomain

Service Repository

Update

Registry

table

Subdomain D
(Service of infrastructure)

Subdomain M (Active repository service)

Request for

Register

Registry table

Registery

Agent

Grouping

Agent

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

194 | P a g e

www.ijacsa.thesai.org

Fig. 8. Request a service use case diagram

Algorithm 1 : User Preference Based web service ranking
algorithm (RFC (T,QWV,C), WS)

// RFC: User Request

// Si: web service

// SDSi: sub domain of Si

// ti: Task involved in user request

// WSLi: list of web services in the registry table

// SLi: search list

// FLi: filtered list

// QFRL: QF ranked List

// QWV: QoS weighted vector

// ⟨QWV⟩=⟨qw1, qw 2⟩
// qw 1: Cost Weight

// qw 2: Response Time Weight

// CSLi: composed Services List (Register in solution

repository)

Begin

(1)For each task ti in RFC

(2)Discover (WSLi, SDSi)

(3)For each Si in SLi

Do

(4)If (Availability == true) & (QF>0)

(5)SL.add()

(6)Endif

(7)EndFor

(8)QoS based Service Selection (SL)

(9)Compute QoS Rank(FL)

(10)Final Rank based Sorting (QFRL,QWV)

(11) Apply Genetic Algorithms

(12)End For

(12)Return CSL

End

QF value is weighted by the framework. Initial weighing
for this factor is set as 1 in all services. When the service
cannot work, fails, or it cannot be found, value of this factor is
reduced according to Formula (1), or when performance of it is
reduced compared to previous runs, this value is decreased. As
shown in Fig 8, registry agent is responsible for updating this
value in each service. QF is increased when the assigned works
are properly done, and it becomes a basis for service selection.

α is wegithed by the framework considering the problem(
) , (-10≤ α <10) . If non implementation of the service
has considerable impact on the system, this value is considered
as large, otherwise, smaller values are considered for it.

 () () (1)

I, P value is weighted in BPM component by user interface
agent given features of the service demanded by the user, and it
is stored in RFC depository. DMC component is responsible

Fig. 9. Flowchart of combined service in the proposed framework

for making decision on continuing the work. Process of the
works is shown in summary in

ure 9.

A composite web service (CWS) is a set of services, where
features of each service are specified by senary tuple.
Generator of composite service should assign a tuple to this set
which contains features of composite service.

In tuples I, O, P, E service performance is shown. Using
tree structure described in[29], CWS performance in its
corresponding tuple is shown. Non-functional features of this
composite service are weighted in NFi which includes two
parts; QF which takes a default value and QoS, composite web
service, which is calculated by composer agent. Composition
of web services is done through four ways[30] which is given
in Figure 10. In composite structure (sequential (a), cycle (b),
parallel (c), and branch structure (d)) works are run
sequentially and, each work is run several times in loop
structure. In parallel structure, all work can be done at a time
and after completing all tasks, parallel structure of the next
work can be started. In branch structure, if at least one of the
things is done, the next work outside of the structure can be
done. Given that the composite web service is composed of
these four structures, QoS of composite web service can be
obtained using calculations corresponding to the structure by
the formula (2) [24]. Web service composition algorithm based
on QoS shown in Algorithm 2.

Fig. 10. basic composite models of composite service

Start up

1- Determine QoS, QWV and QF 2- Put other values in fitness function and 3-

Record this value in registry table

Converting the problem, in the form of tuple

Select the sub repository-on-demand service

Apply Genetic Algorithms Selected candidate services

End

Select the optimum combination of service

Send an optimal path to the agent manager to issue the command

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

195 | P a g e

www.ijacsa.thesai.org

Algorithm 2: QoS aware web service composition
algorithm (UR(,QWV,),RSLi)

 Begin

(1)Rank Services

(1.1) Compute QWV for each task ti in T

(1.2)Save the RSLi For each task ti in T

(2)Store each RSLi in task tables

(3)Compute Service Composition (SC) table

(3.1)Generate all possible Composition plans by

taking Cartesian product of all the Task tables

obtained in Step (2)

(3.2)Save the Composition plans (CP) in Service

Composition Table

(4)Calculate QoS Aggregated value for each CP in Service

Composition and save in

Composition Plan List (CPL)

(5)Constraint Analyzer

(5.1)Perform Constraint Analyzer (SC, C) for each

CP in CPL

(5.2)Save composite services that satisfy constraints

in Filtered Composition Plan List (FCP)

(6)Pareto Optimal based Selection

(6.1)Perform Pareto Selection (FCP)

(6.2)Save Composition Plans at eriltering in Pareto

Optimal based Selected List (POSL)

(7)Compute Aggregated QoS Rank for each CP in POSL

(7.1)Evaluate all the Rank for each CP in POSL

(7.2)Save the CP with Rank in POSL

(8)Calculate Final rank (POSL,QWV)

(8.1)Compute Final rank for all CP in POSL

(8.2)Sort and save the Composition Plan in Ranked

Composition Plan List (RCPL) Based on Final Rank

(9)Execute all the Composition Plan in RCPL

(10)Get feedback and up date Rep()

End

{

∑ ()

∑

 ()

 ()

 ()

{

 ∑ ()

∑

 ()

∑

()

 ()

 ()

IV. APPLICATION CASE: CURRICULUM

A curriculum scenario is a sample of the system composed
of service combination. For implementing curriculum in a
semester, selection of instructors, their working days, selection
of needed courses, and class selection are among services,
combination of which is one of the issues which yet there is no
automatic comprehensive solution that QoS features are
applied in service selection. User demand includes a set of

Fig. 11. time tabling scenario

works like class reservation, instructor reservation, and course
selection. Atomic services (instructor, class, and course) should
be selected in such a way that the best combination is obtained.
Users can enter type of service and constraints and specific
conditions and local constrains like QoS (QWV) setting in the
form of demand as RFC standard. QoS weights are used in
ranking services and play effective role in the process of
constructing optimal composite web service in fitness function
for genetic algorithm process. When user demand is entered
into the system (RFC), firstly sub-domain of services is
selected and then respective candidate services are chosen for
doing works. These sub-domains are done by grouping agent
considering expertise of instructors and their field and
faculties, location of classes, and courses for the semester.

For combination generation, raking services is done using
values of QWV and QF. User idea of QWV and system
evaluation of QF services play key role in selection of optimal
combination. Following ranking, genetic algorithm selects the
best existing combination with imposing fitness function
(formula 2), and manager agent and service agent and
compositor agent are responsible for running this combination.
Following retrieval of respective services and running process,
QF values are updated by registry agent, and this memory will
be contribute in subsequent runs in ranking services. Recording
experience of each run increases system efficiency in
subsequent runs.

∑

 ()

User demand is firstly turned to triple by application
interface agent. In this ordered triple (T, QWV, C) RFC,
works include selection of respective course in specified time
with selection of instructor and class. In QWV, weigh vector of
qualitative features of user priorities are specified in multi-
criteria decision, which is implemented by optimization, and
conditions and constraints of user are stated in C form, which
can choose out of 10 available conditions. Services in each
university are prepared in a table in Excel environment along
with qualitative features as manual by the education
responsible person, part of which is shown in Table 2.
Information related to QoS is constantly evaluated and updated
by evaluator which is education CEO, and they are accessible
in features depository. Combination program is updated in
solution depository at every run periodically, and it is removed
if necessary. Service providers register services available in

clien
t

Time tabling system

class professor lesson

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

196 | P a g e

www.ijacsa.thesai.org

service registry and their qualitative features are updated
dynamically in the framework.

Framework evaluation environment is composed of three
virtual machines. Service exploration and service ranking as
well as construction of composite web services is done in a
system with following characteristics: 3 GB RAM, Windows
XP3, 2.13 GHz, CPU 3 Intel Core i. Clients, which are made
by application interface in technical, literature and veterinary
faculties and are responsible for service registry construction,
have following characteristics: RAM 2 GB and Windows 7
,2GHz, Duo CPU, 2Intel Core. Information related service
providers and information related to service quality and
actually service quality depository and solution depository and
service depository are embedded in virtual machine with
following characteristics: Windows XP, 3GBRAM and 3GHz,
2.13 CPU, Intel Core i.

In optimization and optimal composite web service
construction part, MATLAB programming language is used for
applying genetic algorithm. For each service in this application
case, compliance between instructor expertise and respective
course and the costs parameters are also especially considered
in addition to other qualitative features of services, which are
used in calculation of final compliance function. One of the
parameters considered in this case, is the time needed for
performing curriculum by system.

TABLE II. EXAMPLES OF SERVICES AVAILABLE INCLUDING CLASSES,
LESSONS AND MASTER

row master master code Specialty Code
Amount

/hour

1 Dr.Khalilian 91253 12 25000

2 Dr.Nikravan 45871 8 32000

3 Dr.Pishvayi 52489 11 28000

4 Dr.shemirani 54219 9 15000

5 Dr.salajeghe 36542 11 30000

row Class code Class location Amount /hour

1 154 2 5000

2 147 3 4000

3 123 2 5000

4 187 1 3000

5 132 3 6000

6 23 1 2500

7 352 5 5500

row Lesson code Amount
/hour

Specialty Code

1 302 38000 12

2 305 58000 8 , 11

3 132 45000 8

4 845 87000 9

5 251 25000 11

6 265 30000 8

7 245 4000 12

TABLE III. GENETIC ALGORITHM PARAMETERS

percent of mutation
percent of

crossover

max of

iteration

number of

population

0.99 0.01 1000 100

Genetic algorithm parameters are set according to
following table and obtained results are used at every run in
simulation environment.

Finally, the proposed framework is simulated using Arena
software, Version 13.50 on Islamic Azad University system,
Karaj Branch with following characteristics: 3GB RAM 2.13
GHz (CPU Intel Corei3). Overall form of simulated framework
is shown in Fig 12. This simulation is evaluated in five steps.
In the first step, framework responds to 27 demands of users.
In the next step, 45 user demands and after in last step 60, 75,
90 user demands are evaluate. Evaluation showed that with
increasing user demands and updating internal system values,
framework memory and optimizations by genetic algorithm
considerably help reducing system response time and costs
including computational costs and service use cost.

V. CONCLUSION

Proposed framework is provided with considering
challenges existing in management of service-oriented
architecture processes. Service-oriented architecture processes
management is classified into service-oriented architecture
lifecycle management, service management, service change
management, service composition management and service
interaction management, service records and exploration
management. In this framework, service-oriented architecture
processes are regularly structured and management of each part
is done considering its performance.

Fig. 12. Simulated framework in arena

Fig. 13. Two-parameter simulation results show that with increasing time

and cost of implementation of the framework increases system

performance

total cost

140

145

150

27 entities

45 entities

60 entities

75 entities

1.4
1.5
1.6

total time

27 entities

45 entities

60 entities

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

197 | P a g e

www.ijacsa.thesai.org

As mentioned, focused processes have problems in scaling
and run and strength. In focused processing, the processor
should have the whole problem knowledge and can manage
integrated knowledge and utilize it. Management and
processing such knowledge needs high computational power
and it is beyond capacity of a single focused system.

Thus, in this framework, multi-agent system is used for
distributing the processing to improve service-oriented
architecture processes. Depositories of this framework as its
internal memory increase system computational power in
consecutive runs and improves responding speed. For
evaluating proposed framework, service combination is used.
Curriculum system of Islamic Azad University, Karaj Branch,
was used as application case by the proposed framework and it
was tested. Results show that using this framework increase
system speed and efficiency after pilot period in stabilization
period. The more user demands are met by more works and
more services are needed in combination, efficiency of
proposed framework is shown more. Cost and time of
responding and system availability and efficiency are among
parameters which were evaluated. In future works, it is
attempted to use BPM component in fuzzy system and then
framework will be evaluated by standard databases like WS-
Challenge database. Using semantic will be also among future
works.

REFERENCES

[1] T. Erl, "Service-oriented architecture (SOA): concepts, technology, and
design," 2005.

[2] J. El Hadad, M. Manouvrier, and M. Rukoz, "TQoS: Transactional and
QoS-aware selection algorithm for automatic Web service composition,"
Services Computing, IEEE Transactions on, vol. 3, pp. 73-85, 2010.

[3] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz,
"Heuristics for qos-aware web service composition," in Web Services,
2006. ICWS'06. International Conference on, 2006, pp. 72-82.

[4] E. Goncalves da Silva, L. Ferreira Pires, and M. van Sinderen,
"Supporting dynamic service composition at runtime based on end-user
requirements," 2009.

[5] M. Rambold, H. Kasinger, F. Lautenbacher, and B. Bauer, "Towards
autonomic service discovery a survey and comparison," in Services
Computing, 2009. SCC'09. IEEE International Conference on, 2009, pp.
192-201.

[6] Z. Li and L. O’Brien, "Towards effort estimation for web service
compositions using classification matrix," International Journal on
Advances in Internet Technology Volume 3, Number 3 & 4, 2010, 2010.

[7] D. Mallayya, B. Ramachandran, and S. Viswanathan, "An Automatic
Web Service Composition Framework Using QoS-Based Web Service
Ranking Algorithm," The Scientific World Journal, vol. 2015, 2015.

[8] W. Gaaloul, S. Bhiri, and M. Rouached, "Event-based design and runtime
verification of composite service transactional behavior," Services
Computing, IEEE Transactions on, vol. 3, pp. 32-45, 2010.

[9] F. Gao, E. Curry, M. I. Ali, S. Bhiri, and A. Mileo, "Qos-aware complex
event service composition and optimization using genetic algorithms," in
Service-Oriented Computing, ed: Springer, 2014, pp. 386-393.

[10] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola,
"Qos-driven runtime adaptation of service oriented architectures," in
Proceedings of the the 7th joint meeting of the European software
engineering conference and the ACM SIGSOFT symposium on The
foundations of software engineering, 2009, pp. 131-140.

[11] C. Jatoth, G. Gangadharan, and R. Buyya, "Computational Intelligence
based QoS-aware Web Service Composition: A Systematic Literature
Review."

[12] M. Vallée, F. Ramparany, and L. Vercouter, "A multi-agent system for
dynamic service composition in ambient intelligence environments," in
The 3rd International Conference on Pervasive Computing (PERVASIVE
2005), 2005, pp. 165-171.

[13] Z. Huang, J. Zhang, and Q. Cong, "Agent-Based Service-Oriented
Dynamic Integration ERP Architecture," in The Second International
Symposium on Networking and Network Security (ISNNS 2010), 2010,
p. 136.

[14] L. G. Nardin, A. A. Brandão, and J. S. Sichman, "Experiments on
semantic interoperability of agent reputation models using the SOARI
architecture," Engineering Applications of Artificial Intelligence, vol. 24,
pp. 1461-1471, 2011.

[15] J. Li, D. Ma, L. Li, and H. Zhu, "AADSS: Agent-based adaptive dynamic
semantic web service selection," in Next Generation Web Services
Practices, 2008. NWESP'08. 4th International Conference on, 2008, pp.
83-89.

[16] H. K. Dam and A. Ghose, "Supporting change propagation in the
maintenance and evolution of service-oriented architectures," in Software
Engineering Conference (APSEC), 2010 17th Asia Pacific, 2010, pp.
156-165.

[17] Y.-Y. Fanjiang, Y. Syu, C.-H. Wu, J.-Y. Kuo, and S.-P. Ma, "Genetic
algorithm for QoS-aware dynamic web services composition," in
Machine Learning and Cybernetics (ICMLC), 2010 International
Conference on, 2010, pp. 3246-3251.

[18] A. V. Dastjerdi and R. Buyya, "A taxonomy of qos management and
service selection methodologies for cloud computing," Cloud Computing:
Methodology, Systems, and Applications, pp. 109-131, 2011.

[19] M. Mohammed, M. A. Chikh, and H. Fethallah, "QoS-aware web service
selection based on harmony search," in ISKO-Maghreb: Concepts and
Tools for knowledge Management (ISKO-Maghreb), 2014 4th
International Symposium, 2014, pp. 1-6.

[20] D. Wang, H. Huang, and C. Xie, "A Novel Adaptive Web Service
Selection Algorithm Based on Ant Colony Optimization for Dynamic
Web Service Composition," in Algorithms and Architectures for Parallel
Processing, ed: Springer, 2014, pp. 391-399.

[21] X. Wang, Z. Wang, and X. Xu, "An Improved Artificial Bee Colony
Approach to QoS-Aware Service Selection," in Web Services (ICWS),
2013 IEEE 20th International Conference on, 2013, pp. 395-402.

[22] T. Zhang, "QoS-aware Web Service Selection based on Particle Swarm
Optimization," Journal of Networks, vol. 9, pp. 565-570, 2014.

[23] V. S. Jeure and Y. Kulkarni, "Approaches for Web Service Selection,"
2014.

[24] X. Zhao, Z. Wen, and X. Li, "QoS-aware web service selection with
negative selection algorithm," Knowledge and Information Systems, vol.
40, pp. 349-373, 2014.

[25] M. Fahad, N. Moalla, and Y. Ourzout, "Dynamic Execution of a Business
Process via Web Service Selection and Orchestration," Procedia
Computer Science, vol. 51, pp. 1655-1664, 2015.

[26] C. I. Pinzón, J. F. De Paz, D. I. Tapia, J. Bajo, and J. M. Corchado,
"Improving the security level of the FUSION@ multi-agent architecture,"
Expert Systems with Applications, vol. 39, pp. 7536-7545, 2012.

[27] T. O. Group, "SOA Reference Architecture," 2011.

[28] L.-J. Zhang and J. Zhang, "SOA reference architecture," Web services
research for emerging applications: Discoveries and trends, Information
Science Reference, pp. 1-15, 2010.

[29] Y.-Y. FanJiang and Y. Syu, "Semantic-based automatic service
composition with functional and non-functional requirements in design
time: A genetic algorithm approach," Information and Software
Technology, vol. 56, pp. 352-373, 2014.

[30] W. Wang, Q. Sun, X. Zhao, and F. Yang, "An improved particle swarm
optimization algorithm for QoS-aware web service selection in service
oriented communication," International Journal of Computational
Intelligence Systems, vol. 3, pp. 18-30, 2010.

