
(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

319 | P a g e

www.ijacsa.thesai.org

Enhancement of KaPoW Plugin to Defend Against

DDoS Attacks

Farah Samir Barakat

IT Department

Faculty of Computers and Information, Cairo University

Cairo, Egypt

A .Prof. Amira Kotb

IT Department

Faculty of Computers and Information, Cairo University

Cairo, Egypt

Abstract—DDoS attack is one of the hardest attacks to detect

and mitigate in the computer world. This paper introduces two

quantitative models, which use the client puzzling to detect and

thwart application DDoS attacks. We simulated the models to use

the probabilistic metrics to penalize the malicious users and

prevent them from launching a DDoS attack while offering a

stable environment to the normal users and decreasing the

number of false positives and false negatives.

Keywords—Application Security; Client Puzzling; DDoS;

Metrics; PHP; Puzzle

I. INTRODUCTION

Distributed Denial of Service (DDoS) attacks is one of the
most rapidly increasing threats to the Internet eco-system. It
has been increasing almost exponentially leaving the servers
always wanting more bandwidth. Nowadays, DDoS attacks
may be more than 100Gbps which is 10 times the size of most
internet backbone pipes.

DDoS is DoS taken to a whole new level using
diversification, obfuscation and distribution of the attack
origin. DDoS is launched using many computers on one or
more victims to prevent the legitimate users from accessing the
network resources [1,2].

Over the past years, many defenses techniques were
introduced to defend against DDoS attacks: Whitelists [3],
Blacklists [4], VIP lists [5], Captcha [6]. But they all had some
disadvantages e.g. false positives and false negatives.

In this paper, we applied the Client Puzzling approach to
defend against the DDoS attack. It’s a Proof of Work (PoW)
[7] technique where the client proves that it has done some
work, by solving medium to hard puzzles, in return to get the
needed resources from the server and to prove its legitimacy
[8,9].

II. RELATED WORK

A. Client Puzzling

Client Puzzling is a protection technique, characterized by
its capability to be integrated into any web application with
minimal alterations to the infrastructure and software
components. Dwork and Naor were the first people to suggest
the use of client puzzles to limit the junk email [10,11]. But
unfortunately, client puzzling has its shortcomings for
adversaries with parallelization capabilities, or legitimate flash-
crowds [8].

B. Puzzles Difficulty Calculations

The puzzle difficulty can be determined based on the server
load, the client behavior or just fixed difficulty [8]. In cases
where the difficulty is based on the server load, the puzzle
difficulty increases as the server runs out of resources
regardless of their maliciousness. That’s why it is the worst for
the legitimate clients. It’s better to determine the puzzle
difficulty based on the client’s behavior to penalize the
attackers by giving them harder puzzles than the normal
clients. Yet, this will require the server to track the client’s
behavior by using client identifying information, such as the
client’s IP address or the assigned nonce tokens. In the fixed
difficulty all the clients are not required to solve a puzzle.
However, when the server resources are occupied above a
certain threshold, all the clients receive a puzzle with a pre-
defined fixed difficulty.

C. KaPoW

KaPoW is a PoW based technique, implemented as
libraries and can be used by the web applications to enhance
the performance of anti-spam techniques such as: Captcha and
spam filters [13].

There are two implementations for using KaPoW to protect
the web content:

 KaPoW Apache module known as Mod_KaPoW. It is
an Apache2 module which is almost transparent for the
application. It embeds the puzzling and the solver
mechanism in a way that changes the application on-
the-fly [14,15].

 KaPoW plugin which is a PHP library that allows the
puzzles to be embedded in the HTML tags, solved by
JavaScript and verified by a server-side component
[16]. Two existing applications for KaPoW plugin are
KaPoW webmail filter and KaPoW anti-spam filter.

KaPoW calculates the puzzle difficulty based on multiple
metrics. The total score is calculated by summing all the
metrics’ scores:

Score = S1 + S2 + ...Sn (1)

where n is the number of used metrics. The user will
receive a puzzle with difficulty (Dc) based on his score. The
difficulty is calculated using:

Dc = m × (score)
n
 (2)

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

320 | P a g e

www.ijacsa.thesai.org

where m is an arbitrary empirical constant [16].

D. KaPoW Modules

As any client puzzling system, KaPoW plugin consists of
three components: the puzzle issuer and verifier at the server-
side and the puzzle solver at the client-side. The issuer
generates the puzzle and delivers it to the client. After the
client receives the puzzle, the solver generates random
solutions to these puzzles until a correct solution is found and
sent to the server. Finally, the verifier accepts or rejects the
solutions, sent to the server, based on their correctness,
legitimacy and freshness [16]. Fig. 1 describes the system
architecture of KaPoW Guestbook. The same architecture is
followed in the proposed models.

E. KaPoW Guestbook

KaPoW Guestbook [13] is an open source project under
GPLv2 License and implemented in PHP. It solves the
modified time-lock puzzles using a JavaScript solver which is
called via AJAX which allows solving the puzzle in the
background.

KaPoW Guestbook can be integrated in any application
because of its modularity; which makes it easy to add after the
application is already developed; there is no need to make
changes in the core modules of the applications.

KaPoW Guestbook’s browser side displays the comment
form to the user asking him to enter his name, e-mail, comment
and IP address. Then the user submits the form, and a new
puzzle is requested.

 When the server receives a request for a new puzzle, it
invokes SpamAssassin to detect if the contents contain any
spam data. Then the server checks the blacklists and returns the
threat score. The difficulty (Dc) is calculated based on (2).
After calculating Dc, the server nonce and the difficulty are
returned as a response to the JavaScript. The client tries to
solve a hash function using the information sent by the server.
Finally, when the answer is found, the client submits it to the
server. If the server verifies the answer is correct, it’ll accept
the new message and will display all the messages, otherwise it
will reject the submission and will only display the old
messages.

III. PROPOSED MODEL “DDOS_KAPOW”

Client Puzzling has proven its capability and efficiency at
defending DoS and spam attacks, that’s why we decided to
apply it to defend against DDoS attacks.

After examining the KaPoW_Guestbook open source code,
some discrepancies were found that prevented the code from
running. So, we solved the problem with the SpamAssassin and
to save bandwidth, we applied caching on the message content.
Also, to make the code run, we replaced the blacklists used by
the authors, by “DShield Blacklist” because they didn’t exist
anymore.

KaPoW Guestbook’s original implementation was done
using two metrics Spam filter and IP Blacklist to detect the
presence of Forum Spam attacks. “DDoS_KaPoW” is an
implementation of KaPoW Guestbook, it uses the same
architecture but with some enhancements made on the

individual modules and the used metrics to adjust them to the
setup environment and to defend DDoS attacks instead of spam
attacks.

We modified the user interface and the core engine using a
Resource Intensive Operation “RIO” (some calculations in the
background which makes the post message action does some
processing) to simulate the CPU intensive operation. We
substituted the spam filter metric by the processor load since it
is known as one of the most important factors indicating the
presence of a DDoS attack. Since DDoS_KaPoW focuses on
the freshness of the client puzzles, we made the nonce Nc
random for each request and it is submitted with the answer for
verification instead of being constant like in KaPoW
Guestbook. The constant Nc in KaPoW Guestbook will allow
the attackers to generate multiple requests using the same
answer. We added the capability to enable and disable the
Client Puzzling which will help us in the evaluation of the
models. We also added an internet connectivity check because
of the regularly updated services which require an internet
connection e.g. blacklist.

Finally, DDoS_KaPoW checks if the user is an attacker by
checking the processor load and the IP blacklist. If the
processor load is higher than a predefined threshold, the score
is increased by 8. If the user’s IP address exists in blacklist, the
score will increase by 5. At the end, the puzzle difficulty is
calculated using (2).

Fig. 1. System Architecture of KaPow Guestbook

IV. PROPOSED MODEL “Z-POW”

This proposed model describes enhancement options to
mitigate application DDoS attacks based on the previous
work’s deficiencies taking into consideration the various
dependent and independent variables, the nature of problem at
hand and the technological environment limitations. It is called

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

321 | P a g e

www.ijacsa.thesai.org

Zombie Proof of Work or “Z-PoW”. Due to the vulnerabilities
found in the old techniques, Z-PoW combines the
effectiveness of anti-spam defense and anti-DoS defense to
defend against DDoS.

Z-PoW is a mutation of the client puzzling implementation
in Mod-KaPoW and KaPoW plugin. It combines the concept of
the client’s maliciousness score and the equation needed to
calculate a combined score from these metrics taken from the
DoS protection in Mod-KaPoW, in a framework similar to that
used in KaPoW plugin. However, Z-PoW proposes multiple
new metrics to detect DDoS.

A. Architecture

Fig. 2 displays the flowchart of Z-PoW’s browser-side. At
the beginning, the browser reads the puzzle from the server.
After that, the browser generates a possible puzzle solution. If
this solution is incorrect, it will try another one. But if the
solution is correct, it will read the operation argument and will
send it to the server along with the difficulty and the answer. If
the operation is not complete, an error message, received from
the server, will be displayed.

0 displays the flowchart of Z-PoW’s server side. The server
reads the operation which can have three values: “null”,
“preview” and “submit”. If it’s “null”, it’ll display all the old
operations. On the other hand if it’s “preview”, it will first
check whether the client puzzling is switched on or off. When
the client puzzling is off, it will only make the difficulty equal
to zero. But when the client puzzling is on, the score is
initialized by zero. Then the server does several checks to
calculate the score based on different metrics. These metrics
check if the request is coming from The Onion Router (ToR),
is a referrer, is blacklisted, is not permitted in the country, is a
proxy, is a user agent or is the processor high, then the score
will increase if one or more of the metrics is true by 1, 6, 5, 4,
1, 1 and 8 respectively. When the calculated score is less than
the threshold, the difficulty will be equal to zero. But when the
calculated score is higher than the threshold, the server will
return a puzzle with a calculated difficulty. Finally, when the
operation is “submit” and the client puzzling is on, the server
will read the IP address, the answer, the difficulty and the
operation. The server will also generate a puzzle based on the
IP address and the given difficulty. After that, it validates the
answer. In case the answer was wrong, an error message is
displayed. However when the answer is correct, the operation
is executed and the argument is saved.

B. Attack Identification Metrics

Based on [4,13,16,19], many factors were identified to help
indicate the presence of a DDoS attack or that the user is
potentially an attacker. The following factors are used as the
puzzle metrics based on their disadvantages and their difficulty
of implementation.

Fig. 2. Z-PoW's Browser Side

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

322 | P a g e

www.ijacsa.thesai.org

Fig. 3. Z-PoW's Server Side

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

323 | P a g e

www.ijacsa.thesai.org

TABLE I. METRICS SCORE CALCULATION

 Metric Blacklist Processor
Geographical

Location

Referring

URL

ToR

Network

Proxy

Server

Weird User

Agent

Overhead (Network

Processing)
High Low High Low High Low Low

False Positives Medium High High Low High High High

False Negatives High Low High High High High High

Can be bypassed No No Yes Yes No Yes Yes

Probability of metric

occurrence given there is an

attack launched

Med High Med Med Med Med Med

Probability of having an

attack given that the metric is

high

High Very High High Medium Low Low Medium

Impact on normal user High High Low Low High High Low

Two of them are already used in DDoS_KaPoW: the
existence of client’s IP address in a blacklist and the increase in
the server processing load. Other factors are used like using the
client’s geographic location to identify the clients who
wouldn’t normally access the server. Also, the absence of the
referring URL indicates that this client is most likely a bot or a
malicious user. If the request is originated from a bot then the
user agent will probably have a signature which is known as
one of the bad user agents. Although, in real life, the normal
clients can use anonymizing networks, such as ToR and Proxy
for privacy, but still the malicious users can exploit them to
launch an attack.

C. Maliciousness Score Calculation

After selecting the metrics used to identify the presence of
a DDoS attack, we established some factors to measure the
effectiveness of each metric and assign its score. These factors
are the processing overhead, false positives, false negatives,
how difficult the metric can be bypassed, the probability of its
occurrence, the accuracy of the metric and finally the negative
impact on the normal clients as shown in . We gave each
factor a score based on its variability. At the end, the score and
the difficulty are calculated based on equations (1) and (2).

D. New Modules

In order to apply the new metrics, we integrated the
proposed models with third party services and libraries like
Windows Management Instrumentation (WMI) objects to
calculate the processor load. We also integrated Z-PoW with
DB-IP database to determine the client’s geographic location, a
referrer anomaly detector, ToR and Proxy detection libraries
and finally a user agent anomaly detector.

E. Attack Simulation

During the implementation of the DDoS attack simulation,
there was a problem with the browser automation because of
its limitation of maximum number of simultaneous requests to
the same domain. We tried many solutions like different
browser profiles, different browsers instances using Selenium,
different webdrivers using Python-Selenium Library,
JavaScript to Python engine and Virtual machine with BeEF.
But still all these solutions were neither satisfying nor feasible
to solve the problem. At the end, we used a command line
standalone JavaScript engine “PhantomJS” to conduct the
attack simulation

We simulated the malicious user agents and proxy headers
by injecting custom user agent and proxy randomly from the
code. We added a module to select randomly from a list of the
source IP addresses and feed it to both the simulated source IP
header and the proxy header to simulate the clients behind a
proxy. Also, we handled the case of unsolved puzzle, such that
the operation will be discarded and the user’s browser will
have to request a new puzzle to solve (Retrying Request).

V. EXPERIMENT SETUP

A. Network Setup

To build the network, we used 5 machines: one machine
acting as a server and 4 machines serving as clients (good and
malicious). The server machine has 4GB RAM with Windows
8.1. The clients’ machines: one has 1GB RAM with Windows
7 Ultimate; one has 3GB RAM with Windows 7 Professional;
one has 2GB RAM and Windows 7 Starter and one with 4GB
RAM and Windows 7 Ultimate. We built the network using an
8-port 100 Mbps desktop switch and straight through Ethernet
cables.

B. Software Setup

On the server machine, we used XAMPP v3.2.1. Also, PHP
v5.4.19 and Apache v2.4.4 were used. We used NetBeans IDE
and xDebug to run all the models. Finally, to execute the
simulation consoles remotely, we mounted the network drives.
The server is designed to give priority to malicious users over
normal ones. So as suggested in [14], we applied the limitation
of accepting 4 clients simultaneously in DDoS_KaPoW and Z-
PoW using Multi-Processing Modules “MPM” parameters.
Also, we changed “PHP.ini” parameter to control the
maximum execution time and adjust the default value from 30
to 80 seconds.

C. Simulation Assumptions

When the good and the malicious requests are sent; we
send the good requests from one client machine using 2
consoles; except during experiment 1 and 2, we only use 1
console since the number of the good requests is very small.
On the other hand, we send the malicious requests from the
other clients’ machines through 5 consoles. But when we only
send good requests, they are distributed among all the clients’
machines using 5 consoles on each. No requests are sent from
the machine acting as the server. We used 900 seconds (15
minutes) as a threshold after which any request will be ignored

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

324 | P a g e

www.ijacsa.thesai.org

because it’s not feasible for an attacker to wait all that long for
a single request; it’s easier for him to launch a new attack.

VI. RESULTS AND ANALYSIS

We have made various tests to measure the efficiency of
the proposed models, and we have altered many variables to
evaluate them in different environments and capture their
performance. These tests aim to reveal the benefits and
overheads of using client puzzling to defend against DDoS
attacks. We conducted 10 experiments; each experiment
consists of 6 tests. TABLE II and TABLE III display the
different experiments and tests applied to test the setup and the
behavior of the models under different environments and
conditions.

While running the experiments, we noticed that a
considerable amount of time was spent to process the good
requests when the client puzzling is on. This wasn’t desirable
and affected the aim of the models. This amount of time was
caused by the lookup for the ToR network. We removed this
metric which saved a lot of time such that the average time
taken by the requests during the presence of the ToR metric is
triple the average response time during its absence.

A. Client Puzzling on vs off

We can conclude from Fig. 4 and Fig. 5 that the average
response time of the good requests during tests ON/V/G and
ON/F/G is higher than test OFF/G. This makes perfect sense
because this gap represents the time taken to check the user
maliciousness; it’s the cost of security. We can also observe
that the average response time of the good clients during test
ON/V/G is almost the same as test ON/F/G with very few
tweaks.

From Fig. 6 and Fig. 7, we can conclude that both models
have almost the same behavior with very few differences,
when only good requests are sent, whether the puzzle difficulty
calculation was varied or fixed. Furthermore, the average
response time in both models is directly proportional to the
total number of requests. In Test OFF/G, the puzzle difficulty
remains zero, throughout all the experiments in both models, as
the client puzzling is switched off. During test ON/F/G, the
difficulty also appears to be zero since the good clients’
requests never exceeded the predefined threshold. Based on
TABLE IV, in Test ON/V/G, the client will receive a puzzle
difficulty with either zero or 131072 in Z-PoW and 32 in
DDoS_KaPoW. These numbers ‘131072’ and ‘32’ refer to the
difficulty calculated based on equation (2) when there is a high
load processing on the server and the score is substituted by the
processor load score which is 8 as mentioned in section IV.
There are some exceptions in Test ON/V/G where the
difficulty is zero like in Z-PoW’ experiments 1 & 2 and
DDoS_KaPoW experiments 1, 2 ,3 & 4. These exceptions are
due to the small number of the sent requests such that it didn’t
affect the server processor.

TABLE II. DIFFERENT TESTS USED

Test
Client Puzzling

on/off

Client Puzzling

varied / fixed

Good or/and

malicious

Clients

OFF/G OFF - Only Good

ON/V/G ON Varied Only Good

OFF/GM OFF -
Good &

Malicious

ON/V/GM ON Varied
Good &

Malicious

ON/F/G ON Fixed Only Good

ON/F/GM ON Fixed
Good &

Malicious

Either in Z-PoW or DDoS_KaPoW, all the requests coming
from the good clients, with or without the client puzzling,
received a response. There weren’t any requests dropped even
when the total number of requests was increased four times.

B. Varied Puzzle Difficulty Calculation

In reference with Fig. 8 and Fig. 9, in both models during
Test OFF/GM, the average response time of the malicious and
the good requests are close to each other.

On the other hand, in Test ON/V/GM, the average response
time of the malicious requests is way greater than the average
response time of the good ones. Sometimes, the average
response time of the malicious requests is 25 times the average
response time of the good ones. This proves that the client
puzzling enhanced the good users’ experience and punished the
malicious clients by giving them complex puzzles and hence
delaying the response of their requests.

TABLE III. NUMBER OF CLIENTS DURING DIFFERENT EXPERIMENTS

Exp.#

Number of requests

(good clients only)

Number of requests (both good

and malicious clients)

Good Good Bad

1&2 280 25 255

3&4 560 50 510

5&6 1100 100 1005

7&8 2200 200 2010

9&10 4400 400 4020

Fig. 10 shows that during Test ON/V/GM, Z-PoW’s
performance is better than DDoS_KaPoW because the average
response time of the malicious clients is very high in Z-PoW
while it’s slightly higher than the average response time of the
good ones in DDoS_KaPoW.

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

325 | P a g e

www.ijacsa.thesai.org

Fig. 4. Z-PoW's Average Response Time during Tests OFF/G, ON/V/G and ON/F/G

Fig. 5. DDoS_KaPoW's Average Response Time during Tests OFF/G, ON/V/G and ON/F/G

Fig. 6. Average Response Time of Both Models during Test ON/V/G

Fig. 7. Average Response Time of Both Models during Test ON/F/G

0

50

100

150

200

250

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

OFF/G

ON/V/G

ON/F/G

0

50

100

150

200

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

OFF/G

ON/V/G

ON/F/G

0

50

100

150

200

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

DDoS_KaPoW

Z-PoW

0

50

100

150

200

250

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

DDoS_KaPoW

Z-PoW

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

326 | P a g e

www.ijacsa.thesai.org

Fig. 8. Z-PoW's Average Response Time during Tests OFF/GM and ON/V/GM

Fig. 9. DDoS_KaPoW's Average Respone Time during Tests OFF/GM and ON/V/GM

TABLE IV. THE MINIMUM AND MAXIMUM DIFFICULTY OF BOTH MODELS

DURING TEST ON/V/G

ON/V/G

Puzzle Dc

Z-PoW Dc DDoS_KaPoW Dc

Min Max Min Max

Exp. 1 0 0 0 0

Exp. 2 0 0 0 0

Exp. 3 0 131072 0 0

Exp. 4 0 131072 0 0

Exp. 5 0 131072 0 32

Exp. 6 0 131072 0 32

Exp. 7 0 131072 0 32

Exp. 8 0 131072 0 32

Exp. 9 0 131072 0 32

Exp. 10 0 131072 0 32

TABLE V displays the maximum puzzle difficulties
calculated during Test ON/V/GM. As observed, the puzzle
difficulty of the good requests during Z-PoW remained zero
through all the experiments while it reached 32 during
DDoS_KaPoW. This proves that increasing the number of the
metrics didn’t affect the processor load; on the contrary it
enhanced the good user’s experience. Finally, the puzzle
difficulty of the malicious requests in Z-PoW is way higher
than the malicious requests in DDoS_KaPoW and that’s
because Z-PoW uses 6 metrics instead of 2.

In Z-PoW and DDoS_KaPoW, no good nor malicious
requests were dropped during any experiment in Test OFF/GM
since the client puzzling is switched off. In both models, during
test ON/V/GM there weren’t any good requests dropped.
TABLE VI shows the total number of the malicious requests
sent and dropped during Test ON/V/GM for each experiment in
both Z-PoW and DDoS_KaPoW.

In Z-PoW, when the client puzzling is on, a considerable
amount of the malicious requests was dropped; even sometimes
half of the requests were dropped. The number of the requests
dropped is directly proportional to the total number of the sent
requests. On the other hand, in DDoS_KaPoW, when the client
puzzling is on, almost no malicious requests were dropped even
when the number of the sent malicious requests was increased.
So still the attackers will be able to access the server and
dominate it at the end.

C. Fixed Puzzle Difficulty Calculation

Based on Fig. 11 and Fig. 12, in both models the average
response time of the good clients, when the puzzle difficulty
calculation is fixed (Test ON/F/GM), is higher than their
average response time when the client puzzling is off (Test
OFF/GM). This is the time cost of calculating the
maliciousness score. On the other hand, the average response
time of the malicious requests in test ON/F/GM is way higher
than Test OFF/GM so both models succeeded at fulfilling their

0

100

200

300

400

500

600

700

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

OFF/GM Good Requests

OFF/GM Bad Requests

ON/V/GM Good Requests

ON/V/GM Bad Requests

0

50

100

150

200

250

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

OFF/GM Good Requests

OFF/GM Bad Requests

ON/V/GM Good Requests

ON/V/GM Bad Requests

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

327 | P a g e

www.ijacsa.thesai.org

aim which is delaying the malicious clients by giving them
harder puzzles which take more time to solve.

TABLE V. THE MAXIMUM DIFFICULTY OF BOTH MODELS DURING

ON/V/GM

ON/V/GM

Max

Puzzle Dc

Z-PoW DDoS_KaPoW

Good

Requests

Malicious

Requests

Good

Requests

Malicious

Requests

Exp. 1 0 3764768 0 12

Exp. 2 0 3764768 0 12

Exp. 3 0 3764768 0 12

Exp. 4 0 3764768 0 12

Exp. 5 0 3764768 0 32

Exp. 6 0 3764768 0 12

Exp. 7 0 3764768 32 32

Exp. 8 0 3764768 32 12

Exp. 9 0 885780 32 32

Exp. 10 0 3764768 32 12

Fig. 13 displays the average response time of the good and
the malicious requests, in Z-PoW and DDoS_KaPoW, when
the puzzle difficulty calculation is fixed (Test ON/F/GM). The
average response time of the good requests of both models is

almost the same with very few changes. Furthermore, the
average response time of the malicious requests of Z-PoW is
way higher than DDoS_KaPoW’s. So, using more metrics
helped delaying the malicious users and increasing their
average response time.

During test ON/F/GM the minimum puzzle difficulty a user
can get is 0 and the maximum puzzle difficulty, based on
equation (2), is 500000 in Z-PoW and 50 in DDoS_KaPoW
since the score used, after exceeding the predefined threshold,
is equal to 10.

Based on TABLE VII, both models succeeded at preventing
the attackers from accessing the server. Thanks to using more
metrics, Z-PoW succeeded at preventing more malicious users
and dropping their requests

D. DDoS_KaPoW vs Z-PoW vs KaPoW Guestbook

We simulated KaPoW Guestbook’s model like Z-PoW’s
except that: one machine was acting as the server and only two
client machines were used (one acting as the good clients and
the other acting as the malicious ones) since it’s a forum spam
attack. This attack was launched 3 times, each time the number
of consoles used by the attacker and the number of the sent
requests were changed as shown in TABLE VIII.

Fig. 10. Average Response Time of Both Models during Test ON/V/GM

Fig. 11. Z-PoW's Average Response Time during Tests OFF/GM and ON/F/GM

0

100

200

300

400

500

600

700

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

Z-PoW ON/V/GM Good Requests

Z-PoW ON/V/GM Malicious
Requests

DDoS_KaPoW ON/V/GM Good
Requests

DDoS_KaPoW ON/V/GM Malicious
Requests

0

100

200

300

400

500

600

700

800

900

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

OFF/GM Good Requests

OFF/GM Bad Requests

ON/F/GM Good Requests

ON/F/GM Bad Requests

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

328 | P a g e

www.ijacsa.thesai.org

Fig. 12. DDoS_KaPoW's Average Response Time during Tests OFF/GM and ON/F/GM

TABLE VI. NUMBER OF DROPPED MALICIOUS REQUESTS OF BOTH MODELS DURING TEST ON/V/GM

ON/V/GM

Malicious

Requests

Total Requests

sent

Z-PoW

Dropped

Requests

DDoS_KaPoW Dropped

Requests

Exp. 1 255 20 0

Exp. 2 255 43 0

Exp. 3 510 126 0

Exp. 4 510 196 0

Exp. 5 1005 501 0

Exp. 6 1005 430 0

Exp. 7 2010 1045 0

Exp. 8 2010 1094 0

Exp. 9 4020 2418 2

Exp. 10 4020 1628 1

TABLE VII. NUMBER OF DROPPED MALICIOUS REQUESTS OF BOTH MODELS DURING TEST ON/F/GM

ON/F/GM

Malicious

Requests

Total Requests

sent

Z-PoW Dropped

Requests

DDoS_KaPoW Dropped

Requests

Exp. 1 255 33 0

Exp. 2 255 39 10

Exp. 3 510 243 16

Exp. 4 510 184 9

Exp. 5 1005 704 24

Exp. 6 1005 636 45

Exp. 7 2010 1628 678

Exp. 8 2010 1611 724

Exp. 9 4020 3629 1502

Exp. 10 4020 3448 1539

0

100

200

300

400

500

1 2 3 4 5 6 7 8 9 10

OFF/GM Good Requests

OFF/GM Bad Requests

ON/F/GM Good Requests

ON/F/GM Bad Requests

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

329 | P a g e

www.ijacsa.thesai.org

Fig. 13. Average Response Time of Both Models during Tests ON/F/GM

TABLE VIII. PERCENTAGE OF DROPPED REQUESTS IN DDOS_KAPOW, Z-POW AND KAPOW GUESTBOOK DURING TEST ON/V/GM

Exp.#

DDoS_KaPoW

(5 consoles)

Z-PoW ON/V/GM

(5 consoles)

KaPoW Guestbook

ON/V/GM

(2 consoles)

KaPoW Guestbook

ON/V/GM

(5 consoles)

KaPoW Guestbook

ON/V/GM

(1 console)

Total

malicious

% of

Dropped

Total

malicious

% of

Dropped

Total

malicious

% of

Dropped

Total

malicious

% of

Dropped

Total

malicious

% of

Dropped

1 255 0% 255 7.84% 250 0.80% 140 5% 140 10.71%

2 255 0% 255 16.86% 250 3.20% 140 2.85% 140 9.28%

3 510 0% 510 24.70% 510 20.50% 280 10.71% 280 33.57%

4 510 0% 510 38.43% 510 21.56% 280 5.71% 280 20%

5 1005 0% 1005 49.85% 1000 50.90% 550 23.09% 550 52.36%

6 1005 0% 1005 42.78% 1000 50.80% 550 25.81% 550 53.45%

7 2010 0% 2010 51.99% 2000 68.05% 1100 50.63% 1100 65.90%

8 2010 0% 2010 54.42% 2000 66.55% 1100 50% 1100 68.36%

9 4020 0.04% 4020 60.14% 4000 74.50% 2200 70.22% 2200 74.86%

10 4020 0.02% 4020 40.49% 4000 57.37% 2200 51.13% 2200 57.18%

TABLE VIII shows the percentage of the dropped
malicious requests in each experiment when the client puzzling
is on during the simulation of Z-PoW, DDoS_KaPoW and
KaPoW Guestbook. As listed, the client puzzling dropped
more malicious requests and defended DDoS attack better
when the number of used metrics was increased. Almost both
Z-PoW and KaPoW Guestbook have the same behavior with
slightly differences which indicates that the client puzzling
algorithm has comparable performance in defending against
both DoS and DDoS, but it needed more metrics to defend the
DDoS attacks.

VII. CONCLUSION

DDoS attacks are still considered a big threat for big
companies. Although there is no 100% security but the client
puzzling has proven its capability and efficiency to thwart
DDoS attack through punishing the malicious clients without
affecting the normal clients.

Z-PoW, is like KaPoW Guestbook, can be integrated in any
application because of its modularity. It also investigates a lot

of metrics to prevent the DDoS attackers from accessing the
server. No good requests were dropped by applying the client
puzzling which satisfies Z-PoW’s goal.

Although the results of the tests with fixed difficulty are
better than the tests with varied difficulty; some good clients
may accidently be misinterpreted as malicious ones, hence
suffer more receiving very hard puzzles.

Unfortunately Z-PoW has some deficiencies. One of them
is that some normal users, who are using an automated tool or a
plugin to block the referrer in the browser, will be considered
as attackers because there won’t be a referrer in the URL.
Another flaw is the overhead added by the IP-to-country
library because of the duplicate cache entries. Finally when a
client has to retry a solution for the puzzle, the time taken to
get a reply will be calculated from the second request sent, not
from the first one.

VIII. FUTURE WORK

In order to make the malicious clients suffer more, the
difficulty of their puzzle can be scaled up exponentially while

0

100

200

300

400

500

600

700

800

900

Exp 1 Exp 2 Exp 3 Exp 4 Exp 5 Exp 6 Exp 7 Exp 8 Exp 9 Exp 10

Z-PoW ON/F/GM Good Requests

Z-PoW ON/F/GM Malicious Requests

DDoS_KaPoW ON/F/GM Good
Requests

DDoS_KaPoW ON/F/GM Malicious
Requests

(IJACSA) International Journal of Advanced Computer Science and Applications,

 Vol. 7, No. 6, 2016

330 | P a g e

www.ijacsa.thesai.org

the difficulty for well-behaved clients scales down linearly as
suggested in [8]. Or the bad clients can be blocked after
multiple spikes.

The look up of the nonce can be enhanced by using the
counting bloom filters. The detection of the users coming from
a ToR network or behind a proxy could be also enhanced,
especially the ToR because it consumes a lot of time which is
not effective.

In Z-PoW, we investigated the processor load using a
Yes/No check. But in the future, a variable score can be used
based on the load which will help detect a DDoS attack earlier.

The attackers can be simulated to be more sophisticated and
by using General Processing Unit (GPU) cracking to facilitate
solving the puzzles and compare the results with the normal
clients.

Finally, Z-PoW can be enhanced by combining a Trust
Model with the client puzzling. To cope up with everyday
changes, Z-PoW needs to be compatible with HTML5 and
IPv6. Also, DShield API changes need to be applied once they
are done.

REFERENCES

[1] S. Mansfield-Devine, "DDoS: threats and mitigation," Network Security,
pp. 5-12, December 2011.

[2] D. J. Nazario, "DDoS attack evolution," Network Security, 15 July 2008.

[3] T. L. a. D. H. Steven Simpson, "Identifying legitimate clients under
distributed denial of service attacks," in Fourth international conference
on network and system security, 2010.

[4] D. D. C. a. S. Landau, "The problem isn't attribution, it's multistage
attacks," in ACM Re-Architecting the Internet Workshop (ReArch),
Philadelphia, 2010.

[5] M. Yoon, "Using whitelisting to mitigate DDoS attack on critical internet
sites," IEEE Communications Magazine, July 2010.

[6] M. M. a. J. C. M. Ellie Bursztein, "Text-based CAPTCHA strengths and
weaknesses," in Proceedings of the 18th ACM conference on Computer
and Communications Security, Chicago, illinois, USA, 2011.

[7] D. L. a. L. Camp, "Proof of work can work," Fifth Workshop pn the
Economics of Information Security, 2006.

[8] P. N. a. J. L. Tuomas Aura, "DoS resistant authentications with client
puzzles," 8th International workshop on Security Protocols, pp. 170-177,
April 2000.

[9] P. M. N. P. S. a. B. W. Liquin Chen, "Security notions and generic
constructions for client puzzles," Mitsuri Matsui, editor, Advances in
Cryptology - Proceedings ASIACRYPT 2009. LNCS, Springer (2009),
vol. 5912, pp. 505-523, 2009.

[10] D. S. A. C. a. H. L. Suriadi Suriadi, "Defending web services against
denial of service attacks using client puzzles," in IEEE ICWS
"International Conference on Web Services", 2011.

[11] D. D. a. A. Stubblefield, "Using client puzzles to protect TLS," in 10th
conference on USINEX Security Symposium, Washington, 2011.

[12] J. J. O. F. R. S. D. J. a. C. A. G. Jeff Green, "Reconstructing hash reversal
based proof of work "PoW" schemes," in LEET'11 Proceedings on the
4th USENIX conference on LArge-scale exploits and emergent threats,
Boston, 2011.

[13] D. a. W.-C. F. Tien Le, "KaPoW plugins: protecting web applications
using reputation-based proof-of-work," WebQuality 2012, April 2012.

[14] E. K. a. W.-C. Feng, "Mod_kaPoW: protecting the web with transparent
Proof-of-Work," IEEE INFOCOM, p. 16, 2008.

[15] E. K. a. W.-C. Feng, "Mod_kaPoW: mitigating DoS with transparent
proof-of-work," in The 3rd International Conference on Emerging
Networking Experiments and Technologies (CONExT), 2007.

[16] E. K. a. W.-C. Feng, "KaPoW webmail: effective disincentives against
spam," in CEAS 2010 - 7th Annual Electronic messaging, Antiabuse and
Spam conference, Washington, 2010.

