
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

179 | P a g e

www.ijacsa.thesai.org

An Efficient Application Specific Memory Storage

and ASIP Behavior Optimization in Embedded

System

Ravi Khatwal

Research scholar

 Department of computer science

MLS University

Udaipur, India

Manoj Kumar Jain
Professor

Department of computer science

MLS University

Udaipur, India

Abstract—Low power embedded system requires effective

memory design system which improves the system performance

with the help of memory implementation techniques. Application

specific data allocation design pattern implements the memory

storage area and internal cell design techniques implements data

transition speeds. Embedded cache design is implemented with

simulator and scheduling approaches which can reduce the cache

miss behavior and improve the cache hit quantities. Cache hit

optimization, delay reduction and latency prediction techniques

are effective for ASIP design. The design functionality is simply

specifying the tradeoff among various design metrics like

performance, power, size, cost and flexibility. ASIP behavior and

memory storage area optimized for low power embedded system

and implements cycle time with effective scheduling techniques

which implements the system performance with low power

consumption.

Keywords—Memory design; Compiler; Processor design;

Scheduling Techniques; Memory storage

I. INTRODUCTION

Embedded systems uses some specific constraints such as
Real time design metrics are a measurement of application
features such as Cost, Size, Power and High Performances.
Reactive and real time required to implement our system
environments and computed application results in real time
without any delay [Fig. 1]. Currently embedded system
designer are being designed on a silicon chip and also design
for critical applications like killer application (smart phone),
smart card, video game, mobile internet, handheld embedded
system, GBPS device, gigabyte per second LAN system.
Embedded design technologies used to improve the design
technology to enhance productivity has been a focus on
software and hardware design mechanism.

In HLS design mechanism, Xilinx simulator software is
used to verify all the functionality and timing custom
peripheral design architecture [18, 20]. ASIP design used to
implement the functional unit may then either be integrated on
a chip or implements peripheral devices. Profiler is effectively
used in Pre-allocation memory design and implements pre-
allocation based execution delay time. Recently a memory
implementation technique is attracting strong research interest
in ASIP. ASIP is a heterogeneous platform composed of
programmable processor core and used customized hardware

environments [1, 2, 3]. ASIC architecture is not flexible for
specific application design architecture. DSP processor is also
flexible and fully programmable; it can’t achieve high
performance with low power consumption and not suitable for
various complex application development mechanisms.

VLIW processor unit require compiler support and VLIW
architecture is characterized by instructions such that each
specifies several independent operations. This is compared to
RISC instructions that typically specify one operation and
CISC instructions that typically specify the several operations
with sufficient registers, A VLIW machine can place the
results of speculative executed instructions in temporary
registers. The level of sophistication in VLIW compiler is
significantly higher.

The heterogeneous vector width method use to expose the
heterogeneous vector widths for VLIW ASIP [10, 13].
Effective automation is analyzed for VLIW ASIPs. The lower
bound latency is effective for VLIW ASIP. Latency bound
mechanism implements the data transfer delays [9]. By the
help of these approaches a window data flow graph and lower
bound deign mechanism reduce the delay penalties due to
operation serialization or data transfer mechanism.

An effective emulation tool chain designed for ASIP
design architecture [5]. The FPGA based emulator is
alternative to pure software cycle-accurate simulation and this
tool chain to reduce the design exploration time [13]. Fast and
accurate processor simulator used for high performance ASIP
simulation [4] and an integrated tool chain design also
evaluated for ASIP systems [5]. ASIP architecture also design
for a Discrete Fourier transform (DFT)/Discrete cosine
transform (DCT) /Finite impulse response filters (FIR)
engine[14].

Memory data storage and operational optimal delay
frequency analyzed according application computational
conditions. Embedded process system analysis is presented in
the next section. Section 3 and 4 represents the application
specific data storage and data storage is effectively optimized
in memory system. Last section represents application specific
data storage in ASIP system and implements system
performances with various techniques such as delay reduction,
latency prediction and operational scheduling mechanism.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

180 | P a g e

www.ijacsa.thesai.org

Fig. 1. Application Specific Requirements Based Embedded System Design

II. APPLICATION SPECIFIC EMBEDDED PROCESS ANALYSIS

The basic process of embedded system is implemented
with three basic mechanisms such as application compilation,
synthesis and implementation, IP based integration and test
and verification by specific simulator. By the help of this
mechanism we implement the application based embedded
systems design for low power embedded devices. In embedded
system the HLS design mechanism Memory designer used
high level language and implements behavioral specifications
into register-transfer (RT) specifications by converting
behavior on general-purpose processors to assembly code. The
memory Designer also refines the register-transfer-level
specification of a single-purpose processor into a logic
specification and finally implements machine code for
general-purpose processors and utilizes the gate-level net list.
First Compilation/Synthesis process the designer specifies
desired functionality in an abstract manner. A compiler
translates the source language into its target machine language
without having the option for generating intermediate code.
Each new machine have a full native compiler is required [Fig.
2]. The Software compiler converts a sequential program to an
assembly code, which is essentially a register-transfer code
and a system synthesis tool converts an abstract system
specification into a set of sequential programs on general and
single-purpose Processors. A logic synthesis tool converts
Boolean expressions into a connection of logic gates (called a
net list). A register-transfer (RT) level synthesis tool converts
finite-state machines and register-transfers into a data path of
RT components and a controller of Boolean equations. A

behavioral synthesis tool converts a sequential program into
finite-state machines and register transfers.

Second Libraries/IP based implementation phase is used
the logic-level library and it consists of layouts for gates and
cells. The RT-level library may consist of layouts for RTL
components, like registers, multiplexers, decoders, and
functional units. A behavioral-level library may consist of
embedded components, such as compression components, bus
interfaces, display controllers, and even general- purpose
processors. IP integration design is used to implement the
memory or various peripheral devices and integrating the
device according to our application requirements. Finally, a
system-level library might consist of complete systems,
solving particular problems, such as an interconnection of
processors, memory with accompanying operating systems
and programs to implement an interface.

Finally, Test/Verification phase we have analyzed the
functionality of the design is correct or not and checked the
mechanism with low abstraction levels to high abstraction
levels. Simulation mechanism better utilizes the testing for
correct functionality. The Logic level, gate- level simulators
provides output signal timing waveforms with a given input
signal waveform. And finally RTL level, hardware description
language (HDL) simulators used to execute the RTL-level
descriptions and provide output according to the given input
waveforms. The behavioral level, HDL simulators used to
simulate sequential programs and co-simulators connect HDL
and processor simulators to enable hardware/software co-
verification at the system level. Model simulator simulates the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

181 | P a g e

www.ijacsa.thesai.org

initial system specification using an abstract computation
model, that independently of any kind of processor technology
and these simulators verify the correctness and completeness
of the specification [Fig. 3].

Fig. 2. Design process used in embedded system

Fig. 3. Design process technology of embedded system

III. APPPLICATION SPECIFIC DATA STORAGE ANALYSIS

Application specific computation frequencies analyzed
according application behavior and their design complexity.
Various standards application benchmarks used and analyzed
the computation complexity with various critical conditions
such as higher multiplication or lower multiplication. At First
condition contains computation time O (n) loop used d n
time’s units and repeats a programming statement in n times.
Second condition contains every iteration of the loop counter
will be divided by 2 so computation designs as 2

4
=16 words

used. Third condition contains the nested loop used so
computation designs complexity as O (n

2
) and it represents a

loop executing inside loops. Fourth condition contains
operational computation complexity is O (n) loop
independently of each other. Fifth condition contains
computation complexity is O (n log n). Six condition
computation complexity is 2

N
complexity used due to loop

multiply 2 so 2
N
-1 possibility available and final condition

have computation possibility in two part O (n) and O (n
2
)

available for memory allocation area. Critical benchmark
application and their computation design complexity [Fig.4,
Fig. 5, Fig. 6, Fig. 7 and Fig. 8]. Various critical application
such as vision application, robotic memory design, mind
mapping artificial neural network based application designs
are implemented according to their computational complexity
[Fig. 9 and Fig. 10].

Fig. 4. Application specific operations frequency analysis with design

complexity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

182 | P a g e

www.ijacsa.thesai.org

Fig. 5. Patterson application design sections

Fig. 6. Cellular automation application section

Fig. 7. 3D Shepp-Logan application design section

Fig. 8. Cycle reduction application design section

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

183 | P a g e

www.ijacsa.thesai.org

Fig. 9. Basic Mind mapping application section area

Fig. 10. Basic Embedded vision application section

IV. DATA STORAGE OPTIMIZATION IN MEMORY SYSTEM

Memory blocks are important concepts from both code
generation and optimization point of view. Basic blocks play
an important role in identifying variables (data), which are
being used more than once in a single basic block. Memory
blocks analysis with various schemes such as data flow, data
allocation, data reusability, scheduling approaches and control
flow design mechanism. When the first instruction is executed,
then all the instructions in the same basic block will be
executed in their sequence of appearance without losing the

flow control of the program. The Blocking is another way of
reordering iteration in a loop and greatly improves the locality
of source code [Fig. 11 and Fig. 12]. Each memory element is
implemented with the memory array design, architecture so
block architecture design easily identify the data
arrangements. Data reusability design is implemented by a
References data storage mechanism. Matrix blocks are divided
into sub blocks or sub matrixes and column implemented
design effective reusable code design mechanism implements
a cache hit condition [Fig. 16] [19].

Data stored in memory with the Serial execution
mechanism of data elements depends upon row and column
design architecture. Memory design is implemented with
matrix level blocks architecture. In Matrix designs innermost
loop reads and writes the same elements of z and use the row
of x and column of y. Each block is designed according to the
row & column accessing scheme [Fig. 12]. The Application
based storage element is arranged in our block area and a
single row is spread among only n/E element cache lines.
When all data element is filling in the cache only n/E cache
misses occur for a fixed value index and the entire total
operation use n

2
/E. If the cache is big enough that all n

2
/E

cache lines holding column Y can reside together in the cache,
then no more cache misses [Fig. 14] occurred. Column index
implementation technique implements the repositioning of
memory data arrangements which reduces the cache misses or
data cluster and it’s easily serialize operational frequency. The
total number of misses is depending upon 2n

2
/E, half for x and

half of y. The Single processor will be computed n
2
/E

elements of Z; performing n
P
/E where operation complexity p

is changed according to application computation.

Fig. 11. Complex Cluster block analysis

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

184 | P a g e

www.ijacsa.thesai.org

Fig. 12. Block filter mechanism which Increase data probability

A. Delay reduction design optimization

The critical path would be combination logic delay plus the
logic circuits setup time, plus the clock output delay. The
critical path analysis with various nodes based
implementation. Complex memory structures have various
critical sections. Various critical paths cell delay analyzed and
combinational path delay is implemented with column based
cell architecture. Application based column design implements
cycle reduction and this design is used for data allocations
which can implement data shifting and reduce the memory
misses [Fig.16]. We have analyzed the performance based
lower and higher frequency order based access time variations
used in memory implementation mechanism [Fig. 13, Fig. 14
and Fig. 15]. The probability degree based access time pattern
implements the critical section area. Higher critical section
area has longer access time probability and it takes longer
access time [Fig. 16]. Various approaches such as scheduling,
allocation and binding pattern implements the access time and
have a low probability frequency design which reduces the
critical section area [Fig 17 and Fig. 18]. Node based critical
section is implemented the high and lower order path for
access time point of view and column implemented shortest
path have lower access time path which have global impact in
system performances.

Fig. 13. Diagonal matrix application design sections

Fig. 14. Data allocation application design section

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

185 | P a g e

www.ijacsa.thesai.org

Fig. 15. Cycle reduction application design section

Fig. 16. Data filtering according to Diagonal design mechanism

Fig. 17. Critical or non critical delay design section

Fig. 18. Lower and higher delay point based critical section analyis

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

186 | P a g e

www.ijacsa.thesai.org

B. Scheduling approaches for reduction of memory space

Scheduling techniques are required to schedule the
memory operations and operation scheduling effective
determine the memory cost area. The scheduling algorithm
will attempt to parallelize the operation to meet the timing
constraints and scheduler mechanism will serialize the
operation to meet the resource constraints [17]. Various
scheduling problem implemented with different requirement
such as time constraints, resource constraint, feasibly
constrained [19, 20]. Memory operation scheduling
implemented with three conditions such as FCFOP (First
Come First Operational), LCLOP (Last Come Last
Operational) and operational optimal degree based operational
[Fig. 19, Fig. 20 and Fig. 21]. Scheduling approaches
implement according to some conditions time, resource and
feasible levels. The max no. of time step finds the cheapest
schedule which satisfied the constraints. Lower resources find
the fastest with satisfied the constraints [Fig. 22]. Feasible
conditions decide if there exists a schedule which satisfied the
constraints or not.

Fig. 19. FCFOP scheduling

Fig. 20. LCLOP scheduling

Fig. 21. Optimal design complexity based operational Scheduling

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

187 | P a g e

www.ijacsa.thesai.org

Fig. 22. Operational optimal frequency analysis

V. ASIP BEHAVIOR OPTIMIZATION IN EMBEDDED SYSTEM

Memory optimization techniques and performance area is
determined by standards benchmark application. An
application specific memory simulation analyzed by various
simulators such as trace driven, cheetah, cache, ARM DS-5
etc. The advantages of SRAM used in programming
technology so designer reuse the chip during prototyping and
a system can be manufactured using in system programming.

In co-design technology effective memory performance area is
analyzed by various simulators. The Co-design technology of
ASIP used hardware and software implementation designs
system to achieve an effective performance in the form of
cycle count, low power consumption, latency and execution
time [Fig. 23]. The source code profiling approach easily
understands the application to guide the ASIP design
methodology.

Fig. 23. Application specific Memory Integration and Performance Area

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

188 | P a g e

www.ijacsa.thesai.org

A. Application specific profiling and compilation Overview

Profiler have used to analyze the target source programs
by collecting information on their execution based due to their
data granularity scheme [10]. Profiler implements Pre-
allocation of memory architecture and implements the
execution time of application. A memory profiler used which
implements dynamic profiling techniques to generate memory
traces [10]. Memory object is computed load/store information
for ASIP design mechanism. Micro-profiling approach also
fills the gap between source level and instruction level profiler
and implements speed and accuracy for ASIP design system
[11]. LANCE [15] is mainly intended to facilitate C compiler
design for embedded processors, so as to eliminate the need
for time- consuming assembly programming [Fig. 24].Figure
24 shows the basic framework of LANCE profiler overview
which requires profiling library, source code and instrumented
binary file for profiling. Embedded processors for which
LANCE based C compilers have been successfully built
include both RISCs and DSPs design. The implementation of
edge profiling, path profiling methods combines profiles with
in the Low Level Virtual Machine [16] compiler infrastructure
[Fig. 25]. A Codelets EXTRACTOR and RE player
implements the code isolation. Codelet is basically designed
for implementing, compiled, run and measure independently
for the original application. The ISA design require an
effectively for a fine grained profiling mechanism is based on
C compiler mechanism.

Fig. 24. LANCE Profiler in ASIP Embedded system [16]

Fig. 25. LLVM based profiling analysis [17]

B. Application specific Latency prediction

 Recently high level synthesis design is used efficient
latency prediction techniques which implements the
applications specific system performances and latency
prediction design also used in clock cycle reduction
mechanism or operational serialization. The number of time
unit’s clock cycles between initiations of stage is the latency
between them. A latency of k means that the initiation are
separated by k clock cycles. Any attempt two or more
initiations to use the same stages at the same time they will
cause a collision and collision must be avoided by scheduling
a sequence initiations stages. In state diagram mechanism we
have analyzed the function x from the initial stage
(101010101110), only five outgoing transition are possible,
corresponding to the five permissible latencies 10,8,6,4 and 1
in the initial collision vector. Similarly Free State (10101011),
one reaches the same state offer three, five or seven shifts.

When condition is n+1 or greater, all the data transitions
are redirected back to the initial states. A Collision can be
implemented them by greedy cycles. Greedy cycles from the
state diagram we can determine optimal latency cycles which
result in the MAL. There are infinitely many latencies cycles,
one can from state diagram, suppose that
(1,12),(1,4,6,8,10,12),(4,6),(4,6,8)…… are legitimate cycles
traced from the state diagram. As simple cycles are latency
cycles in which each state appear only ones. Only
(4),(6),(8),(6,8),(10,12) are simple cycles the cycles
(6,12,10,12) are a complex cycle because of its travels these
the states (101010101110) twice or more. Similarly
(4,6,4,6,8,6) is not simple it repeats the state so we need
greedy cycles is one whose edge are all made with minimum
latencies from their respective starting states. The greedy
cycles (1, 12) average latency is 6.5, which is lower than that
of the simple cycle (10, 12) is 11[Fig. 26].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

189 | P a g e

www.ijacsa.thesai.org

Greedy cycles have a constant latency which is equal the
MAL (minimal average latencies points) for evaluating
function X without causing collision the collision free
scheduling approaches is thus reduced to finding greedy
cycles from the sets of simple cycles. The greedy cycles
yielding the MAL are the suitable choice for performance
improvements. A latency sequence is a sequence of
permissible forbidden latencies between the successive task
initiations. A latency cycle is a latency sequence which repeats
the same sequence indefinitely. Repeating of the cycles that
reduces the collision between them and used the average
latency that reduces the collision. Constant cycles contain is
the latency cycles which contain only are latency value. The
average latency cycles of a constant cycle are simple the
latency itself. The target machine [RISC, CISC, and VLIW]
can deploy more sophisticated instructions, which can have
the capability to perform specific operations much efficiently.

If the target code can accommodate those instructions
directly, that will not only improve the quality of code, but
also yield more efficient results [Fig. 27]. Fixed point based
latency optimal frequency optimized according various
mechanism such as delay point and optimal operational
frequency prediction mechanism. Operational serialize means
how application computation complete the task with the least
waste of time or least waste of hardware resources. Optimal
condition is required to serialize the computational operations
so resource reducible or operational optimal condition
implements the latency design for ASIP system.

Fig. 26. Greedy cycle based LATENCY prediction analysis

Fig. 27. Memory area implemented with resources Reducible flow

mechanism and operational optimal condition

VI. CONCLUSION

Recently ASIP in our embedded system provides the
benefits of flexibility and achieving excellent performances
with low power consumption and ASIP also improves the
functionality and design complexity with retargateable
compiler technology. In real time embedded system designer
implements the processor and memory architecture according
to our application specific operational probability. ASIP
system used the target machine can deploy more sophisticated
instructions, which can have the capability to perform specific
operations much efficiently for low power embedded system.
Compilers and profiling mechanisms are also analyzed for
ASIP and implements memory area reduction technique which
improve the application execution performance. An effective
cycle time, delay and scheduling prediction mechanism is
used for memory implementation. An Efficient latency
prediction technique is designed for operational serialization
with the help of profiler and application specific
computational complexity analyzed according to profiling
execution delay time which is used in various high
performance embedded devices.

REFERENCES

[1] P. R. Panda, Nikhil D. Dutt “Data Memory Organization and
Optimization in Application Specific Systems,” In Proceedings of the
IEEE design & tests of Computers,(2001).pp.56-58.

[2] M. K. Jain, M. Balakrishnan and A. Kumar “Integrated on-chip storage
evaluation in ASIP synthesis,” In Proceedings of the 18th International
conference on VLSI design (2005).pp. 274-279. DOI:
http://dx.doi.org/10.1109/ICVD.2005.112

[3] P. Meloni, S.Pomata, G. Tuveri, S. Secchi. L. Raffo, M. Lindwer.
“Enabling fast ASIP design space exploration: An FPGA based runtime
reconfigurable prototype,” Hindawi Publication Cooperation, J. VLSI
design (2012).

[4] Z. Prikryl, J.Kroustek, T. Hruska, D. Kolar. “Fast just in time translated
simulator for ASIP,” IEEE 14TH International symposium on Design and

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=
http://dx.doi.org/10.1109/ICVD.2005.112#_blank
http://dl.acm.org/author_page.cfm?id=81313484375&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81504688628&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81502811027&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81384610963&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81100047518&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81100200662&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 7, 2016

190 | P a g e

www.ijacsa.thesai.org

diagnostics of electronic circuits and system (DDECS), 2011, pp.279-
282.

[5] P. Meloni., S. Pomata, L. Raffo, M. Lindwer “Combining on-hardware
prototyping and high level simulation for DSE of multi-ASIP system,”
IEEE Embedded Computer Systems (SAMOS), 2012, pp.310- 317.

[6] L. T. Clark, E. J. Hoffman, J. Miller, M. Biyani, Y. Liao, S. Strazdus, M.
Morrow, K.E. Velarde and M. A. Yarch. “An Embedded 32-b
Microprocessors core for low-power and high performance
applications,” IEEE J. of Solid-State Circuits 36(11), 2001, pp.1599-
1608.

[7] E. Diken, R. Jordans, H. Corporaal “Build master: efficient ASIP
architecture exploration through compilation and simulation result
caching,” IEEE 17th International Symposium on Design and
Diagnostics of Electronic Circuits & Systems, 2014, pp. 83-88.

[8] E. Diken, R.Jordans. R. Corvino, H. Corporaal, F.A. Chies. 2014.
“Construction and exploration of VLIW ASIPs with Heterogeneous
vector-width,” J. of Microprocessor and Microsystem. 2014. Vol.18, no.
8,pp.947-959.

[9] M. F. Jacome, G. D. Veeciana “Lower bound on latency of VLIW ASIP
data paths,” International conference on computer aided
design.IEEE.1999, pp. 261-269.

[10] K. Karuri, R. Leupers, “Fine grained application source code profiling
for ASIP design,” In the proceeding of 42nd design automation
conferences.2005.pp.329-334.

[11] X. Li, W. Zhou, D. Liu. “Application source code profiling for ASIP
memory subsystem design,” Procedia engineering, 2012, vol. 29,
pp..3160-3164.

[12] A. Hoffmann. T. Kogel, A. Nohl. S. O. Brarun,O. Wahlen, A.
Weiferink, and H. Meryr “A Novel Methodology for the Design of

Application Specific Instruction-Set Processor Using a Machine
Description Language”. IEEE Transaction on Computer-Aided Design
of Integrated Circuits and Systems (TCAD), 20, 11 2001. pp.1338-1354.

[13] Z. Prikryl “Fast simulation of pipeline in ASIP simulator,” IEEE
International 14th workshop on microprocessor test and verification,
2014.pp.10-15.

[14] H. M. Hassan, K. Mohammed and A.F. Shalash. “Implementation of a
reconfigurable ASIP for high throughput low power DFT/DCT/FIR
engine,” EURASIP J. on Embedded Systems, 2012.

[15] R. Leupers. “LANCE: A C Compiler Platform for Embedded
Processors. Embedded System/Embedded Intelligence,” Feb 2001.

[16] P.D. O. Castro, C. Akel, E. Petit, M. Popov, W. Jalby “CERE: LLVM
based Codelet Extarctor and REplayer for Piecewise Benchmarking and
Optimization,” J. ACM Transactions on Architecture and Code
Optimization (TACO), 2015. DOI: http://dx.doi.org/10.1145/2724717

[17] A. Mathur, M. Fujita, E. Clarke and P. Urard “Functional equivalence
verification tools in High level synthesis flows,” IEEE design and test of
computer,vol. 26,no. 4 2009,pp. 88-95.

[18] P. J. Pingree, L. J. Scharenbroich, T. A. Werne and C. Hartzell
“Implementing legacy-C algorithm in FPGA co-processors for
performance accelerated smart payloads,” In proceeding of Aerospace
conference, 2008, pp.1-8.

[19] A. Putnam, S. Eggers, D. Bennett, E. Dellinger, J. Mason, H. Styles, P.
Sundararajan and R.Witting “Performance and power of cache-based
reconfigurable computing,” In Proceeding of ISCA’ 09, 2009. pp.395-
405.

[20] J. Zhang, Z. Zhang., S. Zhou, M. Tan, X. Liu, X. Cheng, and J. Con..
Bit-level optimization for high level synthesis and FPGA-based
acceleration. In proceeding of FPGA’10,pp. 59-68.

http://dl.acm.org/author_page.cfm?id=81313484375&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81504688628&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81100047518&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
http://dl.acm.org/author_page.cfm?id=81100200662&coll=DL&dl=ACM&trk=0&cfid=616996520&cftoken=16628859#_blank
https://www.researchgate.net/profile/Erkan_Diken
https://www.researchgate.net/profile/Roel_Jordans
https://www.researchgate.net/researcher/63099017_Henk_Corporaal
https://www.researchgate.net/profile/Erkan_Diken
https://www.researchgate.net/profile/Roel_Jordans
https://www.researchgate.net/profile/Rosilde_Corvino
https://www.researchgate.net/researcher/63099017_Henk_Corporaal
https://www.researchgate.net/researcher/2048293153_Felipe_Augusto_Chies
http://dx.doi.org/10.1109/ICVD.2005.112#_blank

