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Abstract—In this paper, we present a wireless Multiple Smart 

Sensor System (MSSS) in conjunction with a smartphone to 

enable an unobtrusive monitoring of electrocardiogram (ear-lead 

ECG) integrated with multiple sensor system which includes core 

body temperature and blood oxygen saturation (SpO2) for 

ambulatory patients. The proposed behind-the-ear device makes 

the system desirable to measure ECG data: technically less 

complex, physically attached to non-hair regions, hence more 

suitable for long term use, and user friendly as no need to 

undress the top garment. The proposed smart sensor device is 

similar to the hearing aid device and is wirelessly connected to a 

smartphone for physiological data transmission and displaying. 

This device not only gives access to the core temperature and 

ECG from the ear, but also the device can be controlled 

(removed and reapplied) by the patient at any time, thus 

increasing the usability of personal healthcare applications. A 

number of combination ECG electrodes, which are based on the 

area of the electrode and dry/non-dry nature of the surface of the 

electrodes are tested at various locations near behind the ear.  

The best ECG electrode is then chosen based on the Signal-to-

Noise Ratio (SNR) of the measured ECG signals. These 

electrodes showed acceptable SNR ratio of ~20 db, which is 

comparable with existing tradition ECG electrodes. The 

developed ECG electrode systems is then integrated with 

commercially available PPG sensor (Amperor pulse oximeter) 

and core body temperature sensor (MLX90614) using a 

specialized micro controller (Arduino UNO) and the results 

monitored using a newly developed smartphone (android) 

application. 

Keywords—wireless body area networks; body-worn sensors; 

ECG; core body temperature; oxygen saturation level (SpO2); 

biosensor integration; m-health 

I. INTRODUCTION 

The rapid growth of wireless technologies brings new 
innovative ideas that enables continuous real-time remote 
patient monitoring in healthcare services using compact 
wireless body sensors. The services and technologies provide 

relatively uncontroversial, well-communicated and monitoring 
devices, developed to give more affordable solutions 
specifically for mobile healthcare, such as daily activity 
monitoring, personal healthcare and monitoring systems, and 
body sensor systems that can alert the clinicians via the 
patients’ mobile phones. New trend in remote patient 
monitoring is moving toward the use of personal mobile 
devices compatible with multiple biomedical sensors using 
wireless communication, such as Bluetooth and Zigbee [1]. 

In practice, this recent mobile health (m-Health) technology 
enables to see the people’s daily activity in their smartphones. 
In addition, these mobile-based portable embedded devices 
will provide platforms to monitor their critical physiological 
data continuously and remotely. An assessment report has been 
prepared for the European Union regarding the effectiveness of 
m-Health in biomedical applications and the diagnosis of the 
diseases in 2013. According to this report, m-Health 
applications could save €99 billion in healthcare costs in the 
EU and add €93 billion to the EU GDP in 2017, if its adoption 
is encouraged [2]. 

An integrated wearable monitoring system, which aim to 
bring compact body sensors such as electrocardiography 
(ECG), blood pressure, photoplethysmography (PPG), core 
body temperature (CBT), heart rate, pulse oximetry, and EEG 
together forms the concept of a wireless body area network 
(WBAN) or personal area network (PAN) and displays the 
physiological signals on a monitoring device.  One of the 
benefits that PAN systems bring is the ability to integrate 
multiple intelligent sensors, wireless connectivity and a battery 
into a wearable patch unit that sends the physiological data to a 
mobile device. Figure 1 indicates the concept of a typical 
WBAN where the general tasks of the electronics designer are 
compactness, integration of body sensors and wireless 
connectivity, including a telemedicine system, which can alert 
a clinician when life-threatening changes occur or to provide a 
feedback to the patient to help maintain an optimal health 
status using Cloud health services. 
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Fig. 1. Typical personal health system with integrated sensor network 

(wireless body area network) 

Here, we examine a continuous, wearable and wireless 
critical-sign patient monitoring system which was focused on 
integrating ECG sensors placed behind the ear; CBT sensor 
placed in the ear; and PPG sensor clipped on the finger. The 
reason for choosing the ear as a location in these experiments is 
that it makes possible to measure ECG and CBT together with 
subject comfortless of ECG monitoring. Behind the ear region 
has less hair than chest and non-hair regions give more 
suitability for long term use of ECG monitoring. Moreover, the 
preparation of skin will not be a necessity and it will not be 
difficult to remove the sensors that bring a user-friendly 
perspective to the patients and clinicians. 

 
Fig. 2. (a) the typical 3-lead ECG monitoring system; (b) ear-tympanic 

device to measure core body temperature; (c) the reflective PPG sensor to 

measure blood oxygen saturation (SpO2) and heart rate 

This paper aims to advance the ambulatory ECG treatments 
by proposing a wearable behind-the-ear smart sensor that 
transmits integrated physiological data wirelessly to a 
smartphone and monitors ECG, CBT, heart rate and SpO2. 
Since most conventional systems take each data separately and 
from different locations on the body (see in Figure 2), the 
proposed work based on ear-lead ECG monitoring integrated 
with the multisensory system is important for many reasons. 
Firstly, this is the first attempt of ear-lead ECG monitoring to 
be integrated with two other body-sensors, PPG and tympanic 
sensors to measure heart rate, SpO2 and CBT respectively. 
Secondly, a smart sensor system is developed that facilitates 

sensor integration by sealing into an ear mold. Thirdly, the 
collected health data in the microcontroller unit (MCU) are 
wirelessly transferred to an Android smartphone and an 
application is written to display ECG, CBT and PPG data. 
Another aim of this paper was to investigate ECG signals when 
different types of electrodes (gel and dry electrodes) have been 
placed on different locations on the body, such as chest, ear 
and arm regions. Moreover, this design is less disrupted by 
motion artifacts for ear-lead ECG monitoring when compared 
to the previous work which is done by Da He [27] using two 
ECG sensors. In the future, this option not only gives flexibility 
to the patient, but also can give the clinicians to access the 
physiological data in real time via online access from personal 
healthcare records. 

The remainder of this paper is organized as follows: 
Section 2 includes related works on this topic and deals with 
the problem formulation; Section 3 explains the system 
description of the work; Section 4 illustrates experimental 
results and analysis of ear-lead ECG using different sensors 
onto the different locations of the body; and also the 
demonstrations of CBT and PPG sensors. Section 4 also draws 
the combining ECG sensing unit with the integrated CBT and 
PPG sensors, and demonstrates wireless transmission between 
integrated MCU unit and a smartphone; finally conclusion and 
discussion are presented in Section 5. 

II. RELATED WORK 

When a ubiquitous smart sensor is developed, there should 
be basic components that should be considered: easy-to-use, 
mobility, accuracy, and security. There are currently many 
ongoing researches that investigate various solutions on the 
design of wireless personal healthcare monitoring devices [3-
5]. Lee et al. developed a mobile phone based ECG monitoring 
application. The system describes the design and 
implementation of a prototype tele-health system which 
monitored physiological signals of patients in real-time [4]. 
Sanches et al. designed an electronic temperature sensor within 
a headset Bluetooth device that sends the temperature 
measurements to a mobile phone. The proposed system 
measures central body temperature continuously at the ear [6]. 
Jung et al. proposed a wireless body sensor platform called 
‘Virtual Cuff’ that comprises PPG and ECG sensors to estimate 
systolic and diastolic blood pressure (BP). The presented work 
fuses data from various sensors, including ECG, PPG, 
accelerometer, and GPS, for extrapolating BP information 
using signal characteristics that are derived from PPG and ECG 
waveforms [7]. Do Valle et al. examined [8] a behind-the-ear 
device that records EEG measurements on smartphone 
continuously and then uploads the patients’ data to a secure 
server. Song et al. developed a body monitoring system design 
based on android smartphone including three main functions 
such as brainwave capture (EEG), ECG and temperature. 
These data are gathered by hardware and sent to the Bluetooth 
receiving device of android smartphone [9]. Boano et al. 
managed to measure core body temperature (CBT) on 
ambulatory patients and exercising athletes using a wireless 
wearable device that measures the tympanic temperature at the 
ear. The CBT data is transmitted via ATmega128RFA1 chip 
based on ZigBee communication which is different from other 
studies [10]. 

(a) (b) 

(c) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 7, 2016 

411 | P a g e  

www.ijacsa.thesai.org 

The authors of [11] proposed an ultra-wearable smart 
sensor system which combines ECG, tri-axial accelerometer, 
and GPS sensors to measure normal or elderly person’s daily 
activities. This device also encompasses voice biofeedback and 
data fusion technologies in order to accommodate future needs 
and to make the smart sensor much better. The hardware unit 
of the system consists of a TI MSP430 microprocessor, 
Bluetooth wireless transmission to PC client software, micro 
SD card storage, and LCD display. The embedded algorithm 
combines two sensors for noise reduction, and utilizes voice 
biofeedback for exercise overload warning. Hernandez et al. 
demonstrated [12] that motion sensors of a smartphone can be 
used to recover heart and breathing rates of the users during 
stationary positions and activities while the smartphone was 
being carried in a bag or pocket or even during listening on the 
phone. They developed these rates from accelerometer data and 
compared them with measurements obtained with FDA-cleared 
sensors by evaluating effective accuracy numbers. Hii et al. 
presented [13] a comprehensive ubiquitous healthcare solution 
which includes a real time ECG monitoring and analyzing 
system based on an Android mobile device and also provides 
medicine care assistance. Wireless sensor network (WSN) 
technology is used in this system in order to transmit ECG data 
wirelessly from the patient’s body to a smartphone device. As 
for medicine care assistance, barcode technology is applied to 
assist out-patients in medication administration, by capturing 
and decoding the barcode on medicines using the smartphone’s 
embedded camera. 

Wahl and his co-workers designed [15] an eyeglass 
(WISEglass) that consists of inertial motion, environmental 
light, and pulse sensors, processing and wireless data 
transmission functionality and also a rechargeable battery. The 
users will be able to monitor their daily activity recognition, 
screen-use detection, and heart rate estimation, because of 
having accelerometer, gyroscope and pulse sensors in itself. 
Regarding the work in ear-worn devices, the authors in [16] 
attempted to develop probes for Heart-phone to make such an 
unobtrusive earphone to measure heart rate using PPG 
technology. According to their design, the reflective photo 
sensor is embedded into each earbud on a pair of regular 
earphones. To obtain measurements, the sensor earphones are 
inserted into the ear and positioned such that the reflective 
photo sensor is against the inner side of ear. Then they can 
measure the amount of the reflected light from the blood 
vessels in the region. Moron et al. studied [17] on the technical 
performance of medical wireless personal area network 
(WPANs) that are based on smartphones. According to their 
telemedicine prototype, an Android based smartphone acts as a 
gateway between a set of wireless medical sensors and a data 
server. They also wanted to see the differences while 
modifying the smartphone model, the type of sensors 
connected to the WPAN, the use of other peripherals such as 
GPS receiver, the impact of the use of the Wi-Fi interface. The 
authors of [18] presented a wearable monitoring system to 
measure the driver alertness, evaluated by a smartwatch device 
based on fusion of direct and indirect method. The driver 
chronic physiological state is monitored by adopting a PPG 
sensor on the driver’s finger that is connected to a wrist-type 
wearable device. A Bluetooth low energy module connected to 
the wearable device transmits the PPG data to the smartwatch 

in real-time. Lin et al. [20] proposed a wearable PPG sensor 
module based on a Programmable System on a Chip (PSoC), in 
the course of driving. It transmits measured PPG signal from 
earlobe to a smartphone via Bluetooth. On the smartphone, a 
heart rate (HR) detection algorithm is implemented. When the 
abnormal HR is detected, the smartphone uses the sound and 
vibration to warn the driver using a magnetic ring. At the same 
time, physiological data and GPS location are also be 
transmitted to a data server (healthcare server system) via the 
3G mobile network, so that the staff in the server system can 
monitor the recent information and monitor  the driver’s status. 

The brief summary of this literature review finds the use of 
the modern communication technology for data exchange 
between ambulatory patients and mobile devices by combining 
several sensors in one typical system. This is one of the key 
factors to make m-Health platform much more desirable. 
However, conventional ECG monitoring systems, mentioned in 
the literature work, are measured from the chest and require 
more than 3 sensors in some cases. While trying to get ECG 
data from the chest, it is an undesirable method to integrate 
ECG sensors with other multiple sensors on the body, causing 
complexity for the whole system. This complexity would 
increase the noise level of each sensor and also the power 
requirement for the system. In the proposed sensor system, we 
are focusing the combination of an ear-lead ECG monitoring 
with integrated CBT and PPG multisensory system for m-
health applications. In order to avoid complexities, ear-lead 
ECG method was used to avoid hairy region and easy-to -use 
perspectives. The proposed m-health application is not only a 
solution for the complexities involved in traditional of ECG 
monitoring system, but also enables an integrated and 
personalized smart device. 

III. SYSTEM DESCRIPTION 

The smart sensor platform was developed to experimentally 
combine three different body sensors and monitor regarded 
vital signals on the smartphone. The three sensors of the 
proposed system are ECG with behind the ear electrode, core 
body temperature (tympanic sensor in the ear canal), and both 
heart rate and blood oxygen saturation (PPG from the finger), 
and then the detected signals are communicated to a mobile 
client by using Bluetooth connection. The ECG and CBT 
sensors for displaying the physiological data are integrated in 
the form of an earbud. PPG sensor was attached onto the finger 
and connected to the microcontroller unit (MCU). Afterwards, 
the physiological signals are monitored on the mobile phone. 
Figure 3 shows the block diagram of the smart sensor system. 

 

Fig. 3. System block diagram 
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A. ECG Sensing Unit 

As can be seen from the block diagram, ECG and CBT 
sensors were deployed together because of leading sensors near 
the ear location, but PPG sensor is clipped onto the finger. 
Three ECG sensors in different sizes were used and tested 
using both gel and dry electrodes. Table 1 lists the properties of 
three commercially available electrodes, which were used in 
the experiments. In the proposed system, the first electrode of 
three-electrode setup was placed behind the ear; the second 
electrode was attached on the upper neck area, and the last 
electrode was placed on the arm. Initially, two types of gel 
(adhesive Ag-AgCl) electrodes were used to get ECG data 
from the ear. One of the gel electrodes was known as 
‘Covidien electrode’, which has a diameter of 24 mm, and the 
second electrode was slightly bigger, which has a diameter of 
38 mm. Both electrodes are of 1 mm of thickness. After using 
these two gel electrodes, a number of dry electrodes were 
applied to the skin to detect ECG signals. The dimensions of 
this dry electrode are 10 mm (diameter) and 2 mm (thickness). 
Figure 4 shows the photographs of used electrodes. 

TABLE I.  THE PROPERTIES OF ELECTRODES USED FOR THE 

EXPERIMENTS 

Name Type 
Size – diameter x 

thickness (mm) 

E1 Gel 38x1 

E2 Gel 24x1 

E3 Dry/Non-gel 10x2 

 
Fig. 4. Three ECG electrodes (from-left-to-right): E2, E1, and E3 (Table 1) 

B. CBT Sensing Unit 

In the proposed smart sensor system, we have used a 
thermopile sensor that is a non-contact sensor for measuring 
core body temperature (CBT). Because tympanic temperature 
directly reflects the core temperature of the carotid artery [28], 
we have proposed an ear-bud design of infrared tympanic 
sensor that can continuously measure the temperature of the 
tympanic membrane. This design connects with an MCU 
which is the core controller of the whole smart sensor system 
to perform signal processing. The thermopile sensor 
(MLX90614) [22] gives a very sensitive information regarding 
the core temperature with 17 bit ADC resolutions, thus this 
could be in some cases 0.0034 °C. Figure 5 illustrates the 
proposed design of CBT sensing unit and embedded 
thermopile sensor together. 

 
Fig. 5. CBT sensing components: (a) The proposed earphone-type infrared 

sensor, (b) infrared thermopile sensor 

C. PPG Sensing Unit 

The finger-worn PPG sensor consists of a transductor 
which initiates two LEDs and a photodiode detector. One of 

the LEDs emits red light (with a wavelength of  = 660 nm) 
and other LED performs an infrared light (with a wavelength 

of  = 880 nm). This technique is known as PPG 
(photoplethysmography) and the PPG sensor is based on the 
theory that the colour of blood range depends on the oxygen it 
contains. For instance, hemoglobin particularly reflects more 
red light and the PPG sensor detects oxygen saturation in the 
blood (SpO2). For our test-bed application regarding PPG 
sensor unit, we measured both oxygen level in the blood 
(SpO2) and heart rate together using Amperor Bluetooth Finger 
PPG sensor [24] which is shown in Figure 6. Proposed smart 
sensor system incorporates a Bluetooth connection to get heart 
rate and SpO2 from PPG sensor. 

 

Fig. 6. Bluetooth finger PPG sensor 

The analog signals from the sensors are conditioned at the 
wearable hardware unit to levels suitable for digitization and 
processing. Two stage amplification units were used with gain 
of 10 and 100 to avoid the noises overriding the ECG signals, 
which is achieved by an instrumentation amplifier, and a 
micro-power operational amplifier, respectively. The ECG 
signals are restricted in bandwidth of 0.5-100 Hz using a high 
pass and low pass filters after the first and second steps of 
amplification, respectively. The power line interference in the 
ECG signal is filtered using a 50 Hz notch filter to avoid loss 
of 50 Hz component of the ECG signals. The PPG sensor 
probe has an infrared source at 880 nm and the photodetector 
giving current output, which is converted to voltage by an 
instrumentation amplifier with gain 10 and using high and low 
pass filters between 0.5 and 20 Hz. The CBT sensing block 
consists of a calibration circuit and a high gain amplifier with 
10. The system runs from a lithium-battery (see in Figure7) 
which has a capacity of 500mAh, and lasts approximately 30 
hours, depends on working with Bluetooth as it consumes a 
significant proportion of whole power assumption. The 
prototype ear-bud device was designed in SolidWorks and 
created using a 3D printer. The design is shown in Figure 5(a), 
measures 8.5 cm within cables and sits behind the patient’s ear 
(mastoid area). The design was made using flexible unit to 
move around the ear and conform better to the ear so that it 
helps to secure the device. 

IV. EXPERIMENTAL RESULTS 

In this section, the experimental tests and results were 
demonstrated individually from ECG, CBT and PPG sensors 

(a) (b) 
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into a Matlab program. The impact of using different type of 
electrodes (gel and dry) was drawn for ECG monitoring 
system. Ear-lead ECG monitoring was compared to 
conventional chest-lead model and different scenarios were 
analysed as changing positions of ECG electrodes on the body 
to clearly see which scenario gives the best SNR and least 
noise. Furthermore, the integration of ECG, CBT and PPG 
sensors into wearable hardware unit and transmission the 
physiological data to the smartphone using Bluetooth radio 
were demonstrated in this section. 

A. ECG Experimental Results 

Figure 7 shows the experimental setup for ECG monitoring 
with wireless Android based smartphone. Figure 8a provides 
basic components of a typical ECG signal including various 
features (P, Q, R, S and T waves). A number of intervals can 
be measured and analyzed from an ECG recording. A normal 
ECG signal can give very important information regarding the 
heart status during a cardiac cycle. The time between the 
beginning of a particular point in a cardiac cycle and the 
beginning of another particular point in the next cardiac cycle 
is the interval between the beginning electrical responses of 
those particular points in the heart. For example, the heart rate 
can be measured by simply looking at R-R (beat-to-beat) 
interval, which indicates the time between two consecutive 
QRS complexes in an ECG recording. A sample ECG signal is 
shown in Figure 8b including two successive beats (R-R 
intervals and P-QRS-T complexes). This test signal is used to 
compare with corrupted ECG signals from the sensor platform. 
The SNRs of ECG signals in Table 2 are calculated by 
differentiating between each signal in Figure 7 and this test 
ECG signal, respectively. 

 
Fig. 7. Experimental device of Arduino based ECG measurement system 

with wireless smart phone monitoring 

(a) 

 

(b) 

 
Fig. 8. ECG Signal Components: (a) A typical ECG signals including P-

QRS-T morphology; (b) Test signal to be compared with the signals obtained 

from our experiments 

Figure 9 shows the placements and types of electrodes for 
ECG measurements reported in this paper. Different scenarios 
are drawn in the figure in order to see the important changes 
and what kind of challenges there are. Another aim is also to 
select the best unobtrusive scenario from the figure, according 
to ECG signal qualities, and SNR. As can be seen from the 
figure, the electrodes were placed on different locations on the 
body such as ear, chest and arm. Both the standard three gel 
Ag/AgCl electrodes and dry electrodes with different positions 
were used to measure ECG signals. 

 
Fig. 9. The locations and type of the ECG electrodes for the measurements 

(Scenarios A – F) 

All of ECG signals shown in Figure 10 were measured in 
lead I according to Einthoven’s triangle [19] using ECG 
sampling module and rebuilt in Matlab without any software 
de-noise for further study. Power consumption is critical for 
such an application as this. The system runs from a lithium-
battery (see in Figure 4) which has a capacity of 500mAh, and 
lasts approximately 30 hours, this depends on the use of 
Bluetooth module as it consumes a significant proportion of the 
available power. 

Figure 10 indicates ECG results from each electrode and 
each placement according to the scenarios which are shown in 
Figure 9. The electrodes with larger array size exhibits less 
noises due to larger skin-electrode contact area. Even the dry 
electrode provided ECG signals from behind-the-ear that was 
comparable to Ag/AgCl electrode. The figures illustrate clear 
observations of the QRS complex and T-wave cardiac signs. 
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Fig. 10. The measured ECG signals at various locations as illustrated in Fig.9 

(a) Scenario A;  (b)  Scenario B; (c) Scenario C;  (d) Scenario D; (e) Scenario 

E; (f) Scenario F 

As can be seen from Figure 9 and 10, E1 electrodes were 
applied in the measurements from (a) to (c). Figure 10(a) 
shows basic ECG measurement while two active electrodes 
were placed on the chest and one reference DRL (driven-right-
leg) electrode was attached on the waist. This is a typical way 
of measuring ECG under the rule of 3-leads ECG recording 
[26]. Figure 10(b) indicates the ECG data taken from behind-
the-ear and reference electrode was placed on the waist and 
Figure 10(c) shows the ECG signal for the same scenario as 
those in Figure 10(b) while reference electrode was placed on 

the arm instead of the waist. After that, we implemented E2 
electrodes for measuring ECG and, Figure 10(d) illustrates 
ECG data taken from the chest and reference electrode was on 
the waist. Using the same type of electrodes, Figure 10(e) 
shows the ECG data coming from behind-the-ear and reference 
electrode was on the waist. Lastly, Figure 10(f) shows ECG 
signal using dry electrodes (E3 electrode) were placed behind 
the ear; and DRL electrode was on the waist. The received 
signal is accompanied with noise; however, R peaks (the most 
dominant feature in the ECG cycle) could be identified. Figure 
also illustrates that some distortions and fluctuations have 
occurred during ECG recording due to body movements and 
taking new position of ECG electrodes. 

To further evaluate the performance of the electrodes, ECG 
signals were analyzed to calculate signal-to-noise ratio (SNR) 
using the following equation [14]: 

 SNR = 20 log(S/(S`- S)) 
where S is the filtered ECG signal with a frequency ranging 

from 0.5 Hz to 100 Hz, and S` is defined as ECG signal 
without filtering. Before calculation, the power line 
interference (50 Hz) was removed from both signals. Table 2 
summarizes the SNR of 6 different ECG results which are 
represented in Figure 10 a-f, respectively. 

TABLE II.  SNR OF ECG SIGNALS WITH DIFFERENT ELECTRODES AND 

PLACEMENTS 

Experiment 

Scenario (see Fig 9) 
SNR (dB) Response Time (s) 

Scenario A 25.21 0.85 

Scenario B 17.27 1.17 

Scenario C 12.95 1.80 

Scenario D 21.23 0.90 

Scenario E 15.34 1.25 

Scenario F 10.92 ~ 35 

As seen from the results of Figure 10 and Table 2, it is 
obvious the ECG signals from the chest (Scenario A and 
Scenario D) are the best, in terms of the detections of various 
parts of the ECG (P, Q, R, S and T) and they are less noisy too. 
Moreover, when we compared Scenario A with Scenario D or 
Scenario B with Scenario E, figures clearly show that E1 
electrodes provides better ECG waveforms in terms of noise 
than attached E2 electrodes due to larger skin-contact size. On 
the other hand, after waiting some time (longer response time 
as given Table 2) to remove unwanted distortions, the P wave 
and QRS complex can be identified in Scenario F, which is the 
most effective method because of the use of the dry electrodes. 

As the work is aimed at behind the ear electrodes for the 
benefits already mentioned previously, it is clear from the 
results, behind-ear electrodes still produces comparable signals 
and hence usable for the purpose of convenient ECG detection. 
While analyzing the concept of Scenario F, thus, dry electrodes 
are chosen for detection of ECG waveforms and integration 
with other body sensors together. 

Furthermore, we monitored ECG signals (including QRS 
complex) on an Android based smartphone including heart rate 
(HR) as shown in Figure 11(b). Android was used because of 
its widespread use and development and the software is 
portable for coding within mobile devices. Additionally, it 
allowed simplicity of integration with ECG sensors via 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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Bluetooth. We also compared our ear-lead ECG results with 
recently proposed by Da He [27] who worked to get ECG data 
using behind-the-ear device (Figure 11a). 

 

                    

Fig. 11. (a) Compared our results with Da He’s work on detecting ECG 

signals from the ear; (b) displaying our ECG data on the smartphone 

Figure 11a shows a comparison of ECG results taken from 
the ear in Da He’s work and ours. As can be seen, only R-
peaks were detected including various noises in his results; 
however, our results identify PQRS-complex and T-waves with 
less noise. The critical point here is that Da He used two active 
electrodes because of the limited skin area near the ear, thus 
DRL (reference) electrode was omitted in his experiments. 

The results reveal that the proposed gel electrode with 
reference electrode on the waist shows better signal quality and 
performance than other proposed electrodes. The table also 
indicates that once DRL electrodes placed on the waist, they 
have better SNR ratio than placed on the arm. Dry electrodes 
hold less signal quality than others, however, they still can be 
used to get ECG signal from inner ear area which is very useful 
for feasibility and interoperability issues. Response times of 
each proposed electrode shows that a similar advance with 
SNR ratio which means bigger size gel electrode gives a faster 
response. 

B. CBT Experimental Results 

Figure 12 shows the experimental device of CBT 
measurement and display of CBT results on the smartphone. 
Several analyses have been conducted on core body 
temperature during exercises to observe the changes in 

different environments (Figure 13). Researchers emphasize on 
analysis of core body temperature variations to diagnose or 
prevent serious diseases from heat illnesses. Heat illnesses can 
range from mild (e.g. heat rashes, heat cramps, etc.) to more 
severe health issues such as heat exhaustion and heat stroke 
caused by heat stress. Heat stress (hyperthermia – Temp > 37 
ºC) is a condition when an individual is exposed to moderate to 
high temperatures from physical activity and some form of 
dehydration. Symptoms include blood pressure changes, 
increased heart rate and body temperature. The core body 
temperature is between 98.6°F (37°C) and 104°F (40°C). 
Symptoms include heavy sweating, rapid breathing, rapid yet 
weak heart rate and low blood pressure. The core body 
temperature exceeds 105°F (40.5°C), with symptoms including 
dizziness, lack of sweating, rapid and strong heart rate, high 
blood pressure [29]. Therefore, it is important to check out 
CBT regularly in healthcare for prevention of heat related 
diseases. 

   a) 

 

   b)   

 

Fig. 12. (a) Experimental setup for Arduino based CBT measurement; (b) 

Monitoring of CBT results on the smartphone 

 
Fig. 13. (a) Raw CBT data taken from the ear; (b) CBT data just after 

exercise – 5 min running; (c) CBT data after walking outside in cold weather; 
and (d) final temperature data after sitting 5 mins with a thick jacket 
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Figure 13 shows four different results that were captured 
during the exercises in different ambient temperature values. 
Figure 10a indicates typical raw data of core body temperature 
which was taken from the ear without any exercise. It varies 
between 36 ºC and 36.7 ºC which is normal for a healthy 
person. We can certify that the core body temperature gets 
increased as the level of exercise gets harder, can be shown in 
Figure 13b. The temperature raised just over 37 ºC after 5 
minutes of running exercise. Figure 13c illustrates the changes 
of core body temperature against the change of ambient 
temperature. The subject was walking outside in cold and 
windy weather that had around 14 ºC ambient temperature. 
Because of decreasing ambient temperature, the core body 
temperature gets decreased to nearly 36 ºC in this experiment. 
In Figure 13d, the core body temperature was captured when 
the subject was wearing a thick jacket in the office and ambient 
temperature was around 23 ºC. Thus, the core body 
temperature was elevated to almost 37.3 ºC in some cases 
(Figure 13d). 

C. PPG Experimental Results 

Figure 14a shows a person’s PPG waveform, heart rate 
(HR) and blood oxygenation together using the finger-clipped 
PPG sensor, which is connected to a smart sensor unit via 
Bluetooth. According to the results, values of oxygen 
saturation in the blood were around 95%, and HR was around 
93 beat per minute (bpm). Figure 14b demonstrates a PPG 
measurement on a 29 year-old subject with respect to SpO2 and 
HR during the exercise. As can be seen from Figure 14, there 
were variations regarding PPG data during a 15-minute 
exercise including sitting, standing and running. Particularly, in 
the period of running, there is a sharp increasing on HR values, 
however, blood oxygenation values were decreasing. These 
data were captured and displayed on a PC. After PPG data sent 
to the smart sensor unit, it was also displayed on the 
smartphone via Bluetooth connection. 

 
                           (a)                                                           (b) 

Fig. 14. (a) Measuring heart rate and SpO2 using Amperor Bluetooth PPG 

sensor; (b) a PPG measurement on a subject during exercise using the same 
device 

D. Proposed Sensor Integration 

After digitizing and conditioning the analog signals from 
each sensor, the suitable digital physiological data are collected 

at the data acquisition hardware unit in an appropriate way. 
The whole data after being acquired by Arduino is converted in 
the form of packets and wirelessly transmitted to an Android 
based mobile phone [11]. Figure 15 indicates ECG electrodes 
placement and appearance of general prototype of performed 
body sensors, including a subject wearing the smart sensor on 
the ear. 

 

 

Fig. 15. (a) A typical set-up of the use of the proposed integrated wireless 

multiple sensors; CBT sensor was put into the earbud, and adhesive ECG 

sensors were attached onto the behind-the-ear and upper neck area; (b) 
prototype concept of Ear-lead wearable multiple sensor monitoring system 

Figure 15 shows the developed experimental set-up and 
integration of protocol of sensors. Typically, both ECG 
adhesive Ag-AgCl and dry electrodes were attached to the 
skin, respectively, to measure ECG data. Two active electrodes 
were applied to near the ear (behind-the-ear, and upper neck 
area), and one reference electrode was placed on the arm. CBT 
sensor was put into the earbud design which is also shown in 
Figure 15(b). PPG sensor was clipped on thumb finger to 
measure oxygen saturation level and heart rate. After all, the 
whole biological data coming from these three sensors are 
combined together into the Arduino hardware acquisition unit 
(Figure 15a) in suitable data packets. In the final step, the 
collected physiological data are transferred via Bluetooth 
module to an Android based smartphone and monitored using a 
newly developed app. 

E. Data Transmission and Bluetooth Connection 

Bluetooth is a very useful technology to communicate 
wirelessly in short-range applications such as exchanging data 
from short distance fixed mobile devices. With the 
characteristics of synchronization with other Bluetooth devices, 
the wireless body area network can be successfully applied. 
Our propose system uses HC-05 Bluetooth module that 
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consists of different modes in its processing system. Figure 16 
shows our Bluetooth serial module, which is paired to the 
smartphone. 

 
Fig. 16. The view of Bluetooth module while pairing with the smartphone 

As mentioned, there are different channels (ECG, CBT and 
PPG) that need to be transmitted through Bluetooth 
communication. The communication module has the capability 
to transmit data over the Bluetooth with maximum baud rate 
115,200 bps. For our system, Core body temperature (CBT) 
measurement operates at 20 Hz sampling frequency (16-bit 
samples); ECG sensor works at 250 Hz frequency range (16-bit 
samples) with 3 electrodes and PPG operating at a 30 Hz (16-
bit samples) with two photodiodes. Hence, the total data rate 
will comprise from aggregating each measured signal’s bit 
rates. The total minimum bandwidth of the system will then be: 

Baud Rate (BR) = bit rate of (CBT (kbps) + ECG (kbps) + 
PPG (kbps)) 

BR = (sampling frequency of CBT) * (Nyquist-criteria) * 
(sampling bit number) + (sampling frequency of ECG) * 
(Nyquist-criteria) * (sampling bit number) * (number of 
electrodes) + (sampling frequency of PPG) * (Nyquist-criteria) 
* (sampling bit number) * (number of electrodes) 

BR = 20 * 2 (Nyquist-criteria) * 16 + 250 * 2 * 16 * 3 + 30 
* 2 * 16 * 2 = 0.64 + 24 + 1.92 

BR = 26.56 kbps. 

The above baud rate is much less than the overall Bluetooth 
transmission baud rate, whose transmission capacity is 115.2 
kbps. Thus, the residual bandwidth would be enough to 
perform two-way handshaking and sending the bio potentials 
successfully. 

V. DISCUSSION AND CONCLUSION 

Personal healthcare applications bring a growth area for 
wearable health monitoring systems. Wearable diagnostics and 
therapeutic systems contribute intelligent medical monitoring 
devices, which provide real-time feedback to the patients or 
remote monitoring servers. Wearable physiological monitoring 
applications, by integrating of body sensors are significantly 
important for patients with chronic health conditions, 
especially chronic neurological disorders, cardiovascular 
diseases and strokes that are leading causes of mortality 
worldwide. However, a number of ongoing research efforts 
target on various technical issues that need to be resolved in 
order to have much more sensitive, reliable, secure, and power-
efficient wireless personal area network suitable in particular 
for mobile healthcare applications. Existing technological 

advances in remote monitoring systems are sometimes 
incapable of performing real-time patient monitoring systems 
because of the inability of traditional wet electrodes to perform 
a long term monitoring, and lack of easy-for-use design. 
Moreover, new designs or perspectives need to be improved in 
conventional Ag/AgCl electrodes for getting much more 
sensitive biological data due to lack of low-power 
microelectronics and miniaturization design in such 
applications. Wireless body sensors can be formed within a 
new technology perspective as well as the materials among 
mobile and wearable patient-monitoring devices to sense tiny 
biopotentials such as ECG and PPG from different locations on 
the body with very high reliability and accuracy. Otherwise, 
very noisy data will result using these conventional sensors, 
because such areas on the body (e.g. ear, upper neck) will be 
affected by motion artifacts. 

The design and evaluation of an ear-lead multiple smart 
sensor system was presented in this paper. The system acquires 
different physiological information and continuously monitors 
an Android based smartphone, giving patients real-time control 
of data. This device includes non-intrusive sensors, specifically 
ECG, CBT and PPG with high accuracy. Moreover, we have 
also tested our Android based app, which combines the 
recording of all sensors together and displays ECG, CBT, and 
SpO2 biological data on the smartphone of an ambulatory user. 
We also attempted to observe the influence of sensor 
positioning on signal quality using various types of ECG 
electrodes. Furthermore, it facilitates the difficulties of 
wearables giving patients significantly less restriction by 
eliminating the need for adapting intrusive equipment or using 
a laptop to see the biological data. Our results clearly 
demonstrate the feasibility of the concepts and interoperability 
of the sensors and solutions to the key technological and 
scientific problems. Despite of making a significant progress in 
addressing many of the issues, there are still considerable 
issues that need to be improved. Future studies will take into 
account the evolution of conventional body sensors and new 
perspectives for the improvement of the design of the particular 
ECG electrodes to reduce noisy data due to motion artifacts. 
We will further investigate the aspects of an m-Health service 
that the role of the smartphone can be used as a wearable 
physiological monitoring system including providing a real-
time feedback to the patients from a central server. Therefore, 
the smartphones can be seen as a gateway in mobile healthcare 
monitoring applications. Recent advances in research are 
leading to this realization by involving the benefits of 
nanotechnology in biomedical science such as the large surface 
area or high electrical conductivity values of novel 
nanomaterials. 

In this paper an ECG electrode set-up is demonstrated to 
pick up ECG signals from behind-the-ear in contrast to 
tradition chest-based ECG measurements.  The results obtained 
are very promising and detection of the components of the 
ECG signal (P, Q and R) is highly possible.  It was mentioned 
that the behind-the-ear ECG measurement is more user-
friendly and gives extra convenience of using electrodes only 
when it is required (i.e.: no need to keep the electrodes attached 
all the time).  A method of integrating ECG, PPG and co-body 
temperature using Arduino microcontroller and smart phone 
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for processing and displaying the data is also presented.  In the 
future, more experiments will be performed to design better 
electrodes with increased signal-to-noise ratio to obtain the 
results similar to the traditional ECG signs and to demonstrate 
the integrated systems under various operating conditions. 
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