
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

113 | P a g e

www.ijacsa.thesai.org

A Review of Solutions for SDN-Exclusive Security

Issues

Jakob Spooner

Department of Computing and Mathematics

University of Derby

Derby, England

Dr Shao Ying Zhu

Department of Computing and Mathematics

University of Derby

Derby, England

Abstract—Software Defined Networking is a paradigm still in

its emergent stages in the realm of production-scale networks.

Centralisation of network control introduces a new level of

flexibility for network administrators and programmers.

Security is a huge factor contributing to consumer resistance to

implementation of SDN architecture. Without addressing the

issues inherent from SDNs centralised nature, the benefits in

performance and network configurative flexibility cannot be

harnessed. This paper explores key threats posed to SDN

environments and comparatively analyses some of the

mechanisms proposed as mitigations against these threats – it

also provides some insight into the future works which would

enable a securer SDN architecture.

Keywords—SDN; software; security; OpenFlow; networking;

network security; NFV

I. INTRODUCTION

Software Defined Networking is a paradigm that emerged
in around 1995 with the introduction of Active Networking –
programmable functions integrated within network
architecture, enabling programmers to innovate the way in
which they function [1]. Whilst the roots of SDN lay in
technologies first introduced over 20 years ago, the concept is
still extremely relevant to this day and is considered by many
to be the new face of networking [2]. Historically, packetised
data-networks have consisted of hardware-based networking
devices operating at Layers 2 and 3 of the OSI model. Software
is then implemented on top of these layers, to provide other
pieces of vital network functionality, i.e. transport control for
the network, e-mail applications, file transfer etc.

In traditional networks, network hardware such as routers
and switches can be logically divided into two individual
planes; the data plane and the control plane. The data plane is
concerned with the forwarding of data-packets, whilst the
control plane makes packet-forwarding decisions based on the
routing protocols configured on the device. The tightly bundled
nature of these two planes introduces a level of rigidity –
network operators cannot easily manipulate forwarding
decisions on a per flow basis. SDN aims to challenge this by
separating the control and data planes. This segregation allows
network programmers to develop their own controllers, pieces
of software with a global view of the network [2]. This allows
for a level of control that was not possible without a great deal
of work in traditional network architectures due to the tightly
bundled nature of data-plane and control-plane. In SDN, rules,
known as flows, based on a set of conditions (e.g. all HTTP

packets over a particular size) are created centrally by network
admins, installed on the controller and then pushed out to
network devices in the data plane. Devices store the flows in
their local cache, and in the event that they receive a packet,
they check the currently stored flows for one matching the
received packet. These flows govern the way in which packets
should traverse the network [3], leading to a network which is
easier to manage due to a centralisation of control.

SDN gives network administrators the ability to collect
traffic statistics from the network devices and pass these onto
the control plane for processing. This allows for in depth
security-analysis without any negative effects on the
performance of the data-plane [4]. SDN makes it possible to
configure security policies centrally at the controller and push
them out network wide. This is in stark contrast to the
painstaking process of individually configuring access control
lists and security policies on every router or switch in the
network [5]. SDN allows easy integration of third-party
software into the environment via the SDN framework,
meaning that plugin-like applications can be deployed to aid
certain security & non-security related tasks [4]. As SDN
controllers hold a global view of the network, they introduce
the possibility of network-wide intrusion detection systems,
which utilize the traffic statistics they receive from the network
devices. As devices are required to communicate back to the
controller at regular intervals, it ensures that compromised
devices are found quickly and reduces the chances of false
positives, an issue that is still yet to be solved in the context of
traditional networks [3].

Whilst some of the benefits of an SDN-based infrastructure
are clear, there are also some apparent shortcomings, which
need to be addressed before implementation of the paradigm
can become widespread. Programmers are able to leverage the
centralised control in SDN architectures to build reactive, self-
healing mechanisms to mitigate against traditional network
attacks [6]. However, the fact that SDN changes the way that
networks operate entirely is likely to bring about new attack
methods that can be used to exploit the individual components
of an SDN architecture, and the ways in which they interact
(i.e. devices-to-controller, controller-to-controller and
controller-to-application). For example, an attacker
successfully compromising the controller of a network is
particularly lethal, as this single-point of failure can render the
entire network inaccessible [4].

The introduction of a centralised controller completely
changes a networks architecture. This is what makes SDN so

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

114 | P a g e

www.ijacsa.thesai.org

unique in comparison to traditional networks. With the
centralised point of control, all other layers need to maintain an
interface over which they can exchange important information.
Commonly, the interface utilised by the data-plane and control-
plane to communicate with one-another is known as the
Control-Data-Plane interface, or the Southbound Interface.
SDN Applications also reside in a conceptual application layer,
and communicate with the controller through the 'Northbound
Interface' or Control-Application-Plane interface. Applications
residing on this layer have the ability to solicit directly with the
controller and obtain useful information about the networks
logical/physical state. This is advantageous to programmers
writing SDN applications, as their programs can access large
quantities of meaningful, real-time data. With this, however,
comes great risk – adversaries may be able to program their
applications to utilise this useful information to form attacks,
and compromise the availability, integrity and confidentiality
of data travelling within the network.

This change in network architecture brings around
juxtaposition. On one hand, the increased flexibility and
ability to innovate with network applications and network
control, gives programmers the ability to better protect against
traditional network attacks i.e. TCP-based DoS attacks,
eavesdropping, man-in-the-middle attacks. On the other hand,
the links between control-plane, data-plane and application-
plane bring about new attack platforms for adversaries
attempting to illegitimately use network services. Much
research has been carried out over the years on traditional
security attacks, however this paper focuses on attacks which
are exclusive to SDN due to changes in the architecture. The
solutions covered below attempt to mitigate attacks targeting
these SDN-exclusive attack platforms, and ensure that
adversaries cannot utilise the change in architecture to their
own advantage.

The remainder of this paper is structured as follows: section
II explores some of the security threats aimed at SDN
environments; section III discusses some of the currently
proposed mitigations and provides a comparative analysis of
them; section IV discusses the current gaps in security and how
these can be filled going forward, and section V concludes the
paper, with an insight into future direction

II. THREATS TO SECURITY IN SDN ENVIRONMENTS

Networks running under the SDN paradigm still have the
same security requirements as traditional network settings, as it
is likely that they will be carrying at times, private and
confidential information [7]. SDN completely changes the
architecture and the inter-communicative aspects of the
components in the network - from this arises a completely new
platform for attackers looking to perform security-breaching
attacks. This leads to a need for similar levels of security as
traditional networks, but to defend against threats of a different
nature [8]. This section of the paper examines some of these
key threats and aims to justify their importance.

A. DDoS/DoS Attacks (Flow-decision Requests)

1) DDoS (Flow-decision Requests): Numerous types of

conventional DDoS attacks can be carried out in an SDN

environment, but it is a variation utilising forged flow entries

which can be harnessed by an adversary in order to target a

controller and compromise its availability. By flooding the

controller with requests for a flow-decision, the controllers

compute resources could become overwhelmed, and the

controller would be rendered unable to deal with any

legitimate requests it receives [2]. By targeting the centralised

point of control (i.e. the controller) it renders the entire

network largely unusable. Whilst data-paths currently in the

network may be able to function temporarily with a downed

controller, once the hard timeout of rules in their table has

expired they will be required to solicit with the controller

again, which will be unable to deal with requests. If an

attacker(s) is able to be persistent with their flooding, this will

eventually cause the unavailability of all network

functionality.

2) DoS Attacks (Switch flow-table entry flooding): At the

data plane level, falsely created flow-entries can be flooded to

other devices in order to consume the space in their flow entry

tables. This leaves the forwarding devices unable to add any

legitimate flow entries to their tables [3]. This results in

devices being unable to incorporate subsequent flow-updates,

leaving the network in a broken, disparate state. One of the

key issues with the data-plane devices within Software

Defined architectures is that of the switches inabilities to

differentiate between legitimate flow requests and illegitimate

ones. This flaw allows for attackers to perform successful DoS

attacks at the Data plane level by filling the switches flow-

buffer with false requests [4].
Whilst it would be possible for an adversary to target an

individual data-path and attempt to halt its availability, it is far
more likely that the controller would be targeted, effectively
creating and spreading a system-wide lapse in availability. The
prospect of this can be potentially devastating, particularly in
production settings where services seeing high usage will be
unusable to clients and employees. Furthermore, with
availability for all clients removed, an adversary can plan and
carry out further attacks which may aim to compromise the
integrity and confidentiality of sensitive data on the network.
For these reasons the above DDoS/DoS attacks have been
mentioned in this paper and are considered amongst the most
important attack types.

B. Hijacked/Rogue Controller

The controller can be thought of as the centralized ‘brain’
of an SDN. It controls the whole network from one point,
making it arguably the most vital component of SDN
architecture. An attacker that manages to compromise the
controller essentially has control over the whole network [9].
Ability to control the actions of the controller would allow the
attacker to manipulate flow entries in any way that he/she
choose, e.g. stopping certain packet types reaching their
destination, re-directing packets to malicious nodes in the
infrastructure. In conjunction with this, the attacker could aim
to compromise a particular forwarding-device in the network
and enable it to operate as a ‘man-in-the-middle’ or black-
hole/grey-hole node. This would allow the attacker to
potentially drop, alter or inspect the contents of any packet it
receives [10]. Another possibility is that an attacker

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

115 | P a g e

www.ijacsa.thesai.org

successfully registers a 'rogue' controller in the control plane of
the network. With this rogue controller in place the adversary
may be able to influence/halt the availability of other
controllers, change rules installed in data-paths caches and
effectively halt/manipulate the workings of applications in the
applications layer.

Any attack that targets the controller/controllers in SDN
architecture can have potentially devastating effects. Whilst the
centralised nature and ability to collate information at one point
can be massively advantageous to network
administrators/programmers, in the wrong hands it could be
utilised to spearhead attacks on the integrity of control
messages/sensitive application information, the availability of
important services to a systems users, and the confidentiality of
sensitive user information utilised by applications in the
application layer. Any approach attempting to successfully halt
hijacked/rogue controllers should focus on ensuring the
authenticity of the controller, before allowing it to make any
changes to the network.

C. Malicious Applications

Due to the allowance of the SDN framework for integration
of third-party applications, the issue of malicious applications
arises. Applications exhibiting malicious behavior within an
SDN environment can have catastrophic consequences, similar
to that of a compromised controller [2]. Authentication and
authorization of an application to operate within an SDN
environment is difficult to enforce. Applications relying on
deep packet-inspection techniques to operate can pose potential
risks to the network – they may be able to indirectly control the
entire network through the information they have collected
during packet-inspection [11].

The increased amount of data, and the way in which it is
centrally located is what gives malicious applications the
ability to threaten the integrity and confidentiality of
user/network information that they have access to. Securing the
northbound interface is a difficult task, as each application
utilising it may require access to a unique subset of information
from the controller. In order to successfully monitor this, some
kind of strict, information-access policy need to be enforced.
This ensures that an application declares which information it
will need and is only able to access these. This could ensure
that applications are not covertly stealing or using information
from other applications. Authenticity must also be ensured,
before an application is able to communicate with the
controller.

D. Control-Data Plane Link Attacks

Another key area in SDNs which presents opportunities for
attackers would be the link between the control plane and the
data plane. The OpenFlow specification defines use of TLS
(Transport Layer Security) as optional [12], making this a
weak-point and clearly susceptible to various attacks, i.e. man-
in-the-middle attacks, black-hole attacks.

1) Man-in-the-middle Attack: A man-in-the-middle type

attack takes place when a malicious node establishes itself

between the controller and the data-paths residing on the data

plane. Instead of directly forwarding the messages straight to

the controller (or vice-versa), the 'man-in-the-middle' node is

able to manipulate/ or inspect the contents of packets [13].

2) Black-hole Attack: A black-hole type attack could also

be performed, in which a node establishes itself in between a

targeted device and the controller, and simply drops any

packets it receives without forwarding them to the controller.

This results in a breakdown of network communications and

renders the services unavailable to legitimate users [3].
If an attacker does manage to establish itself as an

intermediary between the control plane and data plane, it can
potentially be devastating to the entire network. The man-in-
the-middle type attack is a direct attack on the integrity of
control messages between network devices in the data plane
and the controller. An adversary can change control messages
and shape the way the network is formed to a way
advantageous to them. On the other hand, the black-hole type
attack is a direct attack on the availability of the networks
services. If all messages between network devices and the
controller are not being forwarded by the malicious node, it
will inevitably result in a breakdown in communication, with
devices in the data plane unable to solicit the controller when
necessary. This link between control and data plane is clearly a
weak-point, and acts as a ripe attack platform for adversaries. It
is therefore extremely important that it is secure before SDNs
see widespread usage in production settings.

E. Eavesdropping Attacks

Adversaries attempting to gain illegitimate access to SDN
networks or halt service availability may find it advantageous
to eavesdrop (the act of illegitimately capturing and inspecting
the packets flowing over a connection) on certain connections
in the network [14]. This may allow them to gather meaningful
information which can then be used to carry out more intrusive
attacks. Eavesdropping attacks have long been carried out in
traditional network settings – wireless architectures are
particularly weak due to their over-the-air transmissions.
However, in the context of SDN, eavesdropping can be carried
out to inspect the packets traversing the link between control-
data plane, and also exclusively at the data plane. At the data
plane, [15] discusses a ease-of-use 'listening' mode integrated
into OpenFlow switches can be utilized by a malicious
adversary (that has been able to compromise the switch) in
order to inspect the packets transmitted by surrounding
switches, allowing attackers to learn important control
information. In a sense, eavesdropping carried out at the
control and data plane is more of a passive attack and does not
directly affect the availability, confidentiality or integrity of
data. It does, however, empower attackers to carry out further
attacks which compromise these security aspects.

In the context of eavesdropping carried out at the
Application-Control Plane link, however, the confidentiality of
sensitive information can be directly compromised. A
malicious adversary can learn information pertaining to a
particular user if they manage to eavesdrop on a connection
transmitting sensitive application data. This makes eaves-
dropping a particularly serious attack – confidentiality must be
ensured before critical applications carrying sensitive
information can be deployed in an SDN-environment.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

116 | P a g e

www.ijacsa.thesai.org

F. Side by Side Comparison of Attacks

The following table summarises the above investigation
and allows us to see the layers of abstraction that each attack
affects in the SDN-architecture, and the specific security
aspects that they could potentially compromise.

TABLE I. COMPARISON OF SDN ATTACK TYPES

Attack

Targeted

SDN

Layer

Affected Security Aspect

Availab

ility

Confidentia

lity
Integrity

Distributed Denial

of Service

Control,

Data
x

Denial of Service
Control,

Data
x

Hijacked/

Rogue

Controller

Control,

Data,

App

x x x

Malicious

Applications
App x x

Man-in-the-middle

Control,

Data,

Control-

data link

 x x

Black-hole

Control,

Data,

Control-

data link

x x

Eavesdropping

Control,

Data,

App

 x

Each attack investigated in this section has been, or still is,
fairly common in the realm of traditional networks. The
interesting part is, that with the introduction of new attack-
platforms inherent from SDNs architectural changes, comes
variations of the attack which are then exclusive to SDNs.
Whilst the traditional variations of each of these attacks can be
dealt with in a more appropriate, effective manner due to the
centralised nature of SDN, it is these SDN-exclusive variations
which pose the largest challenge and that need to be given
attention when moving forward with SDN security. The
following section aims to look at currently proposed solutions
to the above attacks and evaluates their effectiveness.

III. MITIGATIONS AGAINST SECURITY CHALLENGES IN

SDN

The previous section defined some of the key threats to
both the control and data planes in the context of SDN
environments. The separation of these planes leads to highly
configurable networks; however it also introduces the
possibility of a number of security threats. This section
explores some of the mitigations proposed for these individual
threats, and then introduces some network-wide solutions
which aim to secure both the control and data plane [2].

A. DDoS/DoS Attack Mitigations

DoS Attacks on SDN networks can be carried out at both
the control and data plane levels. Below are a number of
solutions; some specifically aim to defend the control plane,
some the data plane, and others provide protection to both of
these planes.

Seungwon Shin et al. [16] introduce a solution for TCP
based control plane DoS attacks – AVANT-GUARD. This
solution consists of two components; a Connection Migration
mechanism used in establishing useful TCP sessions from
failed ones, and Actuating Triggers which enable data plane
devices to activate flow rules under certain pre-defined
conditions. Connection Migration proxies the TCP handshake
that takes place when nodes initiate a TCP connection, and
ensures that the handshake is successfully completed and the
session established before allowing any flow entries pertaining
to this session to be forwarded to the controller. This reduces
the possibility of TCP-SYN packet flooding attacks on the
controller as the handshake will not have been completed for
these sessions. The Actuating Triggers mechanism introduced
in [16] also reduces the computational load incurred by the
controller, by allowing devices to activate certain flow rules in
their tables under predefined conditions. This reduces the
number of transmitted flow-requests. Evaluative tests prove
that in the presence of a TCP-SYN based DDoS attack, the
response time of the controller to legitimate flow requests
increases by a negligible amount in the order of milliseconds,
along with the percentage of overhead incurred [16]. Whilst the
performance of AVANT-GUARD is desirable, the approach is
generally limited due to the fact that it targets one particular
variation of the DDoS attack (TCP-SYN based attacks). An
option would be to deploy this solution alongside other DDoS
prevention mechanisms targeting other attack variations,
however this configuration could become cumbersome and
resource intensive. Instead, a solution defending the control
plane from a wide variety of DDoS attack types would be more
desirable.

Paulo Fonseca et al. [17] present a novel mechanism to
prevent control plane based DoS attacks - CPRecovery. This
replication based component allows for the handing-over of
control from one controller, failing due to the presence of a
saturation attack, to a secondary controller. To achieve this,
switches check for the presence of a properly operating
controller by sending an inactivity probe. If this probe
determines inactivity in the controller, a connection is made to
a secondary controller which assumes the role of the failed one.
To ensure this process is seamless, the initial primary controller
sends state update messages to the secondary controllers in the
network [17]. This multi-layer approach does provide
resilience, and unlike AVANT-GUARD [16], it provides the
control plane with protection from a wide variety of attacks. It
is, however, noted in [17] that once the secondary controller
assumes a primary role, it is then susceptible to DoS attacks
itself. One further downside to CPRecovery is its performance.
Due to the overhead incurred from the instantiation and
connection of recovery controllers, CPRecovery can be quite
slow [17], with response times far higher than that of AVANT-
GUARD. It would appear that this is a trade-off for the more
thorough protection offered in [17].

Presented in [18] is FlowRanger, a proposal described as a
request prioritizing algorithm for control plane-based DoS
attacks. At a fundamental level, FlowRanger implements a
priority-based scheduling system, with its key metric being that
of trust-values held by each node in a network. Controllers
implementing FlowRanger are able to evaluate the trust values

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

117 | P a g e

www.ijacsa.thesai.org

of each node they are receiving requests from and buffer them
in separate priority queues [18]. Other proposals ([16], [17])
implement a rate-limiter for the amount of requests which can
be sent to the controller, however this results in the dropping of
some legitimate requests. This is clearly an issue; in production
environments it is not acceptable for legitimate flow-requests
to be dropped. FlowRanger challenges this with its priority
queueing mechanism; suspected attacking requests will still be
served, albeit at a lower priority than others. This works well,
for example, if a legitimate switch is having issues and is
having to retransmit flow-requests to the controller. It will be
initially buffered in a lower priority queue, but eventually the
request will be served. This means that once the switch has
established itself and replenished its flow-cache with correct
rules, its trust value will increase and its requests will return to
higher priority queues. FlowRanger differs from previous
implementation in that its priority queues are implemented at
the controller, instead of in a distributed manner. This provides
a further layer of protection (as long as the controller is not
compromised). Simulation results also show that the
centralised nature of this mechanism make it a higher
performer than previously proposed solutions [18]. Reference
[19] introduces a method utilizing user-behaviour analysis.
Whilst this sounds effective in premise, the adoption of strong
assumptions regarding the number of flow-requests generated
by users leaves a lot to be desired. The source IPs of requests is
tracked by the controller and if the profile of packets received
from that IP fall into a certain category, the IP is marked as
malicious. The controller then subsequently drops requests
from that IP. This suffers from similar issues to AVANT-
GUARD [16], in which genuine requests from non-malicious
users may be ignored.

References [16], [17], [18] and [19] all focus on control
plane-based DoS/DDoS attacks. Whilst it is arguably more
vital that the control plane is protected, data-plane based
attacks do exist and require ample protection. In [20] a data-
plane oriented DoS mitigation known as Virtual source
Address Validation Edge mechanism (VAVE) is proposed.
VAVE is pre-emptive as it attempts to detect the presence of a
node using IP-spoofing techniques to mask its real identity –
this type of behaviour often leads to DoS attacks. By checking
incoming packets against entries in the flow-table, the VAVE
interface in the network determines if the packet is a
recognised type – if not, the validity of the packet is checked
against a list of pre-defined rules [20]. This could potentially
cause issues, as if the pre-defined list of rules is not thorough,
certain legitimate packets could be dropped, causing
availability issues for genuine clients. As this mitigation only
defends against data plane attacks, it would leave the controller
susceptible to DoS attacks. To provide thorough protection
against all types of DoS, parallel implementation of VAVE
alongside AVANT-GUARD or CPRecovery would be more
appropriate. This parallel implementation does however come
with the downside of high computational cost and a chance of
conflicting configurations.

One major issue with the currently proposed solutions for
DoS/DDoS attacks is that they wait for the adversary to strike,
and then attempt to deal with the aftermath. In the case of [16],
[17] and [21], it is possible for the network to be rendered

temporarily unavailable before any attempt to mitigate is made.
FlowRanger [18] challenges this to a degree, and in general
appears to be the strongest solution from the selection reviewed
above. One solution which does put emphasis on early DDoS
detection is presented in [22]. The scheme utilises a measure of
entropy variation in the attack packets destination IP field. The
method claims to stop the attack within the first 500
transmitted attack packets. Whilst this is early, it is likely that a
reasonable amount of damage will have been done during this
period of time. It seems clear that defending against attacks in
the control plane are two entirely separating things. Networks
would benefit greatly from a solution which simultaneously
protects both of these planes, whilst still achieving a reasonable
level of performance.

B. Hijacked/Rogue Controller Mitigations

Unauthorised access to the controller in an SDN
environment has been identified as one of the most potent
threats. Various approaches towards protecting an SDN from
unauthorised access at the control plane level have been
proposed. The authors in [9] suggest multiple-controller
architecture coupled with a ‘Byzantine Fault-Tolerance’
mechanism, in which a number of controllers dictate to the
switches in the environment. Each switch in the network is
connected to a set of controllers, and when one controller fails
due to a successful attack, another controller takes over and
connection with the failing one is severed. This particular
proposal utilises a high level of resources; however an
algorithm is introduced to reduce resource consumption by
determining the optimal amount of controllers connected to
each switch based on latency requirements and the tolerance of
the switch to faulty controllers. Simulation results presented in
[9] suggest that the method achieves reasonable levels of
performance when the size of the data plane is small; however,
as the number of switches grows the amount of controllers
needed also increases, resulting in lower performance in larger-
scale environments. It could be said that the proposal in [9]
suffers from the same flaws as CPRecovery, in that even
though a replacement controller gains control of the network,
once it has taken control it is then subject to the same attacks as
the previous controller. It would appear that the most effective
solutions provide defense against the occurrence of an attack,
and not just provide fault-tolerance and resilience should the
attack occur.

In contrast to the above proposal, the authors of [23]
introduce a mechanism aiming to secure SDNs by forcing them
to operate in a distributed manner. An earlier work, [24],
presented by the same authors defines the workings of this
hybrid, distributed SDN system, in which the controller
continues to centrally define flow rules, but puts algorithms in
place to enable switches to spread flows to other devices in the
network. In [23], a number of mechanisms are proposed which
work cooperatively to provide security in this distributed
environment. The use of a Trust Manager System is
introduced. This is an actively maintained list containing ID’s
for all of the devices currently operating in the network. This is
then coupled with encrypted transmissions of all flow entries
occurring between controller- data plane device and data plane
device– data plane device. An authentication mechanism is put
in place to allow each data plane device in the network to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

118 | P a g e

www.ijacsa.thesai.org

check the authenticity and validity of the node that a flow
originated from. This approach is in stark contrast to [9] which
relies simply on a fault-tolerance mechanism. As mentioned in
section II.C.2 of this paper, [23] enforces the use of TLS in all
of its controller-to-equipment transmissions, making these
communications inherently secure. One inherent issue with the
distributed nature of [23] would be the difficult process of
configuring and debugging issues with it. Since the overall
proposal consists of a number of linked mechanisms, a fault in
one place would bring down the entire system, or at least leave
it partially operating and open to attacks. The process of
accurately pinpointing the point of failure could be a difficult
process. Since the nature of SDN forces networks to operate in
a centralised manner, it would seem logical to develop
centralised security mechanisms to complement it.

No simulation results are presented in [23] leading to the
assumption that the method may not have been subject to
adequate testing as of yet - this would make [9] seem more
reliable – however, the lower computational overhead incurred
in [23] would make it more desirable in the network setting.
The distributed architecture presented also appears to be more
efficient, and its generic nature allows the use of any
encryption method to be used as part of its implementation,
making it a more flexible option [23]. One similarity between
these two solutions is the fact that they both provide protection
only to communications existing on the control plane and the
control-data plane link. Presented in [25] is a method which
provides protection for both the Control Plane and the Data
Plane. AuthFlow prevents the access of unauthorised hosts to
the network, and ensures that they are properly authenticated
through the use of a RADIUS server. Extensible
Authentication Protocol (EAP) is used to encapsulate any
messages that hosts send to the RADIUS server, requesting
authentication. An intercepting authenticator relays these
messages to the controller, which then adds the host sending
the packets to its list of authorised hosts. A particular strength
of this proposal is that packets containing flow entry updates
for other devices are not transmitted until both devices are
successfully authenticated [25]. Whilst this approach provides
strong protection and authorisation for legitimate hosts on the
data plane, its weakness lies in its underlying technologies.
EAP is generally considered as weak in the realm of
authentication [26], and whilst it does allow the configurators
to select their own authentication and encryption methods, any
hacker with knowledge in traditional attacks should be able to
force an entry into the network as a rogue data-path.

Compared to the Byzantine Fault Tolerance mechanism
described in [9] and the distributed security model in [23],
AuthFlow appears to offer a more thorough solution, providing
authentication and authorisation at both the control and data
planes of an SDN environment. Test results presented in the
AuthFlow paper suggest that the method successfully prevents
unauthorised access of both data-plane hosts and controllers to
the network, and does so in an efficient manner - with low
computational and communicational overhead incurred, due to
the low amount of controller input [25]. The AuthFlow
mechanism also appears to be more scalable than the other two
proposals in that it does not require more controllers to be
added as the data plane increases its size; new devices can

simply authenticate with the RADIUS server and be added to
the trusted-device list stored at the controller.

One further proposal which appears to offer strong
authenticity, validity and integrity in terms of the flow rules
installed in switches is PERM-GUARD [27]. Offering
protection to at all layers of the SDN model (Control, Data,
Application, and the links in between them), PERM-GUARD
employs a scheme that manages the flow-rule production
permissions of controllers and applications in an SDN
infrastructure. If a controller or application wishes to push
flow-rules out to data-paths on the network, they are required
to authenticate themselves to a centralised authority by means
of an identity based signature. Each legitimate controller or
application will hold one of these signatures, and appropriate
flow-production permissions will be set on authentication [27].
If one of these signatures cannot be presented, then the
controller/application in question will be considered
illegitimate. Whilst this does not necessarily stop attackers
from attempting to hijack controllers or create rogue controllers
and connect them to the network, it will deny them the ability
to make malicious changes to the network structure by pushing
rules out to data-paths in the network.

It would appear that PERM-GUARD is the strongest of all
the solutions covered in the above section – it provides
protection for not only controllers but also applications. It is a
great strength of any solution when it is able to provide cross-
layer protection from a common attack. In general it appears
that it is not the task of stopping an already-identified
hijacked/rogue controller that is difficult - it seems detecting
them in the first place is the hard part. Preemptive mechanisms
which prevent hijackers and rogue controllers from ever
gaining access to the network would need to be developed in
order to ensure that there is little to no chance of compromise.

C. Malicious Application Mitigations

Malicious applications are another dangerous threat in the
context of SDNs. A compromised application or an application
that has been programmed with malicious intent can allow an
attacker to leverage control of the entire network [28].
Similarly, an application with buggy code can introduce
vulnerabilities that attackers could exploit to gain unauthorised
access to the network. The authors in [21] propose ‘FortNOX'
– a mechanism which monitors the insertion of flow-rules from
security applications to devices in the network. New flow-rules
are first checked against all other existing flow rules on a
receiving device, and in the presence of a conflict, the new
flow is discarded and not added to the local cache. This
mechanism allows admins to enforce a set of hard-coded rules
which override any dynamically-created rules. This ensures
false flows added to the network by malicious applications to
direct traffic to compromised nodes will not be permitted [21].
One particular downfall of this approach is the fact that
legitimate security-applications that rely on dynamic
modification of flows within the network will not operate
properly in the presence of admin-created hardcoded rules. The
authors in [21] do not explore this scenario, so future work
could relate to this area and introduce a permissions-based
mechanism to allow certain dynamic flows to take precedence.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

119 | P a g e

www.ijacsa.thesai.org

An alternative to the previous proposal, the authors in [28]
present Rosemary - a small network operating system (NOS)
which is ran in multiple instances on top of the control plane of
an SDN. Each application running in the environment is
executed within an individual instance of Rosemary,
effectively isolating each application. This allows for close
monitoring of every application deployed on the network in
terms of the resources it uses and the packets it transmits or
receives. As well as providing a platform for monitoring
malicious activities of individual network applications,
Rosemary provides a level of resilience in that if one
application fails or crashes, others will continue to run inside
their isolated instance of the NOS [28]. Rosemary’s description
as a ‘robust, secure and high-performance NOS’ would concur
with the results of evaluative test. Tests show that successful
attack rates are very low in the presence of Rosemary, with
high levels of performance achieved in terms of the throughput
achieved and latency observed. This, however, comes with the
downside of a high computational overhead, especially when
compared to FortNOX which incurs relatively low levels of
overhead [21].

Another proposal, LegoSDN [29] is conceptually similar to
Rosemary in that it provides a layer of isolation between the
controller and the application layer of an SDN environment.
The key difference is that all applications are bundled together
in one plane, whereas Rosemary implements a single container
for each individual application. Whilst LegoSDN isn’t
designed specifically for combatting attacks, it isolates
applications that are identified as failing – a failing application
being one of the key signs of the beginnings of an application-
based attack [29]. In this sense, LegoSDN provides a pre-
emptive mechanism – isolating potentially malicious apps from
the network before they are able to cause damage. In
comparison to FortNOX and Rosemary, LegoSDN does not
provide a thorough enough mitigation against attacks. A
parallel implementation of LegoSDN and FortNOX may be
more appropriate, providing a type of first line and second line
defence, respectively.

OperationCheckpoint is introduced in [10] as an SDN
application control system, taking into account both the
information that an SDN application reads from the underlying
network, and the rules and policies it pushes out to data-paths
in the network. OperationCheckpoint employs a thorough set
of user-defined permissions, covering all OpenFlow related
tasks. Each application that then needs to be used will be
mapped to a specific subset of these permissions. Applications
will then be unable to perform any actions that lie outside the
set of permissions it has been mapped to (unless a change is
authorised by administrators/operators) [10]. This effectively
stops applications created by malicious adversaries from
capturing sensitive data or executing malicious commands in
the data plane, because these actions need to be declared first.
By enforcing this declaration of necessary functionality, it
allows network operators to build bespoke permission sets and
ensure they know precisely how each application is behaving.

OperationCheckpoint seems to be the most thorough
method of protecting an SDN infrastructure from malicious
applications. In comparison to other solutions, it seems to
perform better due to the simplistic nature of its permissions

system. This is in contrast to certain solutions such as
Rosemary, which in terms of its performance is lacking due to
the fact that every application is ran in its own environment.
This has the tendency to incur high levels of overhead. One
feature of SDN is the fact that there are a set of common APIs
that can be used at the northbound interface between
applications and the controller. This is advantageous in the
sense that it removes the possibility of cross platform
vulnerabilities arising through poor configuration/coding of
middleware.

D. Control Plane and Data Plane Link Attack Mitigations

The link between the control plane and data plane carries
transmissions of flow-entries down to the data plane for
devices to add to their local cache [28]. The specification for
OpenFlow, the most widely used and supported protocol for
SDN operations [2], specifies an optional implementation of
Transport Layer Security (TLS) for this link, however as this is
optional, many of the available controller APIs don’t enforce
or support this option. For this connection to be completely
secure, controller specifications would need to enforce this
usage of TLS – providing secure encrypted transmissions and
the authentication of entities at each end of the link.

In addition to this, IDS style systems could be implemented
to thwart man-in-the-middle and black-hole type attacks
occurring on this particular link. The authors in [30] present a
methodology in which the Bro IDS system is integrated with a
Ryu-based Python controller. On reception of a packet the IDS
utilises deep packet inspection techniques to inspect the packet
and determine its source, destination, payload among other
things. Acting as a signature based IDS, bad-traffic and
malicious activities are pre-configured into the controller, and
unknown packets are then checked against these signatures to
identify the presence of malicious packets [30]. Evaluative
tests carried out in [30] suggest that the response times of this
mechanism are quite slow. This is due to the additional load
incurred on the controller from integration of the IDS system.

Due to the fact that the majority of attacks that take place
within this link are variations on the traditional man-in-the-
middle and black-hole attacks, it may be possible to protect the
Control-Data plane link via traditional means. That is not to
say that this would be a thorough solution. As explored above,
employing an IDS system to identify potentially malicious
nodes forwarding messages across this link would ensure that
falsified messages are not forwarded between data-paths and
controllers, confidential data is not extracted, and that
availability is not compromised by means of a black-hole
attack.

E. Eavesdropping Attack Mitigations

Defending against eavesdropping in any environment can
be a particularly difficult task. This is due to the passive nature
of the attack; attackers can simply establish themselves as a
node in the network and activate a listening mode. This enables
them to view the stream of packets that traverses them. Since
eavesdropping nodes will often appear to have similar
behavioural characteristics to legitimate clients, it can be
difficult to detect them. In an SDN environment, this difficulty
is exacerbated with the introduction of new attack platforms
stemming from the centralised nature. An example of this

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

120 | P a g e

www.ijacsa.thesai.org

would be the control-data plane link and the control-
application plane link.

A passive approach to defending against eavesdropping in
the data plane and the control-data plane link is presented in
[26] as Random Route Mutation. Its premise lies in randomly
changing the course of packet flow, such that the destination IP
stays the same. By changing this flow it aims to obfuscate the
packet traces collected by adversarial clients. Such a method
has been implemented in traditional network settings with
moderate success. Authors in [26] claim that simulation results
prove the RRM mechanism to be both efficient and effective in
reducing the number of successfully eavesdropped packets.
The approach has also been implemented in a NOX controller,
suggesting that it is applicable to SDN environments as well.
One particular downfall of this approach is it does not consider
the intelligence of the adversaries it attempts to defend against.
Whilst the technique may instantly see considerable reduction
in the amount of eavesdropped packets, should adversaries
learn of the algorithms utilized for randomizing packet flows,
they may be able to reverse the affects by applying the reverse
algorithm to their packet captures. Whilst this passive approach
provides some mitigation, it is clear that its effect is limited and
a more thorough solution would be necessary should SDN see
widespread usage in production settings.

In [15], Combat-Sniff is introduced. Combat-Sniff
implements both an active-detection mechanism which actively
scans for eavesdropping nodes, and a pro-active defense
method which aims to prevent malicious adversaries from
being able to sniff packets in the first place. An attacker is able

to force a switch into storing an illegitimate flow entry in its
cache that forwards all packets to itself. Combat-Sniff combats
this by taking random samples of the flow entries installed in
each of the switches tables and checking their integrity [15].
Should a flow be identified as illegitimate, the appropriate port
on the switch is shut down and packets are no longer
transmitted through it. Combat-Sniff also aims to retain the
confidentiality of information on packets travelling through a
switch by ensuring that the switch is partially blind. This
means that the switch is intelligent enough to know how to
forward the packet, but is unaware of the packets contents.
Whilst, in premise, this solution seems technically sound, and
evaluative tests prove it to be a reasonable performer with a
fair level of effectiveness, it would be important to ensure that
the weight of the random flow-entry sampling is ample enough
to ensure illegitimate flows are identified.

It appears that eavesdropping is generally a very difficult
attack to defend against, with not many solutions existing
solely to defend against it. Intrusion Detection Systems and
Intrusion Protection Systems can potentially be configured to
detect eavesdropping nodes, however the passive nature of the
attack makes it inherently difficult to detect. It appears that the
two existent solutions ([26], [15]) are both more geared
towards reducing the damage of any eavesdropping attacks. A
more effective solution would attempt to prevent any sort of
eavesdropping taking place. This could be achieved by
employing some strong encryption method, and giving only
authenticated data-paths and controllers the correct key to
unencrypt packets.

TABLE II. SUMMARY OF ATTACK MITIGATION

Targeted Attack Affected Security Aspects Proposed Solution SDN Layer

Data Control-

Data link

Control Control-

App link

Applicatio

n

DoS/DDoS Availability AVANT-GUARD [16] x

CPRecovery [17] x

FlowRanger [18] x

VAVE [20] x

Entropy-based detection [22] x x

Hijacked/Rogue

Controller

Availability,

Confidentiality, Integrity

Byzantine Fault Tolerance [9] x

Trust Management System [23] x x

AuthFlow [25] x x x x

PERM-GUARD [27] x x x

Malicious

Applications

Confidentiality, Integrity FortNOX [21] x x x x

Rosemary [28] x x

LegoSDN [29] x x x

OperationCheckpoint [10] x x x

Control-Data Link

Plane Attacks

(MITM, Black-

hole)

Availability,

Confidentiality, Integrity

BroIDS [2] x x x x x

Eavesdropping Confidentiality Random Route Mutation x x

Combat-Sniff [26] x x

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

121 | P a g e

www.ijacsa.thesai.org

F. Summarising solutions

Each of the attack solutions explored above have been
evaluated in terms of their strengths and weaknesses. Solutions
have been comparatively analysed in order to identify the gaps
that are yet to be filled in terms of SDN security. In order to
summarise the evaluative exercise above, a table has been
produced, showing each of the solutions, the attack type they
aim to defend against, the logical SDN layer they operate at
and the security aspects they aim to maintain (table 2).

IV. DISCUSSION AND CONCLUSION

SDN is a promising platform which has been extensively
used in research settings due to its highly configurable nature,
allowing researchers and experimenters to create bespoke
forwarding rules in their environments. It is yet to have made
much of an impact in large-scale production settings, due to
inherent security issues introduced through the separation of
the control and data planes. This paper explored a number of
key threats unique to the SDN platform and discusses for each
a number of mitigations that have been proposed. It appears
that currently one of the weaker areas of SDN security is the
link between the application layer, and the network that lies
underneath it. Ensuring that this is secure is vital – not only
does this link carry sensitive information about the network
state, but in production settings, it could potentially carry
sensitive client data. By developing robust application
frameworks, it would help for a standardised method of
developing and deploying applications. This reduces the
chance for poor configuration/development and makes it easier
to create generic security applications which can be applied to
a large majority of SDN deployments.

A general theme which can be observed from the suggested
solutions is that they aim to defend against just one particular
type of attack, and do not provide overall protection in the
network setting. To ensure a secure software-defined network,
parallel implementation of combinations of the proposed
schemes would have to be considered. This could achieve
larger amounts of computational overhead and creates chances
of conflicting configurations. These issues lead to the possible
introduction of further vulnerabilities to the environment and
the chance of false positives when scanning the network for
attacks. To provide more thorough and well-rounded security
the integration of an intrusion detection system in the controller
of the network which identifies and prevents attacks based on
pre-defined attack signatures could be implemented. The fact
that traffic data is collected in the data plane and passed onto
the controller for analysis provides a natural environment to
implement IDS. It is clear, however, that with adding security
mechanisms such as IDS to the controller, more overhead will
be generated and performance of the network in terms of its
throughput and the latency achieved could be negatively
affected. To improve security in SDN infrastructures, it would
be important to find a balance in the trade-off between security
and performance by implementing a thorough, network-wide
security regime whilst achieving desirable levels of
performance. Before implementation of SDN can become wide
spread this would need to be researched and developed further.

REFERENCES

[1] N. Feamster, J. Rexford and E. Zegura, "The Road to SDN: An
Intellectual History of Programmable Networks", ACM SIGCOMM
Computer Communication Review, vol. 44, no. 2, pp. 87-98, 2014.

[2] S. Scott-Hayward, G. O’Callaghan and S. Sezer, “SDN Security: A
Survey” in “Future Networks and Services”, November 2013.

[3] M. Dabbagh, B. Hamdaoui, M. Guizani and A. Rayes, 'Software-defined
networking security: pros and cons', IEEE Communications Magazine,
vol. 53, no. 6, pp. 73-79, 2015.

[4] I. Ahmad, S. Namal, M. Ylianttila and A. Gurtov, 'Security in
Software Defined Networks: A Survey', Communications Surveys &
Tutorials, 2015.

[5] D. Kreutz, F. Ramos, P. Esteves Verissimo and C. Esteve Rothenberg,
'Software-Defined Networking: A Comprehensive Survey', Proceedings
of the IEEE, vol. 103, no. 1, pp. 14-76, 2015.

[6] Z. Hu, M. Wang, X. Yan, Y. Yin and Z. Luo, 'A Comprehensive
Security Architecture for SDN', 18th International Conference on
Intelligence in Next Generation Networks, pp. 30-37, 2015.

[7] L. Schehlmann, S. Abt and H. Baier, 'Blessing or curse? Revisiting
security aspects of Software-Defined Networking', International
Conference on Network and Service Management (CNSM), pp. 382-
387, 2014.

[8] D. Kreutz, F. M. Ramos, and P. Verissimo, “Towards Secure and
Dependable Software-Defined Networks,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’13. ACM, August 2013, pp. 55–60.

[9] H. Li, P. Li, S. Guo, and S. Yu, “Byzantine-resilient secure software-
defined networks with multiple controllers,” in Communications (ICC),
2014 IEEE International Conference on. IEEE, 2014, pp. 695–700.

[10] S. Scott-Hayward, C. Kane, and S. Sezer, “OperationCheckpoint: SDN
Application Control,” in 22nd IEEE International Conference on
Network Protocols (ICNP). IEEE, 2014, pp. 618–623.

[11] J. Hizver, 'Taxonomic Modelling of Security Threats in Software
Defined Networking', BlackHat Conference, pp. 1-16, 2015.

[12] S. Sezer, S. Scott-Hayward, P. Chouhan, B. Fraser, D. Lake, J.
Finnegan, N. Viljoen, M. Miller, and N. Rao, “Are we ready for SDN?
Implementation challenges for software-defined networks,”
Communications Magazine, IEEE, vol. 51, no. 7, 2013

[13] E. de la Hoz, R. Paez-Reyes, G. Cochrane, I. Marsa-Maestre, J. Moreira
Lemus and B. Alarcos, "Detecting and Defeating Advanced Man-In-
The-Middle Attacks against TLS", International Conference on Cyber
Conflict, pp. 209-221, 2014.

[14] H. Dai, Q. Wang, D. Li and R. Chi-Wing Wong, "On Eavesdropping
Attacks in Wireless Sensor Networks with Directonal Antennas",
International Journal of Distributed Sensor Networks, pp. 1-13

[15] F. Jiang, C. Song, H. Xun and Z. Xu, "Combat-Sniff: A Comprehensive
Countermeasure to Resist Data Plane Eavesdropping in Software-
Defined Networks", American Journal of Networks and
Communications, vol. 5, no. 2, pp. 27-34, 2016.

[16] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & Communications Security. ACM, 2013, pp. 413–424.

[17] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication
component for resilient OpenFlow-based networking,” in Network
Operations and Management Symposium (NOMS), 2012 IEEE. IEEE,
2012, pp. 933–939.

[18] L. Wei and C. Fung, "FlowRanger: A Request Prioritizing Algorithm for
Controller DoS Attacks in Software Defined Networks", Next
Generation Networking Symposium, pp. 5254-5259, 2015.

[19] N. Dao, J. Park, M. Park and S. Cho, "A feasible method to combat
against DDoS attack in SDN Network", International Conference on
Information Networking, pp. 309-311, 2015.

[20] G. Yao, J. Bi, and P. Xiao, “Source address validation solution with
OpenFlow/NOX architecture,” in 19th IEEE International Conference
on Network Protocols (ICNP). IEEE, 2011, pp. 7–12.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

122 | P a g e

www.ijacsa.thesai.org

[21] P. Porras, S. Shin, V. Yegneswaran, M. Fong, M. Tyson, and G. Gu, “A
security enforcement kernel for OpenFlow networks,” in Proceedings of
the first workshop on Hot topics in software defined networks. ACM,
2012, pp. 121–126.

[22] S. Mousavi and M. St-Hilaire, "Early Detection of DDoS Attacks
against SDN Controllers", International Conference on Computing,
Networking and Communications, pp. 77-81, 2015.

[23] O. O. MM and K. Okamura, “Securing Distributed Control of Software
Defined Networks,” in International Journal of Computer Science &
Network Security, vol. 13, no. 9, 2013.

[24] O. M. Othman and K. Okamura, "Hybrid Control Model for Flow-Based
Networks," in the international conference COMPSAC 2013 - The First
IEEE International Workshop on Future Internet Technologies, Kyoto,
Japan, 2013.

[25] D. M. F. Mattos, L. H. G. Ferraz, and O. C. M. B. Duarte, “AuthFlow:
Authentication and Access Control Mechanism for Software Defined
Networking.”, pp. 1-7.

[26] Q. Duan, E. Al-Shaer and H. Jafarian, "Efficient Random Route
Mutation considering flow and network constraints", Conference on
Communications and Network Security (CNS), pp. 260-268, 2013.

[27] M. Wang, J. Liu, J. Chen, X. Liu and J. Mao, "PERM-GUARD:
Authenticating the Validity of Flow Rules in Software Defined
Networking", International Conference on Cyber Security and Cloud
Computing, pp. 127-133, 2015.

[28] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang, “Rosemary: A Robust, Secure, and
HighPerformance Network Operating System,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2014, pp. 78–89.

[29] B. Chandrasekaran and T. Benson, “Tolerating SDN application failures
with LegoSDN,” in Proceedings of the 13th ACM Workshop on Hot
Topics in Networks. ACM, 2014, p. 22.

[30] P. Zanna, B. O'Neill, P. Radcliffe, S. Hosseini and S. Ul Hoque,
'Adaptive threat management through the integration of IDS into
Software Defined Networks', 2014 International Conference and
Workshop on the Network of the Future, pp. 1-5, 2014.

