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Abstract—Software Defined Networking is a paradigm still in 

its emergent stages in the realm of production-scale networks. 

Centralisation of network control introduces a new level of 

flexibility for network administrators and programmers. 

Security is a huge factor contributing to consumer resistance to 

implementation of SDN architecture. Without addressing the 

issues inherent from SDNs centralised nature, the benefits in 

performance and network configurative flexibility cannot be 

harnessed. This paper explores key threats posed to SDN 

environments and comparatively analyses some of the 

mechanisms proposed as mitigations against these threats – it 

also provides some insight into the future works which would 

enable a securer SDN architecture. 
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I. INTRODUCTION 

Software Defined Networking is a paradigm that emerged 
in around 1995 with the introduction of Active Networking – 
programmable functions integrated within network 
architecture, enabling programmers to innovate the way in 
which they function [1]. Whilst the roots of SDN lay in 
technologies first introduced over 20 years ago, the concept is 
still extremely relevant to this day and is considered by many 
to be the new face of networking [2]. Historically, packetised 
data-networks have consisted of hardware-based networking 
devices operating at Layers 2 and 3 of the OSI model. Software 
is then implemented on top of these layers, to provide other 
pieces of vital network functionality, i.e. transport control for 
the network, e-mail applications, file transfer etc. 

In traditional networks, network hardware such as routers 
and switches can be logically divided into two individual 
planes; the data plane and the control plane. The data plane is 
concerned with the forwarding of data-packets, whilst the 
control plane makes packet-forwarding decisions based on the 
routing protocols configured on the device. The tightly bundled 
nature of these two planes introduces a level of rigidity – 
network operators cannot easily manipulate forwarding 
decisions on a per flow basis. SDN aims to challenge this by 
separating the control and data planes. This segregation allows 
network programmers to develop their own controllers, pieces 
of software with a global view of the network [2]. This allows 
for a level of control that was not possible without a great deal 
of work in traditional network architectures due to the tightly 
bundled nature of data-plane and control-plane. In SDN, rules, 
known as flows, based on a set of conditions (e.g. all HTTP 

packets over a particular size) are created centrally by network 
admins, installed on the controller and then pushed out to 
network devices in the data plane. Devices store the flows in 
their local cache, and in the event that they receive a packet, 
they check the currently stored flows for one matching the 
received packet. These flows govern the way in which packets 
should traverse the network [3], leading to a network which is 
easier to manage due to a centralisation of control. 

SDN gives network administrators the ability to collect 
traffic statistics from the network devices and pass these onto 
the control plane for processing. This allows for in depth 
security-analysis without any negative effects on the 
performance of the data-plane [4]. SDN makes it possible to 
configure security policies centrally at the controller and push 
them out network wide. This is in stark contrast to the 
painstaking process of individually configuring access control 
lists and security policies on every router or switch in the 
network [5]. SDN allows easy integration of third-party 
software into the environment via the SDN framework, 
meaning that plugin-like applications can be deployed to aid 
certain security & non-security related tasks [4]. As SDN 
controllers hold a global view of the network, they introduce 
the possibility of network-wide intrusion detection systems, 
which utilize the traffic statistics they receive from the network 
devices. As devices are required to communicate back to the 
controller at regular intervals, it ensures that compromised 
devices are found quickly and reduces the chances of false 
positives, an issue that is still yet to be solved in the context of 
traditional networks [3]. 

Whilst some of the benefits of an SDN-based infrastructure 
are clear, there are also some apparent shortcomings, which 
need to be addressed before implementation of the paradigm 
can become widespread. Programmers are able to leverage the 
centralised control in SDN architectures to build reactive, self-
healing mechanisms to mitigate against traditional network 
attacks [6]. However, the fact that SDN changes the way that 
networks operate entirely is likely to bring about new attack 
methods that can be used to exploit the individual components 
of an SDN architecture, and the ways in which they interact 
(i.e. devices-to-controller, controller-to-controller and 
controller-to-application). For example, an attacker 
successfully compromising the controller of a network is 
particularly lethal, as this single-point of failure can render the 
entire network inaccessible [4]. 

The introduction of a centralised controller completely 
changes a networks architecture. This is what makes SDN so 
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unique in comparison to traditional networks. With the 
centralised point of control, all other layers need to maintain an 
interface over which they can exchange important information. 
Commonly, the interface utilised by the data-plane and control-
plane to communicate with one-another is known as the 
Control-Data-Plane interface, or the Southbound Interface. 
SDN Applications also reside in a conceptual application layer, 
and communicate with the controller through the 'Northbound 
Interface' or Control-Application-Plane interface. Applications 
residing on this layer have the ability to solicit directly with the 
controller and obtain useful information about the networks 
logical/physical state. This is advantageous to programmers 
writing SDN applications, as their programs can access large 
quantities of meaningful, real-time data. With this, however, 
comes great risk – adversaries may be able to program their 
applications to utilise this useful information to form attacks, 
and compromise the availability, integrity and confidentiality 
of data travelling within the network. 

This change in network architecture brings around 
juxtaposition. On one hand, the increased  flexibility and 
ability to innovate with network applications and network 
control, gives programmers the ability to better protect against 
traditional network attacks i.e. TCP-based DoS attacks, 
eavesdropping, man-in-the-middle attacks. On the other hand, 
the links between control-plane, data-plane and application-
plane bring about new attack platforms for adversaries 
attempting to illegitimately use network services.  Much 
research has been carried out over the years on traditional 
security attacks, however this paper focuses on attacks which 
are exclusive to SDN due to changes in the architecture. The 
solutions covered below attempt to mitigate attacks targeting 
these SDN-exclusive attack platforms, and ensure that 
adversaries cannot utilise the change in architecture to their 
own advantage. 

The remainder of this paper is structured as follows: section 
II explores some of the security threats aimed at SDN 
environments; section III discusses some of the currently 
proposed mitigations and provides a comparative analysis of 
them; section IV discusses the current gaps in security and how 
these can be filled going forward, and section V concludes the 
paper, with an insight into future direction 

II. THREATS TO SECURITY IN SDN ENVIRONMENTS 

Networks running under the SDN paradigm still have the 
same security requirements as traditional network settings, as it 
is likely that they will be carrying at times, private and 
confidential information [7]. SDN completely changes the 
architecture and the inter-communicative aspects of the 
components in the network - from this arises a completely new 
platform for attackers looking to perform security-breaching 
attacks. This leads to a need for similar levels of security as 
traditional networks, but to defend against threats of a different 
nature [8]. This section of the paper examines some of these 
key threats and aims to justify their importance. 

A. DDoS/DoS Attacks (Flow-decision Requests) 

1) DDoS (Flow-decision Requests): Numerous types of 

conventional DDoS attacks can be carried out in an SDN 

environment, but it is a variation utilising forged flow entries 

which can be harnessed by an adversary in order to target a 

controller and compromise its availability. By flooding the 

controller with requests for a flow-decision, the controllers 

compute resources could become overwhelmed, and the 

controller would be rendered unable to deal with any 

legitimate requests it receives [2]. By targeting the centralised 

point of control (i.e. the controller) it renders the entire 

network largely unusable. Whilst data-paths currently in the 

network may be able to function temporarily with a downed 

controller, once the hard timeout of rules in their table has 

expired they will be required to solicit with the controller 

again, which will be unable to deal with requests. If an 

attacker(s) is able to be persistent with their flooding, this will 

eventually cause the unavailability of all network 

functionality. 

2) DoS Attacks (Switch flow-table entry flooding): At the 

data plane level, falsely created flow-entries can be flooded to 

other devices in order to consume the space in their flow entry 

tables. This leaves the forwarding devices unable to add any 

legitimate flow entries to their tables [3]. This results in 

devices being unable to incorporate subsequent flow-updates, 

leaving the network in a broken, disparate state. One of the 

key issues with the data-plane devices within Software 

Defined architectures is that of the switches inabilities to 

differentiate between legitimate flow requests and illegitimate 

ones. This flaw allows for attackers to perform successful DoS 

attacks at the Data plane level by filling the switches flow-

buffer with false requests [4]. 
Whilst it would be possible for an adversary to target an 

individual data-path and attempt to halt its availability, it is far 
more likely that the controller would be targeted, effectively 
creating and spreading a system-wide lapse in availability. The 
prospect of this can be potentially devastating, particularly in 
production settings where services seeing high usage will be 
unusable to clients and employees. Furthermore, with 
availability for all clients removed, an adversary can plan and 
carry out further attacks which may aim to compromise the 
integrity and confidentiality of sensitive data on the network.  
For these reasons the above DDoS/DoS attacks have been 
mentioned in this paper and are considered amongst the most 
important attack types. 

B. Hijacked/Rogue Controller 

The controller can be thought of as the centralized ‘brain’ 
of an SDN. It controls the whole network from one point, 
making it arguably the most vital component of SDN 
architecture. An attacker that manages to compromise the 
controller essentially has control over the whole network [9]. 
Ability to control the actions of the controller would allow the 
attacker to manipulate flow entries in any way that he/she 
choose, e.g. stopping certain packet types reaching their 
destination, re-directing packets to malicious nodes in the 
infrastructure. In conjunction with this, the attacker could aim 
to compromise a particular forwarding-device in the network 
and enable it to operate as a ‘man-in-the-middle’ or black-
hole/grey-hole node. This would allow the attacker to 
potentially drop, alter or inspect the contents of any packet it 
receives [10]. Another possibility is that an attacker 
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successfully registers a 'rogue' controller in the control plane of 
the network. With this rogue controller in place the adversary 
may be able to influence/halt the availability of other 
controllers, change rules installed in data-paths caches and 
effectively halt/manipulate the workings of applications in the 
applications layer. 

Any attack that targets the controller/controllers in SDN 
architecture can have potentially devastating effects. Whilst the 
centralised nature and ability to collate information at one point 
can be massively advantageous to network 
administrators/programmers, in the wrong hands it could be 
utilised to spearhead attacks on the integrity of control 
messages/sensitive application information, the availability of 
important services to a systems users, and the confidentiality of 
sensitive user information utilised by applications in the 
application layer. Any approach attempting to successfully halt 
hijacked/rogue controllers should focus on ensuring the 
authenticity of the controller, before allowing it to make any 
changes to the network. 

C. Malicious Applications 

Due to the allowance of the SDN framework for integration 
of third-party applications, the issue of malicious applications 
arises. Applications exhibiting malicious behavior within an 
SDN environment can have catastrophic consequences, similar 
to that of a compromised controller [2]. Authentication and 
authorization of an application to operate within an SDN 
environment is difficult to enforce. Applications relying on 
deep packet-inspection techniques to operate can pose potential 
risks to the network – they may be able to indirectly control the 
entire network through the information they have collected 
during packet-inspection [11]. 

The increased amount of data, and the way in which it is 
centrally located is what gives malicious applications the 
ability to threaten the integrity and confidentiality of 
user/network information that they have access to. Securing the 
northbound interface is a difficult task, as each application 
utilising it may require access to a unique subset of information 
from the controller. In order to successfully monitor this, some 
kind of strict, information-access policy need to be enforced. 
This ensures that an application declares which information it 
will need and is only able to access these. This could ensure 
that applications are not covertly stealing or using information 
from other applications. Authenticity must also be ensured, 
before an application is able to communicate with the 
controller. 

D. Control-Data Plane Link Attacks 

Another key area in SDNs which presents opportunities for 
attackers would be the link between the control plane and the 
data plane. The OpenFlow specification defines use of TLS 
(Transport Layer Security) as optional [12], making this a 
weak-point and clearly susceptible to various attacks, i.e. man-
in-the-middle attacks, black-hole attacks. 

1) Man-in-the-middle Attack: A man-in-the-middle type 

attack takes place when a malicious node establishes itself 

between the controller and the data-paths residing on the data 

plane. Instead of directly forwarding the messages straight to 

the controller (or vice-versa), the 'man-in-the-middle' node is 

able to manipulate/ or inspect the contents of packets [13]. 

2) Black-hole Attack: A black-hole type attack could also 

be performed, in which a node establishes itself in between a 

targeted device and the controller, and simply drops any 

packets it receives without forwarding them to the controller. 

This results in a breakdown of network communications and 

renders the services unavailable to legitimate users [3]. 
If an attacker does manage to establish itself as an 

intermediary between the control plane and data plane, it can 
potentially be devastating to the entire network. The man-in-
the-middle type attack is a direct attack on the integrity of 
control messages between network devices in the data plane 
and the controller. An adversary can change control messages 
and shape the way the network is formed to a way 
advantageous to them. On the other hand, the black-hole type 
attack is a direct attack on the availability of the networks 
services. If all messages between network devices and the 
controller are not being forwarded by the malicious node, it 
will inevitably result in a breakdown in communication, with 
devices in the data plane unable to solicit the controller when 
necessary. This link between control and data plane is clearly a 
weak-point, and acts as a ripe attack platform for adversaries. It 
is therefore extremely important that it is secure before SDNs 
see widespread usage in production settings. 

E. Eavesdropping Attacks 

Adversaries attempting to gain illegitimate access to SDN 
networks or halt service availability may find it advantageous 
to eavesdrop (the act of illegitimately capturing and inspecting 
the packets flowing over a connection) on certain connections 
in the network [14]. This may allow them to gather meaningful 
information which can then be used to carry out more intrusive 
attacks. Eavesdropping attacks have long been carried out in 
traditional network settings – wireless architectures are 
particularly weak due to their over-the-air transmissions. 
However, in the context of SDN, eavesdropping can be carried 
out to inspect the packets traversing the link between control-
data plane, and also exclusively at the data plane. At the data 
plane, [15] discusses a ease-of-use 'listening' mode integrated 
into OpenFlow switches can be utilized by a malicious 
adversary (that has been able to compromise the switch) in 
order to inspect the packets transmitted by surrounding 
switches, allowing attackers to learn important control 
information. In a sense, eavesdropping carried out at the 
control and data plane is more of a passive attack and does not 
directly affect the availability, confidentiality or integrity of 
data. It does, however, empower attackers to carry out further 
attacks which compromise these security aspects. 

In the context of eavesdropping carried out at the 
Application-Control Plane link, however, the confidentiality of 
sensitive information can be directly compromised. A 
malicious adversary can learn information pertaining to a 
particular user if they manage to eavesdrop on a connection 
transmitting sensitive application data. This makes eaves-
dropping a particularly serious attack – confidentiality must be 
ensured before critical applications carrying sensitive 
information can be deployed in an SDN-environment. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

116 | P a g e  

www.ijacsa.thesai.org 

F. Side by Side Comparison of Attacks 

The following table summarises the above investigation 
and allows us to see the layers of abstraction that each attack 
affects in the SDN-architecture, and the specific security 
aspects that they could potentially compromise. 

TABLE I.  COMPARISON OF SDN ATTACK TYPES 

Attack 

Targeted 

SDN 

Layer 

Affected Security Aspect 

Availab

ility 

Confidentia

lity 
Integrity 

Distributed Denial 

of Service 

Control, 

Data 
x   

Denial of Service 
Control, 

Data  
x   

Hijacked/ 

Rogue 

Controller 

Control, 

Data, 

App 

x x x 

Malicious 

Applications 
App   x x 

Man-in-the-middle 

Control, 

Data, 

Control-

data link 

 x x 

Black-hole 

Control, 

Data, 

Control-

data link 

x x  

Eavesdropping 

Control, 

Data, 

App 

 x  

Each attack investigated in this section has been, or still is, 
fairly common in the realm of traditional networks. The 
interesting part is, that with the introduction of new attack-
platforms inherent from SDNs architectural changes, comes 
variations of the attack which are then exclusive to SDNs. 
Whilst the traditional variations of each of these attacks can be 
dealt with in a more appropriate, effective manner due to the 
centralised nature of SDN, it is these SDN-exclusive variations 
which pose the largest challenge and that need to be given 
attention when moving forward with SDN security. The 
following section aims to look at currently proposed solutions 
to the above attacks and evaluates their effectiveness. 

III. MITIGATIONS AGAINST SECURITY CHALLENGES IN 

SDN 

The previous section defined some of the key threats to 
both the control and data planes in the context of SDN 
environments. The separation of these planes leads to highly 
configurable networks; however it also introduces the 
possibility of a number of security threats. This section 
explores some of the mitigations proposed for these individual 
threats, and then introduces some network-wide solutions 
which aim to secure both the control and data plane [2]. 

A. DDoS/DoS Attack Mitigations 

DoS Attacks on SDN networks can be carried out at both 
the control and data plane levels. Below are a number of 
solutions; some specifically aim to defend the control plane, 
some the data plane, and others provide protection to both of 
these planes. 

Seungwon Shin et al. [16] introduce a solution for TCP 
based control plane DoS attacks – AVANT-GUARD. This 
solution consists of two components; a Connection Migration 
mechanism used in establishing useful TCP sessions from 
failed ones, and Actuating Triggers which enable data plane 
devices to activate flow rules under certain pre-defined 
conditions. Connection Migration proxies the TCP handshake 
that takes place when nodes initiate a TCP connection, and 
ensures that the handshake is successfully completed and the 
session established before allowing any flow entries pertaining 
to this session to be forwarded to the controller. This reduces 
the possibility of TCP-SYN packet flooding attacks on the 
controller as the handshake will not have been completed for 
these sessions. The Actuating Triggers mechanism introduced 
in [16] also reduces the computational load incurred by the 
controller, by allowing devices to activate certain flow rules in 
their tables under predefined conditions. This reduces the 
number of transmitted flow-requests. Evaluative tests prove 
that in the presence of a TCP-SYN based DDoS attack, the 
response time of the controller to legitimate flow requests 
increases by a negligible amount in the order of milliseconds, 
along with the percentage of overhead incurred [16]. Whilst the 
performance of AVANT-GUARD is desirable, the approach is 
generally limited due to the fact that it targets one particular 
variation of the DDoS attack (TCP-SYN based attacks). An 
option would be to deploy this solution alongside other DDoS 
prevention mechanisms targeting other attack variations, 
however this configuration could become cumbersome and 
resource intensive. Instead, a solution defending the control 
plane from a wide variety of DDoS attack types would be more 
desirable. 

Paulo Fonseca et al. [17] present a novel mechanism to 
prevent control plane based DoS attacks - CPRecovery. This 
replication based component allows for the handing-over of 
control from one controller, failing due to the presence of a 
saturation attack, to a secondary controller. To achieve this, 
switches check for the presence of a properly operating 
controller by sending an inactivity probe. If this probe 
determines inactivity in the controller, a connection is made to 
a secondary controller which assumes the role of the failed one. 
To ensure this process is seamless, the initial primary controller 
sends state update messages to the secondary controllers in the 
network [17]. This multi-layer approach does provide 
resilience, and unlike AVANT-GUARD [16], it provides the 
control plane with protection from a wide variety of attacks. It 
is, however, noted in [17] that once the secondary controller 
assumes a primary role, it is then susceptible to DoS attacks 
itself. One further downside to CPRecovery is its performance. 
Due to the overhead incurred from the instantiation and 
connection of recovery controllers, CPRecovery can be quite 
slow [17], with response times far higher than that of AVANT-
GUARD. It would appear that this is a trade-off for the more 
thorough protection offered in [17]. 

Presented in [18] is FlowRanger, a proposal described as a 
request prioritizing algorithm for control plane-based DoS 
attacks. At a fundamental level, FlowRanger implements a 
priority-based scheduling system, with its key metric being that 
of trust-values held by each node in a network. Controllers 
implementing FlowRanger are able to evaluate the trust values 
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of each node they are receiving requests from and buffer them 
in separate priority queues [18]. Other proposals ([16], [17]) 
implement a rate-limiter for the amount of requests which can 
be sent to the controller, however this results in the dropping of 
some legitimate requests. This is clearly an issue; in production 
environments it is not acceptable for legitimate flow-requests 
to be dropped. FlowRanger challenges this with its priority 
queueing mechanism; suspected attacking requests will still be 
served, albeit at a lower priority than others. This works well, 
for example, if a legitimate switch is having issues and is 
having to retransmit flow-requests to the controller. It will be 
initially buffered in a lower priority queue, but eventually the 
request will be served. This means that once the switch has 
established itself and replenished its flow-cache with correct 
rules, its trust value will increase and its requests will return to 
higher priority queues. FlowRanger differs from previous 
implementation in that its priority queues are implemented at 
the controller, instead of in a distributed manner. This provides 
a further layer of protection (as long as the controller is not 
compromised). Simulation results also show that the 
centralised nature of this mechanism make it a higher 
performer than previously proposed solutions [18]. Reference 
[19] introduces a method utilizing user-behaviour analysis. 
Whilst this sounds effective in premise, the adoption of strong 
assumptions regarding the number of flow-requests generated 
by users leaves a lot to be desired. The source IPs of requests is 
tracked by the controller and if the profile of packets received 
from that IP fall into a certain category, the IP is marked as 
malicious. The controller then subsequently drops requests 
from that IP. This suffers from similar issues to AVANT-
GUARD [16], in which genuine requests from non-malicious 
users may be ignored. 

References [16], [17], [18] and [19] all focus on control 
plane-based DoS/DDoS attacks. Whilst it is arguably more 
vital that the control plane is protected, data-plane based 
attacks do exist and require ample protection. In [20] a data-
plane oriented DoS mitigation known as Virtual source 
Address Validation Edge mechanism (VAVE) is proposed. 
VAVE is pre-emptive as it attempts to detect the presence of a 
node using IP-spoofing techniques to mask its real identity – 
this type of behaviour often leads to DoS attacks. By checking 
incoming packets against entries in the flow-table, the VAVE 
interface in the network determines if the packet is a 
recognised type – if not, the validity of the packet is checked 
against a list of pre-defined rules [20].  This could potentially 
cause issues, as if the pre-defined list of rules is not thorough, 
certain legitimate packets could be dropped, causing 
availability issues for genuine clients. As this mitigation only 
defends against data plane attacks, it would leave the controller 
susceptible to DoS attacks. To provide thorough protection 
against all types of DoS, parallel implementation of VAVE 
alongside AVANT-GUARD or CPRecovery would be more 
appropriate. This parallel implementation does however come 
with the downside of high computational cost and a chance of 
conflicting configurations. 

One major issue with the currently proposed solutions for 
DoS/DDoS attacks is that they wait for the adversary to strike, 
and then attempt to deal with the aftermath. In the case of [16], 
[17] and [21], it is possible for the network to be rendered 

temporarily unavailable before any attempt to mitigate is made. 
FlowRanger [18] challenges this to a degree, and in general 
appears to be the strongest solution from the selection reviewed 
above. One solution which does put emphasis on early DDoS 
detection is presented in [22]. The scheme utilises a measure of 
entropy variation in the attack packets destination IP field. The 
method claims to stop the attack within the first 500 
transmitted attack packets. Whilst this is early, it is likely that a 
reasonable amount of damage will have been done during this 
period of time. It seems clear that defending against attacks in 
the control plane are two entirely separating things. Networks 
would benefit greatly from a solution which simultaneously 
protects both of these planes, whilst still achieving a reasonable 
level of performance. 

B. Hijacked/Rogue Controller Mitigations 

Unauthorised access to the controller in an SDN 
environment has been identified as one of the most potent 
threats. Various approaches towards protecting an SDN from 
unauthorised access at the control plane level have been 
proposed. The authors in [9] suggest multiple-controller 
architecture coupled with a ‘Byzantine Fault-Tolerance’ 
mechanism, in which a number of controllers dictate to the 
switches in the environment. Each switch in the network is 
connected to a set of controllers, and when one controller fails 
due to a successful attack, another controller takes over and 
connection with the failing one is severed. This particular 
proposal utilises a high level of resources; however an 
algorithm is introduced to reduce resource consumption by 
determining the optimal amount of controllers connected to 
each switch based on latency requirements and the tolerance of 
the switch to faulty controllers. Simulation results presented in 
[9] suggest that the method achieves reasonable levels of 
performance when the size of the data plane is small; however, 
as the number of switches grows the amount of controllers 
needed also increases, resulting in lower performance in larger-
scale environments. It could be said that the proposal in [9] 
suffers from the same flaws as CPRecovery, in that even 
though a replacement controller gains control of the network, 
once it has taken control it is then subject to the same attacks as 
the previous controller. It would appear that the most effective 
solutions provide defense against the occurrence of an attack, 
and not just provide fault-tolerance and resilience should the 
attack occur. 

In contrast to the above proposal, the authors of [23] 
introduce a mechanism aiming to secure SDNs by forcing them 
to operate in a distributed manner. An earlier work, [24], 
presented by the same authors defines the workings of this 
hybrid, distributed SDN system, in which the controller 
continues to centrally define flow rules, but puts algorithms in 
place to enable switches to spread flows to other devices in the 
network. In [23], a number of mechanisms are proposed which 
work cooperatively to provide security in this distributed 
environment. The use of a Trust Manager System is 
introduced. This is an actively maintained list containing ID’s 
for all of the devices currently operating in the network. This is 
then coupled with encrypted transmissions of all flow entries 
occurring between controller- data plane device and data plane 
device– data plane device. An authentication mechanism is put 
in place to allow each data plane device in the network to 
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check the authenticity and validity of the node that a flow 
originated from. This approach is in stark contrast to [9] which 
relies simply on a fault-tolerance mechanism. As mentioned in 
section II.C.2 of this paper, [23] enforces the use of TLS in all 
of its controller-to-equipment transmissions, making these 
communications inherently secure. One inherent issue with the 
distributed nature of [23] would be the difficult process of 
configuring and debugging issues with it. Since the overall 
proposal consists of a number of linked mechanisms, a fault in 
one place would bring down the entire system, or at least leave 
it partially operating and open to attacks. The process of 
accurately pinpointing the point of failure could be a difficult 
process. Since the nature of SDN forces networks to operate in 
a centralised manner, it would seem logical to develop 
centralised security mechanisms to complement it. 

No simulation results are presented in [23] leading to the 
assumption that the method may not have been subject to 
adequate testing as of yet - this would make [9] seem more 
reliable – however, the lower computational overhead incurred 
in [23] would make it more desirable in the network setting. 
The distributed architecture presented also appears to be more 
efficient, and its generic nature allows the use of any 
encryption method to be used as part of its implementation, 
making it a more flexible option [23]. One similarity between 
these two solutions is the fact that they both provide protection 
only to communications existing on the control plane and the 
control-data plane link. Presented in [25] is a method which 
provides protection for both the Control Plane and the Data 
Plane. AuthFlow prevents the access of unauthorised hosts to 
the network, and ensures that they are properly authenticated 
through the use of a RADIUS server. Extensible 
Authentication Protocol (EAP) is used to encapsulate any 
messages that hosts send to the RADIUS server, requesting 
authentication. An intercepting authenticator relays these 
messages to the controller, which then adds the host sending 
the packets to its list of authorised hosts. A particular strength 
of this proposal is that packets containing flow entry updates 
for other devices are not transmitted until both devices are 
successfully authenticated [25]. Whilst this approach provides 
strong protection and authorisation for legitimate hosts on the 
data plane, its weakness lies in its underlying technologies. 
EAP is generally considered as weak in the realm of 
authentication [26], and whilst it does allow the configurators 
to select their own authentication and encryption methods, any 
hacker with knowledge in traditional attacks should be able to 
force an entry into the network as a rogue data-path. 

Compared to the Byzantine Fault Tolerance mechanism 
described in [9] and the distributed security model in [23], 
AuthFlow appears to offer a more thorough solution, providing 
authentication and authorisation at both the control and data 
planes of an SDN environment. Test results presented in the 
AuthFlow paper suggest that the method successfully prevents 
unauthorised access of both data-plane hosts and controllers to 
the network, and does so in an efficient manner - with low 
computational and communicational overhead incurred, due to 
the low amount of controller input [25]. The AuthFlow 
mechanism also appears to be more scalable than the other two 
proposals in that it does not require more controllers to be 
added as the data plane increases its size; new devices can 

simply authenticate with the RADIUS server and be added to 
the trusted-device list stored at the controller. 

One further proposal which appears to offer strong 
authenticity, validity and integrity in terms of the flow rules 
installed in switches is PERM-GUARD [27]. Offering 
protection to at all layers of the SDN model (Control, Data, 
Application, and the links in between them), PERM-GUARD 
employs a scheme that manages the flow-rule production 
permissions of controllers and applications in an SDN 
infrastructure. If a controller or application wishes to push 
flow-rules out to data-paths on the network, they are required 
to authenticate themselves to a centralised authority by means 
of an identity based signature. Each legitimate controller or 
application will hold one of these signatures, and appropriate 
flow-production permissions will be set on authentication [27]. 
If one of these signatures cannot be presented, then the 
controller/application in question will be considered 
illegitimate. Whilst this does not necessarily stop attackers 
from attempting to hijack controllers or create rogue controllers 
and connect them to the network, it will deny them the ability 
to make malicious changes to the network structure by pushing 
rules out to data-paths in the network. 

It would appear that PERM-GUARD is the strongest of all 
the solutions covered in the above section – it provides 
protection for not only controllers but also applications. It is a 
great strength of any solution when it is able to provide cross-
layer protection from a common attack. In general it appears 
that it is not the task of stopping an already-identified 
hijacked/rogue controller that is difficult - it seems detecting 
them in the first place is the hard part. Preemptive mechanisms 
which prevent hijackers and rogue controllers from ever 
gaining access to the network would need to be developed in 
order to ensure that there is little to no chance of compromise. 

C. Malicious Application Mitigations 

Malicious applications are another dangerous threat in the 
context of SDNs. A compromised application or an application 
that has been programmed with malicious intent can allow an 
attacker to leverage control of the entire network [28]. 
Similarly, an application with buggy code can introduce 
vulnerabilities that attackers could exploit to gain unauthorised 
access to the network. The authors in [21] propose ‘FortNOX' 
– a mechanism which monitors the insertion of flow-rules from 
security applications to devices in the network. New flow-rules 
are first checked against all other existing flow rules on a 
receiving device, and in the presence of a conflict, the new 
flow is discarded and not added to the local cache. This 
mechanism allows admins to enforce a set of hard-coded rules 
which override any dynamically-created rules. This ensures 
false flows added to the network by malicious applications to 
direct traffic to compromised nodes will not be permitted [21]. 
One particular downfall of this approach is the fact that 
legitimate security-applications that rely on dynamic 
modification of flows within the network will not operate 
properly in the presence of admin-created hardcoded rules. The 
authors in [21] do not explore this scenario, so future work 
could relate to this area and introduce a permissions-based 
mechanism to allow certain dynamic flows to take precedence. 
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An alternative to the previous proposal, the authors in [28] 
present Rosemary - a small network operating system (NOS) 
which is ran in multiple instances on top of the control plane of 
an SDN. Each application running in the environment is 
executed within an individual instance of Rosemary, 
effectively isolating each application. This allows for close 
monitoring of every application deployed on the network in 
terms of the resources it uses and the packets it transmits or 
receives. As well as providing a platform for monitoring 
malicious activities of individual network applications, 
Rosemary provides a level of resilience in that if one 
application fails or crashes, others will continue to run inside 
their isolated instance of the NOS [28]. Rosemary’s description 
as a ‘robust, secure and high-performance NOS’ would concur 
with the results of evaluative test. Tests show that successful 
attack rates are very low in the presence of Rosemary, with 
high levels of performance achieved in terms of the throughput 
achieved and latency observed. This, however, comes with the 
downside of a high computational overhead, especially when 
compared to FortNOX which incurs relatively low levels of 
overhead [21]. 

Another proposal, LegoSDN [29] is conceptually similar to 
Rosemary in that it provides a layer of isolation between the 
controller and the application layer of an SDN environment. 
The key difference is that all applications are bundled together 
in one plane, whereas Rosemary implements a single container 
for each individual application. Whilst LegoSDN isn’t 
designed specifically for combatting attacks, it isolates 
applications that are identified as failing – a failing application 
being one of the key signs of the beginnings of an application-
based attack [29]. In this sense, LegoSDN provides a pre-
emptive mechanism – isolating potentially malicious apps from 
the network before they are able to cause damage. In 
comparison to FortNOX and Rosemary, LegoSDN does not 
provide a thorough enough mitigation against attacks. A 
parallel implementation of LegoSDN and FortNOX may be 
more appropriate, providing a type of first line and second line 
defence, respectively. 

OperationCheckpoint is introduced in [10] as an SDN 
application control system, taking into account both the 
information that an SDN application reads from the underlying 
network, and the rules and policies it pushes out to data-paths 
in the network. OperationCheckpoint employs a thorough set 
of user-defined permissions, covering all OpenFlow related 
tasks. Each application that then needs to be used will be 
mapped to a specific subset of these permissions. Applications 
will then be unable to perform any actions that lie outside the 
set of permissions it has been mapped to (unless a change is 
authorised by administrators/operators) [10]. This effectively 
stops applications created by malicious adversaries from 
capturing sensitive data or executing malicious commands in 
the data plane, because these actions need to be declared first. 
By enforcing this declaration of necessary functionality, it 
allows network operators to build bespoke permission sets and 
ensure they know precisely how each application is behaving. 

OperationCheckpoint seems to be the most thorough 
method of protecting an SDN infrastructure from malicious 
applications. In comparison to other solutions, it seems to 
perform better due to the simplistic nature of its permissions 

system. This is in contrast to certain solutions such as 
Rosemary, which in terms of its performance is lacking due to 
the fact that every application is ran in its own environment. 
This has the tendency to incur high levels of overhead. One 
feature of SDN is the fact that there are a set of common APIs 
that can be used at the northbound interface between 
applications and the controller. This is advantageous in the 
sense that it removes the possibility of cross platform 
vulnerabilities arising through poor configuration/coding of 
middleware. 

D. Control Plane and Data Plane Link Attack Mitigations 

The link between the control plane and data plane carries 
transmissions of flow-entries down to the data plane for 
devices to add to their local cache [28]. The specification for 
OpenFlow, the most widely used and supported protocol for 
SDN operations [2], specifies an optional implementation of 
Transport Layer Security (TLS) for this link, however as this is 
optional, many of the available controller APIs don’t enforce 
or support this option. For this connection to be completely 
secure, controller specifications would need to enforce this 
usage of TLS – providing secure encrypted transmissions and 
the authentication of entities at each end of the link. 

In addition to this, IDS style systems could be implemented 
to thwart man-in-the-middle and black-hole type attacks 
occurring on this particular link. The authors in [30] present a 
methodology in which the Bro IDS system is integrated with a 
Ryu-based Python controller. On reception of a packet the IDS 
utilises deep packet inspection techniques to inspect the packet 
and determine its source, destination, payload among other 
things. Acting as a signature based IDS, bad-traffic and 
malicious activities are pre-configured into the controller, and 
unknown packets are then checked against these signatures to 
identify the presence of malicious packets [30]. Evaluative 
tests carried out in [30] suggest that the response times of this 
mechanism are quite slow. This is due to the additional load 
incurred on the controller from integration of the IDS system. 

Due to the fact that the majority of attacks that take place 
within this link are variations on the traditional man-in-the-
middle and black-hole attacks, it may be possible to protect the 
Control-Data plane link via traditional means. That is not to 
say that this would be a thorough solution. As explored above, 
employing an IDS system to identify potentially malicious 
nodes forwarding messages across this link would ensure that 
falsified messages are not forwarded between data-paths and 
controllers, confidential data is not extracted, and that 
availability is not compromised by means of a black-hole 
attack. 

E. Eavesdropping Attack Mitigations 

Defending against eavesdropping in any environment can 
be a particularly difficult task. This is due to the passive nature 
of the attack; attackers can simply establish themselves as a 
node in the network and activate a listening mode. This enables 
them to view the stream of packets that traverses them. Since 
eavesdropping nodes will often appear to have similar 
behavioural characteristics to legitimate clients, it can be 
difficult to detect them. In an SDN environment, this difficulty 
is exacerbated with the introduction of new attack platforms 
stemming from the centralised nature. An example of this 
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would be the control-data plane link and the control-
application plane link. 

A passive approach to defending against eavesdropping in 
the data plane and the control-data plane link is presented in 
[26] as Random Route Mutation. Its premise lies in randomly 
changing the course of packet flow, such that the destination IP 
stays the same. By changing this flow it aims to obfuscate the 
packet traces collected by adversarial clients. Such a method 
has been implemented in traditional network settings with 
moderate success. Authors in [26] claim that simulation results 
prove the RRM mechanism to be both efficient and effective in 
reducing the number of successfully eavesdropped packets. 
The approach has also been implemented in a NOX controller, 
suggesting that it is applicable to SDN environments as well. 
One particular downfall of this approach is it does not consider 
the intelligence of the adversaries it attempts to defend against. 
Whilst the technique may instantly see considerable reduction 
in the amount of eavesdropped packets, should adversaries 
learn of the algorithms utilized for randomizing packet flows, 
they may be able to reverse the affects by applying the reverse 
algorithm to their packet captures. Whilst this passive approach 
provides some mitigation, it is clear that its effect is limited and 
a more thorough solution would be necessary should SDN see 
widespread usage in production settings. 

In [15], Combat-Sniff is introduced. Combat-Sniff 
implements both an active-detection mechanism which actively 
scans for eavesdropping nodes, and a pro-active defense 
method which aims to prevent malicious adversaries from 
being able to sniff packets in the first place. An attacker is able 

to force a switch into storing an illegitimate flow entry in its 
cache that forwards all packets to itself. Combat-Sniff combats 
this by taking random samples of the flow entries installed in 
each of the switches tables and checking their integrity [15]. 
Should a flow be identified as illegitimate, the appropriate port 
on the switch is shut down and packets are no longer 
transmitted through it. Combat-Sniff also aims to retain the 
confidentiality of information on packets travelling through a 
switch by ensuring that the switch is partially blind. This 
means that the switch is intelligent enough to know how to 
forward the packet, but is unaware of the packets contents.  
Whilst, in premise, this solution seems technically sound, and 
evaluative tests prove it to be a reasonable performer with a 
fair level of effectiveness, it would be important to ensure that 
the weight of the random flow-entry sampling is ample enough 
to ensure illegitimate flows are identified. 

It appears that eavesdropping is generally a very difficult 
attack to defend against, with not many solutions existing 
solely to defend against it. Intrusion Detection Systems and 
Intrusion Protection Systems can potentially be configured to 
detect eavesdropping nodes, however the passive nature of the 
attack makes it inherently difficult to detect. It appears that the 
two existent solutions ([26], [15]) are both more geared 
towards reducing the damage of any eavesdropping attacks. A 
more effective solution would attempt to prevent any sort of 
eavesdropping taking place. This could be achieved by 
employing some strong encryption method, and giving only 
authenticated data-paths and controllers the correct key to 
unencrypt packets. 

TABLE II.  SUMMARY OF ATTACK MITIGATION 

Targeted Attack Affected Security Aspects Proposed Solution SDN Layer 

Data Control-

Data link 

Control Control-

App link 

Applicatio

n 

DoS/DDoS Availability AVANT-GUARD [16]   x   

CPRecovery [17]   x   

FlowRanger [18]   x   

VAVE [20] x     

Entropy-based detection [22] x  x   

Hijacked/Rogue 

Controller 

Availability, 

Confidentiality, Integrity 

Byzantine Fault Tolerance [9]   x   

Trust Management System [23] x  x   

AuthFlow [25]  x x x x 

PERM-GUARD [27] x  x  x 

Malicious 

Applications 

Confidentiality, Integrity FortNOX [21]  x x x x 

Rosemary [28]   x  x 

LegoSDN [29]   x x x 

OperationCheckpoint [10]   x x x 

Control-Data Link 

Plane Attacks 

(MITM, Black-

hole) 

Availability, 

Confidentiality, Integrity 

BroIDS [2] x x x x x 

Eavesdropping Confidentiality Random Route Mutation x x    

Combat-Sniff [26] x x    
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F. Summarising solutions 

Each of the attack solutions explored above have been 
evaluated in terms of their strengths and weaknesses. Solutions 
have been comparatively analysed in order to identify the gaps 
that are yet to be filled in terms of SDN security. In order to 
summarise the evaluative exercise above, a table has been 
produced, showing each of the solutions, the attack type they 
aim to defend against, the logical SDN layer they operate at 
and the security aspects they aim to maintain (table 2). 

IV. DISCUSSION AND CONCLUSION 

SDN is a promising platform which has been extensively 
used in research settings due to its highly configurable nature, 
allowing researchers and experimenters to create bespoke 
forwarding rules in their environments. It is yet to have made 
much of an impact in large-scale production settings, due to 
inherent security issues introduced through the separation of 
the control and data planes. This paper explored a number of 
key threats unique to the SDN platform and discusses for each 
a number of mitigations that have been proposed. It appears 
that currently one of the weaker areas of SDN security is the 
link between the application layer, and the network that lies 
underneath it. Ensuring that this is secure is vital – not only 
does this link carry sensitive information about the network 
state, but in production settings, it could potentially carry 
sensitive client data. By developing robust application 
frameworks, it would help for a standardised method of 
developing and deploying applications. This reduces the 
chance for poor configuration/development and makes it easier 
to create generic security applications which can be applied to 
a large majority of SDN deployments. 

A general theme which can be observed from the suggested 
solutions is that they aim to defend against just one particular 
type of attack, and do not provide overall protection in the 
network setting. To ensure a secure software-defined network, 
parallel implementation of combinations of the proposed 
schemes would have to be considered. This could achieve 
larger amounts of computational overhead and creates chances 
of conflicting configurations. These issues lead to the possible 
introduction of further vulnerabilities to the environment and 
the chance of false positives when scanning the network for 
attacks. To provide more thorough and well-rounded security 
the integration of an intrusion detection system in the controller 
of the network which identifies and prevents attacks based on 
pre-defined attack signatures could be implemented. The fact 
that traffic data is collected in the data plane and passed onto 
the controller for analysis provides a natural environment to 
implement IDS. It is clear, however, that with adding security 
mechanisms such as IDS to the controller, more overhead will 
be generated and performance of the network in terms of its 
throughput and the latency achieved could be negatively 
affected. To improve security in SDN infrastructures, it would 
be important to find a balance in the trade-off between security 
and performance by implementing a thorough, network-wide 
security regime whilst achieving desirable levels of 
performance. Before implementation of SDN can become wide 
spread this would need to be researched and developed further. 
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