
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

156 | P a g e  

www.ijacsa.thesai.org 

Software Design Principles to Enhance SDN 

Architecture

Iyad Alazzam 

Department of Computer 

Information Systems 

Yarmouk University, Irbid, Jordan 

Izzat Alsmadi 

Department of Computer Science, 

University of New Haven, West 

Haven, CT, USA 

Khalid M.O Nahar 

Department of Computer Science 

 Yarmouk University, 

Irbid, Jordan

 

 
Abstract—SDN as a network architecture emerged on top of 

existing technologies and knowledge. Through defining the 

controller as a software program, SDN made a strong connection 

between networking and software engineering. Traditionally, 

network programs were vendor specific and embedded in 

hardware switches and routers. SDN focuses on isolation between 

control and forwarding or data planes. However, in the complete 

SDN network, there are many other areas (i.e. CPU, memory, 

hardware, bandwidth and software). In this paper, we propose 

extending SDN architecture and propose isolation layers with the 

goal of improving the overall network design. Such flexible 

architecture can support future evolution and changes without 

the need to significantly change original components or modules. 

Keywords—component; SDN; OpenFlo; Software design; SDN 

architecture; Design principles; Design patterns 

I. INTRODUCTION 

Software Defined Networking (SDN) has recently evolved 
as an alternative flexible network architecture to traditional 
network systems. The flexibility that software programs offer 
over the hardware is one major SDN feature. 

Traditional network switches and routers that route data 
from and to local networks include two in-cohesive functional 
components; data plane that includes information about traffic, 
and how to deal with it and control plane for control and 
management functionalities. SDN proposes to decouple those 
two in-cohesive planes and include in new switches the data 
plane only. Control plane is moved to a separate software-
based module. A new protocol, OpenFlow is designed to 
handle communication between the newly separated modules 
or planes. As the main protocol used in SDN, OpenFlow is 
used in many research and technical documentations as a 
synonym to SDN. We will also follow this acronym in this 
paper and use the two terms interchangeably. 

Through such separation, developers and network 
administrators can have now full control over their networks. 
Routing algorithms that were closed and vendor specific are 
not any more. Applications can be developed on top of the 
controller to communicate and interact with the controller. 
Those applications, also called middle-boxes can be provided, 
through the controller, with customized flow-based 
information. 

As a new architecture or technology, SDN comes with both 
challenges and opportunities. In this paper we will focus on the 
rise of software roles in SDN in comparison with traditional 

network. In software engineering, software design principles 
and patterns proposed how we can design software products 
that are easy to use, reuse, update and maintain. Modularity is a 
core software design concept related to developing a program 
with different software modules. Those modules should be 
highly cohesive from the inside (i.e. the inner components of 
modules) and at the same time coupling between the different 
modules should be minimized. Interfaces are software 
components that exist to support modularity goals. Different 
modules should interact with each other only through well-
defined interfaces. 

Many network appliances such as: Firewalls, IDS, traffic 
optimizers, load balancers, etc. are going to be developed to 
communicate with SDN controller. Without proper well-
defined interfaces between each one of those applications and 
the controller, intruders can easily have back doors through 
those applications to access security sensitive controller 
resources. Using well-defined interfaces, controller and its 
modules can then provide very specific services to those 
applications. In addition, those specific services should be 
called after fulfilling several pre-conditions from the 
application side including pre-conditions related to self-identity 
and authorization proof. Currently, those applications can be 
defined and can expose controller modules or resources 
directly. 

Specification and design should be separated from 
implementation which shows one way to fulfill those 
specifications. While in those SDN goals implementation was 
referring to physical configuration in switches, we believe that 
this can also be applied to code concrete implementation that 
should be isolated from network high level configuration that 
can exist in policies. Currently, many software controllers 
include mixed functionalities between core controller modules, 
quality assurance, monitoring, management, policies, or 
security modules, etc. 

We will focus here on software design principles. 
Abstraction is one of the software design concepts that is 
heavily investigated in the software engineering field. 
Abstraction is about focusing on relevant information and 
ignoring irrelevant information suitable or relevant to the 
problem domain or to the level of the current system details. In 
software construction and implementation, abstract classes or 
interfaces are always proposed at the top of a library or a 
hierarchy to make the structure more stable and able to cope 
with changes or modifications. This is to acknowledge that 
software programs and their requirements are very volatile and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

157 | P a g e  

www.ijacsa.thesai.org 

change rapidly. Consequently a good software design should 
allow and accommodate such changes without the need to 
restructure the software or the system. 

SDN architecture facilitates tasks’ delegation. In traditional 
networks, network administration cannot be delegated and it 
has to be controlled from network devices. Three SDN features 
together (centrality, ability to monitor all network components 
from one location and programmability) can make it possible 
for network administrators to delegate different administration 
tasks to different users without losing the ability to manage or 
monitor them. 

In this paper, we will revisit SDN architecture based on 
software design principles and patterns and show how such 
architecture can be improved.We believe that SDN separation 
of control and data plane is not enough. We will focus on 
abstraction layers in software parts. 

The rest of the paper is organized as the following: In 
section two we will introduce several research papers that are 
relevant to the paper subject. In section three we will present 
goals and approaches for an enhanced SDN architecture. Paper 
is then concluded with a summary section. 

II. LITERATURE REVIEW 

Software engineering can bring several advantages to SDN. 
For example, Software engineering has mature knowledge, 
tools and experience in software design, development and 
testing. Brining those to SDN can be a very important 
beneficial joint venture. 

Modularity is about developing software or system 
components that can be easily used, reused, modified, updated 
or maintained. It is very important to build an SDN architecture 
that allows developers to easily add new applications or 
middle-boxes without the need to significantly cause a system 
configuration/reconfiguration.Monsanto et al 
2013acknowledge that current OpenFlow architecture has 
limited support for creating modular applications[1]. 

Reitblatt et al 2012 [2] discussed one problem related to 
SDN configuration updates. This is since current networks 
continuously change and evolve. Therefore it is very important 
for a good SDN design to cope with those frequent changes. 
Authors presented mechanisms to handle packet or flow level 
updates’ consistency checking. In other words, a mechanism 
should exist to check whether a recent flow or packet update is 
consistent with the network state and its flow rules in flow 
tables. Authors proposed an abstract interface to offer solid 
mechanisms for handling configuration updates. Authors 
showed also several case studies of why such updates should to 
be investigated. 

In the subject of policies’ isolation, Monsanto et al 2013 
discussed the ability of SDN architecture or its flows to accept 
commands from different policies. A policy orchestration 
abstraction is a possible a solution to orchestrate the process of 
handling several policies that may come from different 
applications or departments (e.g. security policies, business 
process policies, financial policies, audit or monitoring 
policies). Pyretic or other policy programming languages are 
proposed as tools to allow users to define policies in a common 

language. However, in addition to policy language, an 
abstraction or orchestration layer is still necessary and should 
not be mixed with policy languages that should be used to 
describe policies. Network slicing is another layer of 
abstraction or isolation. However, slicing is performed to 
isolate logical networks from each other and not policies from 
each other. In other words, in one slice, we expect to see 
several policies that need to interact with each other or need to 
enforce different aspects on the same flows. Different slices 
deal with different flows and consequently the slice isolation 
itself should guarantee that policies from different slices should 
be isolated from each other. 

Casado et al 2012 [3]report can be considered as a 
reassessment of SDN proposed separating the network into 
three layers or interfaces in terms of control transformation: 
Hosts, operators and packets. Each one of those layers should 
have their own control on packets while they traverse the 
network. Authors argued that traditional Internet has no 
differentiation among all those interfaces. On the other hand, 
MPLS has distinguished two of them: Host and packet 
interfaces. SDN tackled requirements for network operators 
that were not acknowledged by Internet or MPLS networks. 
However, SDN did not distinguish between host-network and 
packet-switch interfaces. Authors proposed a hybrid approach 
of SDN-MPLS to get the advantages of both and have those 
three as clearly defined and separated interfaces. Rather than 
having one controller in original SDN, authors proposed two 
controllers: A fabric controller to provide basic packet 
transport (Host-network interface) and an edge controller 
responsible for complex network services (Operator network 
interface). Authors here focused on the design of the network 
and the interfaces related to traffic transportation. In other 
words, authors focused on the carrier and ignored the fact that 
the data or the content can have the same problem. 
Specifically, information is only considered from the network 
port and on. However, information is created and controlled 
before that (in the middle-box or the controller). Network 
control is separated between Fabric and edge controllers. On 
the other hand, software components that are using the network 
should be also functionally decomposed. The key idea here is 
that if two things are functionally not cohesive or that they 
solve different problems then they should be separated from 
each other.The edge controller still has several functions that 
are not cohesive. 

In addition to the fact that SDN has different modules that 
are not functionally cohesive, there is another issue related to 
the levels of abstractions. A policy that users or administrators 
understand is at a very different level of abstraction from a 
policy, or rule, that a firewall or a switch can understand. For 
example, existing research discussed the challenge between 
dealing with high level policies at the application level and 
having to write very low level flow rules in switches or 
firewalls. The gap between those two can be very large. In 
addition, low level flow rules should be allowed to change 
easily and dynamically. On the other hand, high level policies 
are expected to be more stable and change infrequently. 
Approaches that tried to give more details to policies suffer 
from building policies that are network dependent. This makes 
those policies very complex to reuse or to be able to 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

158 | P a g e  

www.ijacsa.thesai.org 

accommodate network changes. On the other hand, designing 
policies with that are very abstract can make them very hard to 
implement or be interpreted in terms of flow or firewall rules. 
Some papers already proposes an abstraction or adaptor layer 
between high level policies and flow or firewall rules to isolate 
them from each other and allow each one to change without 
impacting the other (e.g. Pan et al 2013 [4], Kang et al 2013 
[5], and Moshref et al 2013 [6]). 

Abstraction (i.e. network virtualization) was the main 
reason to bring networking to software programmability. 
Abstraction in SDN tries to extract simplicity from the control 
plane (Shenker et al 2011 [7]). It can produce a design that is 
modular; easy to change, evolve, reconfigure, etc. Authors 
claimed that network layers include abstraction in the data 
plane. However, control plane lacks having such layering or 
abstraction. Authors’ report in SDN defined three abstractions: 
Distribution (controller), forwarding (network virtualization 
and switches) and configuration (NOS). Distribution of control 
allows a global view of the network. Forwarding abstraction 
separates the functionalities in switches between management 
and forwarding and takes the management task to the 
controller. The key idea was that those two functions are not 
cohesive and consequently there is a need to separate or isolate 
them from each other. 

Existing papers or technical reports discussed also 
abstraction in network or hardware parts of OpenFlow 
networks (e.g. Danilewicz et al 2014 [9]). 

Kind et al 2012 proposed an enhanced SDN architecture 
where several new splits should be introduced in addition to 
the split between control and data plane originally proposed in 
SDN. This includes the split between the control plane and the 
NOS, which is a modified version of hypervisors’ architecture 
where a basic filter layer can be an alternative to a hypervisor. 
They also proposed a split between forwarding (network edge) 
that requires only basic functionalities and processing entities 
(network core) that requires more intelligent processing and 
analysis. They focused on applying this SDN modified 
architecture in carrier grade networks. 

Software Defined Internet Architecture (SDIA) is proposed 
based on SDN to solve the problem of Internet evolution and 
the need for a flexible architecture (Raghavan et al 2012 [10]). 
The main idea is to decouple the architecture from the 
infrastructure so that changes on one will not affect the other. 
Architecture refers to the current IP based model or any other 
alternative; while infrastructure refers to physical network 
resources and equipment. Authors claimed that SDN by its 
current architecture can help but to a limited range. 

Pan et al 2013 proposed FlowAdapter as a middle layer 
between OpenFlow data plane in switches and the controller 
[4]. Authors described the goal of such adapter which is to 
support having flexible rules that can be handled by 
“inflexible” hardware. In other words, this layer shields both 
data and control plane from each other and allows changing 
one of them without a significant overhead on the other. In 
software design, this is a recommended design principle “Find 
what is varying and encapsulate it” (Shalloway and Trott 2005 
[11]) 

Sugiki 2013 [8]proposedan integrated management 
framework to standardize SDN development. This can also 
contribute to making the development in SDN programming 
mature. However, our focus in this paper is SDN programming 
design and not implementation. 

Design patterns concepts are also used in traditional 
networks for network architecture to best layer network 
components based on some quality aspects (e.g. Dart et al 2013 
[12]). Smith et al 2014proposed policy-controlled management 
patterns in SDN [21]. This is a framework to provide 
abstraction for orchestrating different services implemented in 
SDN and that require policy information or interaction. While 
one of the major goals of SDN was to make the architecture 
open and vendor independent, however, the fact that currently 
the area is premature and the effort to develop controllers and 
applications is not formalized, this may take SDN development 
to another problem of lacking united or standard architecture. 
In software engineering, formal methods suffered from such 
problem for years and this problem is considered one of the 
main reasons why formal methods are struggling to gain more 
popularly as it was sought. 

III. GOALS AND APPROACHES 

The goal of good software design patterns and principles is 
to improve the quality of the developed product. Good design 
can help the software applications now and in future. This is 
since a well-designed software should have high qualities such 
as performance, security, usability that are important for the 
current usage. In addition for future software maintenance and 
expansion, good software design can help in maintenance, 
reusability, testing, etc. 

The controller or one of its modules should be able to 
orchestrate the communication between the different 
application that are built on top of the SDN network and those 
applications should be able to share the information without 
coupling those modules with each other or without security 
problems. 

The applications need not to be aware of each other or 
communicate directly with each other. The key mechanisms to 
achieve this are isolation and abstraction. Ideas from software 
design principles and patterns can be utilized in this aspect. 
Design principles in general focus on the following main 
design quality aspects: Abstraction, encapsulation and 
reusability. Isolation can be also a major benefit to security as 
it limits the expansion of security intrusions. Figure 1 shows a 
recent SDN architecture (Alsmadi and Xu 2015). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

159 | P a g e  

www.ijacsa.thesai.org 

 

Fig. 1. SDN architecture (Alsmadi and Xu 2015) 

In comparison with early SDN architectures, Figure 1 
shows that interfaces and isolations between the different 
layers are already in evaluation and development. For example, 
Service Abstraction Layer (SAL) exists to isolate south bound 
APIs from the controller. It can help integrating the same 
controller with more than one south bound API or protocol. 

Many researchers and domain experts acknowledge that 
SDN architecture itself is recent and premature. On the other 
hand, SDN came with no new technologies or inventions. 
Rather, it came to clarify, accumulate, and coin findings in the 
networking field over the past years. From the software 
engineering or programming side, similarly, SDN does not 
need to start everything from scratch and can learn from areas 
where there have been accumulated knowledge and experience 
over the years. Software design in particular is considered a 
matured field and concepts related to: Object Oriented Design 
(OOD), software construction, testing, design principles and 
patterns have a rich inventory of: tools, methods, etc. that can 
be utilized. 

OpenFlow protocol itself can be considered, in a very 
simple manner, an abstraction layer or adapter to allow 
software programs to interact with switches. This is since for 
commercial or business, not technical reasons, vendors of 
switches and routers don’t allow developers to program or 
interact with traditional switches. In that sense, OpenFlow 
protocol provides that well-defined interface to program or 
communicate with switches. This communication or 
programming can be conducted through the controller. 

We will present all areas in SDN architecture that should 
include separatesoftware communication adaptors. Those 
adaptors should include interfaces to facilitate communication 
between their edge modules. In some cases where 
communication is two-ways, two different interfaces should be 
designed.  We also showed some contributions already in some 
areas to indicate that research is already going in this direction. 

South Bound Interface: An abstraction layer or adapter 
should exist between controller and its switches. A well-
defined interface or public methods should be defined on 
switches to allow the controller to access switches only through 

those public interfaces. The interface that switches should 
expose depends on the type of services that they provide.For 
example, controller should be able to read flow rules, add new 
flows, delete or update flow rules (i.e. CRUD on flow rules). 
As software classes, there should be two main classes for the 
interaction between controller and switches: Flows and flow 
rules. Controller should be allowed to change some of those 
classes’ attributes through setters and getters. 

From a software design perspective, in the flow rules 
insertion process, the controller, as a client should fulfill all 
flow insertion constraints or network invariants before being 
allowed to insert a new flow rule.  Controller can then have a 
separate monitoring module that will be queried to retrieve 
those invariants. However, some of those constraints such as 
rules-conflict can be only judged after adding the flow to the 
switch flow tables. Abstraction layer module should then 
orchestrate the process and start a roll-back process where after 
the insertion if a rule-conflict case occurs between the new 
added rule and existing ones, the addition process is reversed 
with all related activities. 

Existing research already proposed a software abstraction 
layer between SDN controller and switches for several 
different purposes. For example, Khurshid et al 2013 proposed 
VeriFlow as a verification layer between controller and 
switches [13]. The goal of this layer to verify that flow rules 
inserted in the switches from the controller do not violate 
certain network wide invariants (e.g. reachability, loop 
freeness, consistency). 

Policies should be isolated from flow rules. Policies should 
include high level information about resources (e.g. user, host, 
application, etc.). They should not include information that are 
low level dependent (e.g. IP address, port, MAC address, etc.). 
In networking terminologies, L1-L3 information are considered 
low level information, L4-L7 information are considered high 
level information. An abstraction layer should exist to separate 
and isolate those two layers from each other. 

Policies in network security serve three different levels: 

Application level policies: At the application level, users 
write policies to regulate users-applications-systems 
interactions. They can specify who can do what, when and 
how. However, at this level, users are not identified as 
individuals but as groups. Network, systems and applications 
are only identified by general names without any technical 
terms. Typically, at this level, we expect policies such as: 

Employees should not be able to access accounting services 
remotely. 

Students should not be allowed to use smart devices during 
exams. 

Users can have unlimited Internet download speed only 
after working hours. 

In those examples, we showed that at this level, policies or 
policy sets should be for groups and not individuals (as 
individuals represent instances of their groups which can be 
specified in level2 policies). Similarly, applications and 
devices are known by general categories that can have several 
instance examples (e.g. accounting, smart devices, Internet). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

160 | P a g e  

www.ijacsa.thesai.org 

For simplicity we will call them at the first level as policy sets, 
at the second level as policies and at the third level as rules. 
Policy sets include policies and policies include rules. 

Middle level policies: Level two should include 
information typically included in Access Control Lists (ACLs). 
This is an intermediate stage between high level policy sets and 
low level rules. Every authorized person, application, or 
service should have an entry in this access control system. 
There are currently several examples of ACLs such as those 
that exist in operating systems, databases or websites active 
directory or user management, ACLs in firewalls, port control, 
and routers. 

Low level policies: Rules in flow tables and firewalls in 
particular. Those should have the same attributes exist in flows 
so that checking and matching those rules with flows can be 
simple, dynamic and direct. Since those rules will talk to and 
direct low level network components, for performance issues, 
they need to be simple and straightforward. Unlike, high level 
policies, those rules and location dependent and include 
network level information (e.g. IP, MAC addresses, port 
number, etc.). 

Two-way communication should be orchestrated between 
each two consecutive layers. From top to bottom, special tools 
should be developed to allow automatic translation from high 
to low level terminologies. On the other hand, information 
from bottom up should be used to improve policies. ACLs in 
the middle layer provide constraints on flows at the low level. 
On the other hand, a special module should be developed to 
support a feedback control where information from network 
flows can be used to trigger future rules in ACL. Data mining, 
Artificial Intelligence (AI) and patterns’ recognition methods 
can be used to analyze network traffic and make rules’ 
recommendations. Those can be triggered for security purposes 
such as breaches or attacks or they can be triggered for QA 
purposes (e.g. performance). Between ACLs and high level 
policies, modules should be developed to allow automatic 
translation of policies to ACLs. On the other hand, feedback 
control is also recommended to reevaluate existing policies or 
trigger adding new ones based on network traffic and 
environment. 

In this specific category, Qazi et al 2013 proposed SIMPLE 
as a layer between security policies and flow rules [15]. This 
layer is required to isolate L2-L3 low level layers’ required 
information from L4-L7 policies’ information. 

Controller Internal Interfaces: Controller and its internal 
modules should be separated from high level middle-boxes and 
applications (e.g. firewall, IDS, load balancer, etc.). Controller 
can provide services to those applications through well-defined 
interfaces. 

This is currently the most important abstraction layer to 
provide. This abstraction should exist between the controller as 
a complete module and any other applications that should be 
developed and that will interact with the controller. In other 
words, those are not built-in modules in the controller 
Opendaylight and many other controllers are currently using 
REST API for this specific purpose. 

Existing research proposed several examples of either 
security or other types of applications that should be developed 
on this top level or also called southbound section (e.g. load 
balancer, monitoring tools, etc.). Existing research also 
discussed security concerns when developing such applications 
and showed that there is a need to make interactions between 
the controllers and those applications in such manners that 
guarantee isolation in terms of security, configuration, 
reconfiguration, reuse, etc. 

In the controller itself also, Network Operating System 
(NOS) should be isolated from the controller. Those are two 
different units with two different functionalities or 
responsibilities. Network hypervisors already exist to isolate 
those two components from each other and allow the 
communication between them. In this section in particular 
terms such as (network APIs) are used to refer to this 
abstraction or isolation layer between controller services and 
NOS. 

Existing research already proposed different structures for 
such layer. For example (Porras et al 2012 [16] and Shin et al 
2013 [17]) proposed a security control or interface between 
controller and security applications to allow deploying 
composable security services. Fayazbakhsh et al 2013 
proposed FlowTag to tag flows in middle-boxes so that 
controller can know which application originates a particular 
flow [18]. 

Controller internally includes several functions that are not 
cohesive with each other and consequently should be isolated 
from each other. Those can be largely divided into: Control and 
security, administration and management, flow management 
and communication with switches, monitoring, and load 
balancing. A high level application which needs only one of 
those components to communicate with should not be coupled 
with all other components. In addition for security purposes, 
isolating those components from each other can limit the 
spread of attacks and help detecting them. As an example, let’s 
assume we have the monitoring and control separated in two 
different modules, if control module is compromised, 
monitoring can help administrators see the details and take 
counter actions. Separating those modules can be logical only 
or it can be also physical (i.e. on different controllers or slices). 

Logical or Functional Interfaces: Isolation or virtualization 
already exists in SDN in several other popular areas. The first 
one is the isolation between the different VMs where they are 
logically isolated from each other but may run in the same 
tenant or physical resources. Tenants are isolated from each 
other where each tenant in a cloud datacenter represents a 
different company that should be completely isolated from 
other tenants. Each tenant can have one or more VMs based on 
demand or requirement. For scalability and load balancing 
issues, controller tasks can be divided into different functional 
or logical slices. In this case, we want the different slices to 
communicate with each other. However, again such interaction 
should be conducted through well-defined interfaces and data 
or control from each slice should not interfere with those of the 
others. 

Controller Distributed Architecture Interfaces: A single 
controller is not a realistic approach for production networks. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

161 | P a g e  

www.ijacsa.thesai.org 

Consequently a cluster of controllers should exist to support 
each other and coordinate tasks’ distribution. However, current 
OpenFlow standard does not allow inter-domain information 
exchange between the different controllers. Nonetheless, there 
are many use cases that justify the need for those different 
controllers to communicate with each other. Needless to say, 
that such communication between the different controllers 
should be performed through well-defined interfaces. Different 
controllers should not interfere with each other or violate 
others’ security regulations. The exchange interface should 
consequently orchestrate such communication. 

A virtualization layer such as FlowVisor (Sherwood et al 
2009 [19]) is proposed to isolate the controller or a cluster of 
controllers from the underlying physical and networking 
elements. This logical layer intercepts all messages between 
controllers and switches. From the virtual world perspective, 
FlowVisor acts as VMWare or Virtual Box that logically 
isolates operating system from physical components. 
Consequently, different operating systems can work on the 
same machine or physical resources. 

An adaptor should exist in the data plane between 
forwarding functions (network edge) and processing functions 
(network core) (Kind et al 2012[20], Raghavan et al 2012[10]). 

Design patterns 

The controller is the central control and management 
module in SDN. Even in controller distributed architecture, 
each switch is expected to communicate security with only one 
controller or controller slice. In design pattern a singleton 
pattern is proposed in such cases to enforce communicating 
with only one single instance. A singleton pattern should 
mediate communication between controller and switches from 
one side and controller and applications from the other side. 
From software design patterns, a singleton class or pattern is 
needed when we want a class to be available to the whole 
application and also that the whole application should have one 
and only one instance. This seems to be the same usage profile 
of the controller. 

Design patterns’ assessment 

The usage of design patterns in software programs showed 
a mature level of experience from the software development 
team. In order to evaluate the usage of design patterns in SDN, 
we conducted several experiments using Java controllers (e.g. 
Floodlight, Beacon, FlowVisor, IRIS, and Maestro). We used 
tools that can perform automatic design patterns’ detection 
(e.g. Pattern4, PDE, Pinot, etc.). Preliminary results showed 
few instances of usage of design patterns in those SDN or 
controller programs. 

OpenFlow Software version 

SDN separates and isolates control from data planes. 
Control plane (i.e. the controller) is completely a software 
application. OpenFlow protocol is developed to control 
communication between the controller and the data plane or the 
switches. However, we argue that OpenFlow focused on 
defining how controller should communicate with the switches 
from a networking or communication perspective. OpenFlow 
should be extended to specify how controller should 

communicate with the switches from a software perspective. 
This is since controller is completely a software and switches 
include also embedded software elements. In this section, we 
will focus from a high level perspective on what should 
OpenFlow software version (OpenFlowS) should include. 

In SDN, controllers add flows to switches. A separate 
software module should exist to orchestrate and handle 
communication between controller and switches. Part of the 
functions that this orchestrator or adaptor module should 
handle is checking preconditions or constraints before allowing 
controller to add, delete or update a flow rule. This module 
should be responsible for tracking all network state related 
attributes. For example, through the flow-addition process, 
inconsistency can occur where the network state is changing 
while the controller is adding the flow rule based on expired 
information. This is usually referred to as “race condition”. 
Proactive controllers may eventually notice and fix such 
inconsistencies. However, this will add complexity and 
overhead over the controller and the network (Peresini et al 
2013 [14]). 

From a software perspective, controller and switches are 
two modules or packages that need to interact with each other 
and provide services to each other. In this specific architecture, 
in most cases the controller is the client and the switches play 
the software service provider role. For example, the controller 
needs to CRUD (i.e. Create, Read, Update and Delete) rules 
from switch flow table(s). Those should be represented by 
public services in the switch. A switch should include a 
software interface with those four as public services. The 
inputs that controller will provide when calling those services 
depend on the specific method and will include flow rule 
attributes as well as other possible attributes related to 
programming or design (e.g. rule ID, group, etc.). 

OpenFlowSadaptorshould typically include abstract classes 
or interfaces. Those should regulate how controller and 
switches interact with each other. For example, they should 
include the, high level, public services that should be provided 
along with their headers and signatures. They should also 
provide pre-conditions and post-conditions for those public 
services. 

The organization behind SDN and OpenFlow (Open 
Networking Foundation, ONF) in a report in 2012, identified 
four major goals for SDN. Those four goals are related to 
software design and principles: 

SDN aims at decoupling switch management and control 
plane from data plane. Coupling and cohesion are widely 
popular software design metrics upon which good design 
quality is evaluated. Internal modules should be highly related 
and interconnected to each other from functional perspectives 
(i.e. high cohesion). On the other hand, different modules 
should be lightly coupled with each other and only through 
well-defined interfaces. 

A centralized controller to manage one to many switches. 
Different switches are controlled by same functionalities. They 
are only different in low level details that should be handled by 
switches themselves. High level functions that are similar 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

162 | P a g e  

www.ijacsa.thesai.org 

should be centralized in one location. Low level details are 
distributed across the different switches. 

We described this goal from two perspectives. The first one 
is related to policies in which global policies should be 
centralized, location independent and express the general 
design goals of the network. However, each switch or security 
control can have their own rules that are location dependent 
and that interpret high level policies from a small local scope 
perspective. 

The other perspective is related to modules’ isolation 
through the different adaptors. Communication through the 
different modules in such case can be formalized. One of the 
ambitious goals of SDN is to achieve automating different 
policy activities: Implementation, enforcement, configuration, 
orchestration, etc. A modular design is a key toward achieving 
such goal. 

SDN should support the ability to manage network 
behavior through well- defined interfaces and modules. In 
other words, the “what part” should be separated from the 
“how part” and well-defined interface should exist and isolate 
them from each other. Although control in SDN can add or 
delete switch flow rules in the flow tables, however, this should 
not mean to allow controller to tamper internal switch 
architecture. 

Using well-defined interfaces between controller and 
switches makes it possible for one controller to interact 
smoothly with switches from different vendors. A software 
open adaptor with well-defined interface should be designed 
between controller and different switches to shield both of 
them from each other and to formalize communication between 
them. 

Deign Patterns Evaluation 

In order to assess the level of using design patterns in SDN, 
we evaluated three open source controllers written in Java: 
Floodlight (www.projectfloodlight.org/floodlight), IRIS 
(openirisproject.tumblr.com) and Maestro 
(code.google.com/p/maestro-platform). The goal is to evaluate 
which such relatively large software applications are developed 
based on mature design perspectives. We should acknowledge 
however the debate on whether the usage of design patterns 
indicate a mature good design or not. 

Evaluating Floodlight with Pattern4 design pattern 
detection tool, results showed only using one design pattern 
(Singleton) with 53 instances. No other design pattern is shown 
to be used in Floodlight. 

 

Fig. 2. Design pattern detection tool: Pattern4 

Table 1 shows design patterns’ instances in Maestro based 
on Pattern4 tool. 

TABLE I.  PATTERN4 ON MAESTRO CONTROLLER 

pattern/class  
Singleton Adapter State/Strategy Visitor 

1 2 3 7 

Table 2 shows design patterns’ instances in IRIS based on 
two design pattern detection tools; Pattern4 and Web Of 
Patterns (WOP). Results showed the wide variation between 
the two tools in detecting the occurrence of design patterns 
usage. 

TABLE II.  PATTERN4 VS WOP ON IRIS CONTROLLER 

 P
a

tter
n

 T
o
o

l 

S
in

g
le

to
n

 

A
d

a
p

te
r
  

D
e
c
o
r
a

to
r 

S
ta

te 

/S
tr

a
teg

y
 

T
e
m

p
la

te
 

M
e
th

o
d

 

P
r
o
x
y
 

b
r
id

g
e 

a
b

stra
c
t fa

c
to

r
y

 

pattern4 20 28 1 23 3 2 0 0 

WebOfPatterns 

(WOP) 
0 478 0 0 96 62 1874 2 

TABLE III.  PATTERN4 VS WOP ON OPENFLOWJ CONTROLLER 

 P
a

tter
n

 T
o
o

l 

S
in

g
le

to
n

 

A
d

a
p

te
r
  

D
e
c
o
r
a

to
r 

S
ta

te 

/S
tr

a
teg

y
 

T
e
m

p
la

te
 

M
e
th

o
d

 

P
r
o
x
y
 

P
r
o

to
ty

p
e 

b
r
id

g
e 

a
b

stra
c
t fa

c
to

r
y

 

pattern4 22 5 0 13 0 0 4 0 0 

WebOfPatterns 

(WOP) 
0 12 0 0 0 0 

0 
0 0 

TABLE IV.  PATTERN4 ON OPENFLOWJAVA-MASTER AND LACP-
MASTER CONTROLLERS  

Controller Singleton State/Strategy 

openflowjava-master 6 4 

lacp-master 12 0 

Although results was different between the existence of 
design patterns between the different design pattern detection 
tools, however, results showed that such relatively large and 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 8, 2016 

163 | P a g e  

www.ijacsa.thesai.org 

important software applications are not considering the usage 
of design patterns. 

IV. CONCLUSION 

SDN is an emerging architecture for designing networks 
and distributing their functionalities. This new architecture 
took into consideration some of the problems and challenges in 
traditional networks. Two features in SDN can be considered 
as core and differentiate SDN from traditional networks. The 
first one is splitting control from data plane and moving it from 
switches to a new software program called the controller. The 
second one is in making this controller open as a vendor 
independent and to be programmed and extended by 
developers and users. 

SDN is about programmable networks and consequently it 
makes sense to use some of the mature software experience 
such as design principles and patterns to solve possible design 
issues in SDN architecture.From a design perspective, those 
can make the network design easier to use, reuse, update, 
maintain and interact with. Software in SDN has a major role 
and this role is expected to continuously grow. From a software 
design perspective, SDN architecture is not mature enough. 
This explains why recent implementations of open controller 
should as Opendaylight extend the architecture to include new 
abstraction layers such as: Service Abstraction Layer (SAL) 
and REST API in two different locations of the architecture. 

SDN focuses on the networking perspective when control is 
isolated from data. From a software perspective, there are 
many components in the SDN architecture that are not 
cohesive and that should be decoupled from each other. We 
showed also that there are already research proposals and 
progresses toward that goal. This will continue to evolve and 
we presented here a picture of the possible abstraction layers 
that SDN architecture may end up having. Those abstraction 
layers are necessary to allow different components that are not 
cohesive and that should be decoupled to communicate with 
each other through well-defined interfaces. This will allow 
those different modules to be used and evolve aside from each 
other. 

REFERENCES 

[1] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, 
“Composing software-defined networks,” in Proceedings of the 10th 
USENIX conference on Networked Systems Design and 
Implementation, ser. nsdi’13.Berkeley, CA, USA: USENIX Association, 
2013, pp. 1–14. 

[2] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, David 
Walker: Abstractions for network update. SIGCOMM 2012: 323-334 

[3] M. Casado, T. Koponen, S. Shenker, A. Tootoonchian, "Fabric: A 
Retrospective on Evolving SDN," in Proc. of the first workshop on Hot 
to pics in software defined networks, Helsinki, Finland, Aug. 2012, pp. 8 
5-90.  

[4] Heng Pan, Hongtao Guan, Junjie Liu, Wanfu Ding, Chengyong 
Lin, GaogangXie: The FlowAdapter: enable flexible multi-table 
processing on legacy hardware. HotSDN 2013: 85-90 

[5] Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker, 
Optimizing the “One Big Switch” Abstraction in Software-Defined 
Networks CoNEXT’13, December 9–12, 2013, Santa Barbara, 
California, USA. 

[6] M. Moshref, M. Yu, A. Sharma, and R. Govindan, “VCRIB: Virtualized 
rule management in the cloud,” in NSDI, Apr 2013 

[7] Scott Shenker, Martin Casado, TeemuKoponen, and Nick McKeown, 
The future of networking and the past of protocols, A presentation, June, 
2011 

[8] AkiyoshiSugiki: An integrated management framework for virtual 
machines, switches, and their SDNs. ICON 2013: 1-6 

[9] G. Danilewicz, M. Dziuba, J. Kleban, M. Michalski, R. Rajewski, M. 
Grief: Project ALIEN - abstraction layer for devices non-OpenFlow 
SDN networks. Telecommunication Review September 2014 

[10] BarathRaghavan, Martin Casado, TeemuKoponen, Sylvia 
Ratnasamy, Ali Ghodsi, Scott Shenker: Software-defined internet 
architecture: decoupling architecture from infrastructure. HotNets 2012: 
43-48 

[11] Alan Shalloway and James Trott, Design Patterns Explained, A new 
perspective on object oriented design, second edition, Addison-Wesley, 
2005. 

[12] Eli Dart , Lauren Rotman , Brian Tierney , Mary Hester , Jason 
Zurawski, The Science DMZ: a network design pattern for data-
intensive science, Proceedings of SC13: International Conference for 
High Performance Computing, Networking, Storage and Analysis, 
November 17-21, 2013, Denver, 
Colorado  [doi>10.1145/2503210.2503245] 

[13] A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey, “VeriFlow: 
Verifying network-wide invariants in real time,” ACM SIGCOMM 
Computer Communication Review, vol. 42, no. 4, pp. 467–472, 2012, 
10th USENIX Symposium on Networked Systems Design and 
Implementation (NSDI), April 2013. 

[14] Peter Peresíni, MaciejKuzniar, DejanKostic: OpenFlow Needs You! A 
Call for a Discussion about a Cleaner OpenFlow API. EWSDN 2013: 
44-49 

[15] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, 
“SIMPLE-fyingMiddlebox Policy Enforcement Using SDN.” ACM 
SIGCOMM, August 2013 

[16] Phillip Porras , Seungwon Shin , Vinod Yegneswaran , Martin Fong , 
Mabry Tyson , GuofeiGu, A Security Enforcement Kernel for 
OpenFlow Networks, HOTSDN 2012. 

[17] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD: 
Scalable and Vigilant Switch Flow Management in Software-Defined 
Networks,” in Proceedings of the 2013 ACM conference on Computer 
and communications security, ser. CCS ’13. ACM, 2013 

[18] S. Fayazbakhsh, V. Sekar, M. Yu, and J. Mogul, “FlowTags: Enforcing 
Network-Wide Policies in the Presence of Dynamic Middlebox 
Actions,” in Proceedings of the second workshop on Hot topics in 
software defined networks. ACM, 2013. 

[19] R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N. 
McKeown, and G. Parulkar. Flowvisor: A network virtualization layer. 
OpenFlow Switch Consortium, Tech. Rep, 2009. 

[20] Kind, M., Westphal, F.J., Gladisch, A., Topp, S.: SplitArchitecture: 
applying the software defined networking concept to carrier networks. 
In: IEEE World Telecommunications Congress (WTC) (2012) 

[21] Paul Smith, Alberto E. Schaeffer Filho, David Hutchison, 
AndreasMauthe: Management patterns: SDN-enabled network resilience 
management. NOMS 2014:1-9 

[22] Alsmadi, Izzat, Dianxiang Xu, Security of Software Defined Networks: 
A Survey, Computer and Security Journal, Elsevier, Volume 53, 
09/2015.

 

http://www.informatik.uni-trier.de/~ley/pers/hd/f/Foster:Nate.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Rexford:Jennifer.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Schlesinger:Cole.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Walker:David.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Walker:David.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigcomm/sigcomm2012.html#ReitblattFRSW12
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Guan:Hongtao.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Liu:Junjie.html
http://www.informatik.uni-trier.de/~ley/pers/hd/d/Ding:Wanfu.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lin:Chengyong.html
http://www.informatik.uni-trier.de/~ley/pers/hd/l/Lin:Chengyong.html
http://www.informatik.uni-trier.de/~ley/pers/hd/x/Xie:Gaogang.html
http://www.informatik.uni-trier.de/~ley/db/conf/sigcomm/hotsdn2013.html#PanGLDLX13
http://www.informatik.uni-trier.de/~ley/db/conf/icon/icon2013.html#Sugiki13
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Raghavan:Barath.html
http://www.informatik.uni-trier.de/~ley/pers/hd/c/Casado:Martin.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Ratnasamy:Sylvia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Ratnasamy:Sylvia.html
http://www.informatik.uni-trier.de/~ley/pers/hd/g/Ghodsi:Ali.html
http://www.informatik.uni-trier.de/~ley/pers/hd/s/Shenker:Scott.html
http://www.informatik.uni-trier.de/~ley/db/conf/hotnets/hotnets2012.html#RaghavanCKRGS12
http://dl.acm.org/citation.cfm?id=2503245&CFID=524027180&CFTOKEN=40982472
http://dl.acm.org/citation.cfm?id=2503245&CFID=524027180&CFTOKEN=40982472
http://dl.acm.org/citation.cfm?id=2503245&CFID=524027180&CFTOKEN=40982472
http://dl.acm.org/citation.cfm?id=2503245&CFID=524027180&CFTOKEN=40982472
http://dl.acm.org/citation.cfm?id=2503245&CFID=524027180&CFTOKEN=40982472
http://dl.acm.org/citation.cfm?id=2503245&CFID=524027180&CFTOKEN=40982472
http://doi.acm.org/10.1145/2503210.2503245
http://www.informatik.uni-trier.de/~ley/pers/hd/p/Peres=iacute=ni:Peter.html
http://www.informatik.uni-trier.de/~ley/pers/hd/k/Kuzniar:Maciej.html
http://www.informatik.uni-trier.de/~ley/db/conf/ewsdn/ewsdn2013.html#PeresiniKK13

