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Abstract—This study presents an algorithm for MaxFlow 

problem using "Chemical Reaction Optimization algorithm 

(CRO)". CRO is a recently established meta-heuristics algorithm 

for optimization, inspired by the nature of chemical reactions. 

The main concern is to find the best maximum flow value at 

which the flow can be shipped from the source node to the sink 

node in a flow network without violating any capacity constraints 

in which the flow of each edge remains within the upper bound 

value of the capacity. The proposed MaxFlow-CRO algorithm is 

presented, analyzed asymptotically and experimental test is 

conducted. Asymptotic runtime is derived theoretically.  The 

algorithm is implemented using JAVA programming language. 

Results show a good performance with a complexity of O(I E2), 

for I iterations and E edges.  The number of iterations I in the 

algorithm, is an important factor that will affect the results 

obtained. As number of iterations is increased, best possible max-

Flow value is obtained. 
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I. INTRODUCTION 

Imagine a material traveling without obstruction through a 
system from a source, where the material is produced, to a 
destination, where it is consumed. The flow of the material at 
any point in the system is the rate at which the material moves 
[1]. We can interpret the weighted directed graph as a flow 
networks. Flow networks can represent many real life 
situations like petrol flowing through conduits, and parts 
through assembly lines [1]. The maximum flow problem 
becomes one of the most well known problems for 
combinatorial optimization in the weighted directed graph [2]. 
This problem can be applied in many areas of applications 
such as networks, engineering, and transportations [2]. 

Related to its important, many researches solved this 
problem using different methods and techniques [1]. In the 
maximum flow problem, the goal is to get the greatest rate at 
which we can ship the material from the produced point to the 
consumed one without violating any capacity constraint in 
which the flow of each edge remains within the upper bound 
value of the capacity [1]. 

Toshinori et al. in [2] define the max flow problem as: 
"The problem is to determine an optimal solution for a given 
directed, integer weighted graph. The weight at each edge 

represents the flow capacity of the edge. Under these 
constraints, we want to maximize the total flow from the 
source to the sink". In [3] they define it as " In deterministic 
networks, the maximum-flow problem asks to send as much 
flow (information or goods) from a source to a destination, 
without exceeding the capacity of any of the used links. 
Solving maximum-flow problems is for instance important to 
avoid congestion and improve network utilization in computer 
networks or data centers or to improve fault tolerance". 

In this study, a potential solution to the maximum flow 
problem using a recent algorithm which is called "Chemical 
Reaction Optimization (CRO)" is investigated. This algorithm, 
as it is reported in [4]: "CRO is a recently established meta-
heuristics for optimization, inspired by the nature of chemical 
reactions. A chemical reaction is a natural process of 
transforming the unstable substances to the stable ones. The 
molecules interact with each other through a sequence of 
elementary reactions. At the end, they are converted to those 
with minimum energy to support their existence. This property 
is embedded in CRO to solve optimization problem". 

Furthermore, CRO is a technique which loosely couples 
chemical reactions with optimization. It does not attempt to 
capture every detail of chemical reactions [4]. In general, the 
principles of chemical reactions are governed by the first two 
laws of thermodynamics. The first law (conservation of 
energy) says that energy cannot be created or destroyed; 
energy can transform from one form to another and transfer 
from one entity to another. The second law says that the 
entropy of a system tends to increase, where entropy is the 
measure of the degree of disorder [4]. Potential energy is the 
energy stored in a molecule with respect to its molecular 
configuration [4]. 

The rest of this study is organized as follow. Section II will 
present the literature review. Section III will illustrate the 
maximum flow problem. Section IV will show how chemical 
reaction optimization works. Section V presents the proposed 
algorithm. Section VI shows the analysis of the algorithm. An 
illustrated example is presented in section VII. The 
experimental results are presented in section VIII. Section IX 
is the conclusion and future work. 

II. LITERATURE REVIEW 
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The maximum flow problem has been widely studied by 
many researchers using several methods. The first pseudo-
polynomial algorithm for the maximum flow problem is the 
augmenting path algorithm of Ford and Fulkerson (1956) [5, 
6]. Dinic [7] and Edmonds and Karp [8] independently 
obtained polynomial versions of the augmenting path 
algorithm. Edmonds and Karp (1972) and Dinic (1970) 
independently proved that if each augmenting path is shortest 
one, the algorithm will perform O(nm) augmentation steps, 
where n is the number of vertices, and m is the number of 
edges in the graph. The shortest path (length of each edge is 
equal to one) can be found with the help of breadth-first 
search (BFS) algorithm. Since then, several more-efficient 
algorithms have been developed. Ahuja and Orlin improved 
the shortest augmenting path algorithm in 1987 [12]. The push 
and re-label method is introduced by Goldberg [9] and 
Goldberg and Tarjan [10], along with some of its more 
efficient variants. It maintains a preflow and updates it 
through push operations. It introduces the relabel operation to 
perform fine-grain updates of the vertex distances. Orlin [14] 
presents improved polynomial time algorithms for the max 
flow problem defined on a network with n nodes and m arcs, 
and shows how to solve the max flow problem in O(nm) time, 
improving upon the best previous algorithm due to King, Rao, 
and Tarjan [15] who solved the max flow problem in O(nm 
logm/(n log n) n) time. 

Genetic algorithm (GA), which is considered as 
evolutionary algorithm, has been also applied to solve max 
flow optimization problems such as in [2]. In [2], each 
solution is represented by a flow matrix.  The fitness function 
is defined to reflect two characteristics: balancing vertices and 
the saturation rate of the flow.  Starting with a population of 
randomized solutions, better and better solutions are sought 
through the genetic algorithm.  Optimal or near optimal 
solutions are determined with a reasonable number of 
iterations compared to other previous GA applications. 

CRO is a recently proposed general-purpose meta-
heuristic, which has been developed intensely in the past few 
years [11]. The CRO was proposed by Lam et al. in 2010, and 
was originally designed for solving combinatorial 
optimization problems. They solved some classical problems, 
e.g., quadratic assignment problem and channel assignment 
problem. It could also provide solutions to some applications 
solved by other evolutionary algorithms such as genetic 
algorithm. As in [13], they use genetic algorithm to deal with 
optimization of parameters of constructive cost model. 
Therefore, CRO can be used for these types of applications. In 
this study, we proposed to use chemical reaction optimization 
algorithm to solve the maximum flow problem. 

III. MAXIMUM FLOW PROBLEM 

Suppose there is a directed network G = (V, E) defined by 
a set V of nodes (or vertices) and a set E of arcs (or edges). 
Each arc (i,j) in E has an associated nonnegative capacity uij-
where i, j are nodes in V. Also, there are two distinguished 
special nodes in G: a source (or start) node s and a sink (or a 
target) node t [1]. For each i in V, denote by E(i) all the arcs 
emanating from node i. Let U = max {uij by (i,j) in E}. Denote 
the number of vertices by n and the number of edges by m [1]. 

The goal is to find the maximum flow from the source 
node s to the sink node t that satisfies the arc capacities and 
mass balance constraints at all nodes [2]. Representing the 
flow on arc (i,j) in E by xij, an optimization model for the 
maximum flow problem can be obtained as in (1) [1]: 

( , ) ( )

 f(x)=  subject toij

i j E s

Maximize x


    ..... (1) 

{ :( , ) } { :(j,i) }

0 i V \ {s,t}ij ji

j i j E j E

x x
 

               

0  (i,j) Eij ijx u   
 

IV. CHEMICAL REACTION OPTIMIZATION (CRO) 

The CRO algorithm as described in [4]: "is a multi-agent 
algorithm and the manipulated agents are molecules. Each 
molecule has several attributes, some of which are essential to 
the basic operations of CRO. The essential attributes include: 
(a) the molecular structure (ω); (b) the potential energy (PE); 
and (c) the kinetic energy (KE). Other attributes depend on the 
algorithm operators and they are utilized to construct different 
CRO variants for particular problems provided that their 
implementations satisfy the characteristics of the elementary 
reactions. Molecular structure ω captures a solution of the 
problem. It is not required to be in any specific format: it can 
be a number, a vector, or even a matrix. Potential energy PE is 
defined as the objective function value of the corresponding 
solution represented by ω. If f denotes the objective function, 
then PE(ω) = f(ω). Kinetic energy KE is a non-negative 
number and it quantifies the tolerance of the system accepting 
a worse solution than the existing one". 

There are four types of elementary reactions in CRO, each 
of which takes place in each iteration of CRO. They are 
employed to manipulate solutions (i.e. explore the solution 
space) and to redistribute energy among the molecules [4]. 
Assume that molecules are in a container, one of the following 
four reactions will be possible to occur in each of CRO 
iteration. 

A. On-wall ineffective collision 

An on-wall ineffective collision represents the situation 
when a molecule collides with a wall of the container and then 
bounces away remaining in one single unit but with new 
structure due to collision with wall. In this collision, ω 
produces ω', i.e., ω → ω' [4]. 

B. Decomposition 

Decomposition refers to the situation when a molecule hits 
a wall of the container and then breaks into several parts. 
Assume that ω produces ω1 and ω2, i.e., ω → ω1 + ω2 [4]. 

C. Inter-molecular ineffective collision 

Inter-molecular ineffective collision takes place when two 
molecules collide with each other and then bounce away. 
Assume that ω1 and ω2, after collision with each other, 
produce ω1' and ω2', i.e., ω1 + ω2 → ω1' + ω2'. This reaction 
could be similar to on-wall ineffective collision but with two 
molecules to collide rather than one [4]. 

https://www.topcoder.com/community/data-science/data-science-tutorials/maximum-flow-augmenting-path-algorithms-comparison/#1
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D. Synthesis 

Synthesis does the opposite of decomposition. A synthesis 
happens when multiple (assume two) molecules hit against 
each other and fuse together, i.e., ω1 + ω2 → ω' [4]. 

In order to find the maximum flow using CRO, there is a 
need to explore the search space. To achieve that, number of 
solutions, which are called Molecules in CRO, need to be 
generated. Each of these solutions or 'molecules' has its own 
potential energy which is the objective function value for that 
solution, and a kinetic energy which helps in making decision; 
if the generated solution is better than its  parent or not. Now 
imagine that these molecules are in a container and due to 
their high kinetic energy, they move inside the container in 
arbitrary directions. This situation, leads to perform collisions 
between these molecules in different forms. These collisions 
are known as chemical reactions. Chemical reactions take 
different shapes and conditions [4]. 

CRO mimics these reactions and use them as operators to 
help moving the molecules from local optimum into global 
optimum as possible [4]. CRO, as mentioned before, has four 
types of reactions. These types differ from each other based on 
the nature of the reaction and the numbers of molecules 
participate in the reaction [4]. If one molecule is selected, and 
an ineffective collision is occurred, then it is on-wall 
ineffective reaction. If an effective reaction occurs, then the 
decomposition reaction will happen. In the other hand, if two 
molecules are selected, then there are possibilities of 
occurrence of synthesis reaction which is effective reaction, or 
inter-molecular reaction which is ineffective reaction [4]. 

Through these reactions, some of good solutions will be 
generated and some of bad ones will be destroyed. After 
particular number of iterations or stop criteria is met, the best 
solution among available solutions in the container will be 
selected and considered. 

V. ALGORITHM: "MAXFLOW-CRO" 

Now let us apply CRO to find the possible solution for 
Maximum Flow Problem. Figures 1 through 6, present the 
pseudo-code for the proposed "MaxFlow_CRO" algorithm. 
TABLE 1 shows the main attributes and their meaning related 
to the proposed algorithm "MaxFlow_CRO" for the 
molecules, in comparison with chemical meaning in CRO. 

A. MaxFlow-CRO initialization stage 

As in [4], CRO has three main stages: the initialization, the 
iterations, and the final stage. The MaxFlow-CRO algorithm, 
as shown in Figure1: lines1, 11 and 31, presents these three 
stages. First, the initialization stage can be shown in Figure1 
as in lines 1-10. From Section III, maximum flow problem has 
a graph of nodes and edges; each edge is a directed and 
weighted edge. These weights represent the capacity for those 
edges.  This graph can be represented as a capacity matrix 
C[i][j], and used as a basis to generate number of flow 
matrices, Figure1:lines2 and 10, which are called parents. 
There are number of generated parents based on the value 
setting for parentSize variable (Figure1: line3). S is the source 
node, and t is the sink. Iteration number variable is important 
here, it is used as a stop criterion (Figure1:line3). 

TABLE I.  PROFILE FOR CRO-MAXFLOW MOLECULE 

After that, a number of parents based on the specified 
value of the parentSize variable (Figure1: line10), will be 
generated. The generated parents are represented by a flow 
matrix F[i][j]. Parent, solution and molecule are used 
interchangeably. These parents represent the first generation in 
the population. Generating parents had been a challenge 
because in order to consider them as max flow solutions, they 
should obey the constraints as mentioned in formula (1). Max 
flow problem has two common constraints. The first one says 
the generated flow must not exceed the identified capacity for 
any edge. The second says that for each node in the graph, the 
incoming flow must equal to the outgoing flow. The first 
constraint could be controlled by specifying the upper range of 
the generated flow based on the capacity on an edge. 
Generating the flow randomly will make second constraint 
hard to satisfy. So, MaxFlow-CRO use a function called 
objectiveFunction() to repair the flow and compute the current 
max flow value. Therefore, a feasible solution meets the 
constraints can be obtained. The details of parent generating 
function can be shown in Figure 2. 

The objective function (Figure2: line5) can be computed 
using the known shortest augmenting path algorithm as in [8]. 
The max flow value, computed by the objective function, 
represents the current maximum flow value, and as the 
iterations and reactions proceed, this value will be improved 
gradually. Note that, objective function and PE are used 
interchangeably. 

In Figure1, lines 6 and 7, α is a decomposition threshold, β 
is a synthesis threshold, and both of them are initially assigned 
by dividing parentSize variable value by 2. The reason from 
computing α and β like that, to make sure that synthesis and 
intermolecular reactions will be possibly happened after 
number of on-wall and decomposition reactions are triggered. 
The goal is to degrade the chance of synthesis reaction 
occurrence. Both of decomposition and on-wall reactions help 
to save or increase the number of parents, but synthesis 
reactions tend to decrease number of parents. 

B. MaxFlow-CRO Iteration stage 

The goal from CRO reactions is to increase the ability to 
improve the resulted value of max flow. As iterations operate, 

Profile: Flow network 

Chemical 
meaning 

 

CRO-MaxFlow 

meaning 

 

Molecular 
structure 

Candidate solution: 
flow matrix 

Potential energy 
Value of maximum 
flow for such candidate 
solution 

Kinetic energy 
Measure of tolerance 
of having worse 
solution 

Number of hits 
Current total number 
of iterations 

Minimum 
structure 

Current optimal max 
flow solution 
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the max flow value will be improved gradually until reach the 
best max flow. Iteration stage is shown in Figure 1: lines11-
31. After generating the required parents, PE for each of them 
will be computed. Then one or two molecules will be picked 
randomly based on the value of the variable "b". The variable 
b is generated randomly between 0 and 1 (Figure1: line12). If 
the value of b is larger than the value of the variable 
"molecule", which is a predefined variable used as a threshold 
for the variable b, then one molecule will be selected; but if 
not, then two molecules will be selected. Also, the value of the 
molecule variable will be generated randomly between 0 and 1 
(Figure1:line9). 

If one molecule is selected, there is a possibility to on-wall 
ineffective or decomposition reactions to happen. So, to be 
more accurate, CRO as in [4] puts a criteria, which is HIT > α 
(Figure1: line15), where HIT is a variable counts the number 
of times the specific molecule participate in a reaction and 
initialized to 0 (Figure1: line5 and 29). If this criterion has 
been met, then decomposition reaction will be occurred 
(Figure1: line16). Else, the on-wall ineffective collision will 
be occurred (Figure1: line18). 

The same will happen if two molecules are selected but 
here the reactions are different. In this case, the possibility is 
for synthesis and inter-molecular reactions to be happened. 
There are some conditions that must be satisfied, which are 
KE<=β [4] (where KE is kinetic energy) and the number of 
parents is not less than 2. This is to be sure that synthesis and 
inter-molecular reactions can be occurred correctly (Figure1: 
line23). If the criterion in line 23 has been met, then synthesis 
reaction will occur (Figure1: line24).  Else, the inter-molecule 
ineffective reaction will occur (Figure1: line26).  Each time 
the reaction happens, the KE will be decremented by one 
(Figure1: line30). 

In the final stage and after finishing the specific number of 
iterations, which was the stop criterion, the best molecule 
which has the largest maximum flow value obtained will be 
selected and its maximum flow value will be returned 
(Figure1: lines 31-33). 

C. Reactions 

When on-wall ineffective function is called (Figure3), the 
chosen molecule will be changed by regenerating randomly 
the flow of its first half, (Figure3: lines1-3). Then, the 
objective function will be computed and the max flow value is 
compared with that for the original molecule. If it is greater 
than the original, then it will be confirmed and the original 
solution will be destroyed; else the generated molecule will be 
destroyed. 

The same will be happened when intermolecular 
ineffective collision is called (Figure4), but in this case, there 
are two molecules instead of one. Apply the same procedure 
used for on-wall function for each molecule separately and 
test the resulted molecules if they have max flow greater than 
the original molecules or not. Figure4: lines 1-13 are for the 
first molecule. Lines 14-26 are for the second one. In synthesis 
function (Figure6), the molecules with large max flow value 
will be returned and the other ones will be destroyed (Figure6: 
lines 1-7). 

Algorithm: MaxFlow-CRO  
1 //initialization phase 
2 Set  flow_network_size,  C[i][j]: maximum capacity  
3 parentSize, iterationNumber, s: source node, t: 
4 sink node 
5 HIT= 0 
6 β = parentSize/2  
7 α = parentSize/2 
8 KE = parentSize/1.5 
9 Generate molecule ∈ [0, 1]  
10 parentGenerating(C[i][j] , parentSize )   
11 for (int i=1 to iterationNumber)  // Iteration phase 
12      Generate b ∈ [0, 1]  
13      if b > Molecule        then 
14          Randomly select one parent  
15          if (HIT > α)  then  
16             Decomposition( ) 
17         else  
18            OnWallIneffectiveCollision( ) 
19        end if 
20      
21     else  
22         Randomly select two molecules  
23         if (KE<=β && parentSize >=2 ) then  
24             Synthesis( )  
25         else if (parentSize >=2) 
26             IntermolecularIneffectiveCollision( ) 
27           end if  
28         end if 
29 HIT++ 
30  KE--  
31 Check for any new maximum solution  
32 end for-loop // final stage 
33 return the best solution found  

Fig. 1. Pseudo-code for "MaxFlow-CRO" algorithm 

  Function: parentGenerating( ) 
  Input: C[i][j]: maximum capacity, parentSize 
  Output: Fi: flow matrices 

 
1 for ( int i=1 to popSizs )  
2    for (int j=1 to no. of edges in the graph)  
3       randomly generate Fi[i][j]  
4        // where 0 <= Fi[i][j] <= C[i][j] 
5       PEi = objectiveFunction(Fi) 
6       return  Fi, PEi 
7    end for-loop 
8 end for-loop 

Fig. 2. Pseudo-code for parent initialization function 

Function: onWallIneffectiveCollision( ) 
Input:  Fi //one molecule   
Output: Fi' // new molecule 
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1 for (j=1 to flow_network_size/2) 
2     Fi'=generate new flow randomly 
3 end for-loop 
4 //Compute objective function for the new molecule  
5 PE' = objectiveFunction(Fi')  
6 //confirm the new solution or dismiss   
7 if (PE'> PE ) then  
8    destroy Fi 
9    return Fi'  
10 else 
11   dismiss Fi'  
12 End if 

Fig. 3. Pseudo-code for on-wall ineffective collision function 

Function: IntermolecularIneffectiveCollision( ) 
Input:  F1, F2 // two molecules 
Output: F1', F2' //two new molecules 

 
1 // for F1 
2 for (j=1 to flow_network_size/2) 
3     F1'= generate new flow randomly 
4 end for-loop  
5 PE1' = objectiveFunction(F1')  
6 //Compute PE' objective function for the  
7    new molecule  
8 if (PE1'> PE1 ) then // solution confirmed  
9    destroy F1 
10    return F1'  
11 else 
12    dismiss F1'  
13 end if 
14 // for F2 
15 for (j=1 to flow_network_size/2) 
16     F2'= generate new flow randomly 
17 end for-loop  
18 PE2' = objectiveFunction(F2')  
19 //Compute PE' objective function for the  
20    new molecule  
21 if (PE2'> PE2 ) then // solution confirmed  
22    destroy F2 
23    return F2'  
24 else 
25    dismiss F2'  
26 end if 

Fig. 4. Pseudo-code for inter-molecule ineffective collision function 

Figure5 shows the decomposition function. In this function 
one molecule is used to produce two molecules.  First, two 
copies, for the original molecule, are produced (Figure 5: lines 
2 and 15). For the first copy, take the first half of flows and 
randomly regenerate them (Figure5: lines 3-5), then compute 
the objective function (Figure5: lines7) and compare it with 
that for the original (Figure5: lines 8-13). In order to confirm 
the new molecule, it should have max flow greater than that 
for the original. The same occurs for the second copy but 
regenerate the second half of flows in order to produce a 
molecule different from the first one (Figure5: lines 15-18). 
Then compute the objective function and compare the result 

with that for original to confirm or destroy the second new 
molecule (Figure5: lines19-27). 

Function: Decomposition( )  
Input: Fi // one molecule 
Output: F1', F2' // two new molecules 

 

1 // generate the first solution F1' 

2 Copy the original solution Fi  into F1
  

3 for (i=1 to network_flow_size/2)   

4      F1'= Randomly generate new flow 
5 end for-loop 
6 // objective function for the new molecule  
7 PE1'=objectiveFunction(F1) 
8 if (PE1'> PEi ) then // solution confirmed  
9     destroy Fi 
10     return F1'  
11 else 
12     dismiss F1' 
13 end if 
14 // generate the second solution F2' 

15 Copy the original solution Fi  into F2
  

16 for (i= network_flow_size/2 to network_flow_size)   

17      F2'= Randomly generate new flow 
18 end for-loop 
19 // objective function for the new molecule  
20 PE2'=objectiveFunction(F2)  
21 //confirm the new solution or dismiss   
22 if (PE2'> PEi ) then // solution confirmed  
23     destroy Fi 
24     return F2'  
25 else 
26     dismiss F2' 
27 end if 

Fig. 5. Pseudo-code for Decomposition function 

VI. ANALYSIS OF MAXFLOW-CRO ALGORITHM 

A. Time complexity 

For initial max flow of the first parent generation, the run 
time complexity can be approximated by O(N E f), where N is 
the number of parent nodes, E is the number of edges in flow 
network and f is the maximum flow in the flow network 
graph. The Random Number between 0-1 is approximated by 
O(1); which can be ignored since it has a constant value. 

Starting the optimization algorithm: the run time 
complexity can be approximated by O(I X), where I is the 
number of iterations and X is the complexity for each method 
(depends on random selection). Below is the complexity 
calculation for each reaction, so we will be able to find the 
worst case. 

1) Decomposition function: O(E2), where E is number of 

edges in the graph.  

2) On-Wall ineffective collision function: O(E2), where E 

is number of edges in the graph.  

3) Synthesis function: O(C), where C: constant, synthesis 

function contains If and assignment statements, see Figure6. 
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4) Inter-Molecular function: O(E2+E+E)=O(E2),where E 

is number of edges in the graph. 
The worst case is when randomization leads to O(E

2
), so 

replace X with O(E
2
). Therefore the time complexity for the 

optimization algorithm is O(I E
2
). 

Max flow calculation for the results: This is similar to the 
initial O(R E f), where R is the remaining items in the input 
array, E is the number of edges in the graph, f is the maximum 
flow in the graph. Thus, the final Time complexity will be: 
O(N E f) + O(I E

2
) = O(I E

2
). 

B. Space complexity: 

The initial input needs O(N E
2
), where E is the number of 

edges in the graph, and N is the number of nodes. For the four 
methods in the optimization algorithm: 

1) Intermolecular function: O(2E
2
) = O(E

2
). 

2) On-Wall ineffective collision function: O(E
2
). 

3) Synthesis function: O(1), the size of the used graph 

already calculated in input so no need to include it again. 

4) Decomposition function: O(2E
2
). Additional graph 

for swapping is needed, so it is O(E
2
). The worst case will be 

O(2E
2
)+ O(E

2
)= O(E

2
). 

Fig. 6. Pseudo-code for Synthesis function 

Therefore, the final space complexity will be: O(N E
2
) + 

O(E
2
) = O(N E

2
). 

VII. EXAMPLE FOR MAXFLOW-CRO ALGORITHM 

To understand how this study uses CRO to optimize 
maximum flow problem, refer to TABLE1 again. It shows a 
profile for a directed graph of four nodes and five edges, each 
edge has its own capacity, which will be used in this example 
and called molecule. The goal from this capacity matrix is to 
use it as a basis for producing flow matrices within their edges 
capacity. This example represents the capacity and the 
possible flow on the edge as flow/ capacity, as shown in 
Figures 7 through 10. 

A. On-wall ineffective reaction 

On-wall ineffective reaction uses total-half change method 
[4]. First, take the molecule that picked randomly from the 
population of parents, as one shown in Figure 7. Then, 
regenerate the first half part of its flows.  After that, objective 
function will be applied to compute the new flow. This max 

flow value will be compared with the original max flow value. 
If it is larger than before, the new value will be confirmed; 
else it will be dismissed and the parent molecule will be 
remained. Figure7 shows that the new molecule has max flow 
value better than that for original one, so it will be confirmed. 

B. Decomposition reaction 

In decomposition reaction, the molecule will be copied 
into other two molecules. For each of these resulted 
molecules, half values will be selected and regenerated 
randomly. For the first copy, select the first half, while second 
half is selected for the second copy. So, a new two molecules 
will be produced. After that, objective function will be 
applied, as shown in Figure8. This operation is called total-
half change operator [4]. 

 

Fig. 7. On-wall ineffective collision reaction example 

 

Fig. 8. Decomposition reaction example 

 

Fig. 9. Synthesis reaction example 

 

 

Function: synthesis( ) 
Input:  F1, F2, PE1, PE2 // two molecules 
Output: F3: solution has greater value of flow 

 
1 If (PE1>PE2) then 
2     F3 = F1 
3     destroy F2 
4 else 
5     F3 = F2 
6     destroy F1 
7 return F3 
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Fig. 10. Inter-molecular reaction example 

C. Synthesis reaction 

In the synthesis reaction, simply select the molecule which 
has greater flow value than the other molecule, as shown in 
Figure 9. 

D. Inter-molecular reaction 

Inter-molecular reaction is the same as on-wall reaction, 
but the procedure will be applied on two molecules rather than 
one, as shown in Figure 10. 

VIII. RESULTS 

The MaxFlow-CRO program was implemented and 
executed using a dataset of different flow_network_size: 
number of nodes in the graph. These dataset sizes are ranging 
from 50 to 1000 nodes as shown in TABLE2. Datasets with 
further sizes were unable to be tested on the test PC due to 
memory limitations.  The algorithm was tested using Intel-
core™ i5-2450M CPU with 2.50 GHz, 4 GB RAM (2.5 GB 
usable), and windows7 32-bit operating system. The 
application program is written using Java and executed in Net-
Beans IDE 7.1.2, using ten structured classes. Each dataset is 
experimented 10 times, runtime in seconds is recorded, and an 
average runtime is calculated. Figure11 shows the 
experimental runtimes depicted from TABLE2. Figure11 
represents how execution time behaves with increasing size of 
the graph. From this Figure, we can conclude that the 
algorithm has a quadratic polynomial time complexity, which 
is possibly a good performance. The experiments show that, as 
initial parent size and number of iterations increase, better 
results for max flow will be obtained. Runtimes in TABLE2 
are recorded when the highest possible value for max flow is 
reached by the application program. 

TABLE II.  RUN TIMES (IN SECONDS) FOR DIFFERENT NETWORK SIZES 

 

Fig. 11. Runtime graph for experimental results 

 
Fig. 12. Theoretical runtime graph for O(IE2) complexity 

Figure 12 shows the chart for the asymptotic notation 
(IE

2
), such that I = 75 and E = 100. It is clear from both 

Figure11 and Figure12 that experimental and theoretical 
results converge. Many terms are removed from the 
asymptotic notation of the runtime complexity when 
calculated theoretically, and that explains the slight difference 
in shape between the two Figures. 

 

Network Size 
Average 

runtimes(sec) 
Network 

Size 
Average 

runtimes(sec) 

50 0.109 550 114.198 

100 0.625 600 149.497 

150 2.429 650 178.372 

200 4.449 700 230.718 

250 11.278 750 278.584 

300 18.694 800 301.045 

350 24.45 850 396.915 

400 43.233 900 425.62 

450 54.37 950 459.185 

500 80.142 1000 506.103 
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IX. CONCLUSION AND FUTURE WORK 

This study proposes a potential solution to maximum flow 
problem through using chemical reaction optimization 
algorithm.  The proposed MaxFlow-CRO algorithm is 
presented, analyzed asymptotically and experimental test is 
conducted. Asymptotically, the algorithm runtime is O(I E

2
). 

Asymptotic runtime is proved theoretically. The experiments 
show that, as initial value of parent_size variable and numbers 
of iterations are increased, better results for max flow will be 
obtained. Initial parent_size variable didn’t affect the run time, 
because initialization operations, in general, are out of 
runtimes consideration. In other hand, iterations number is an 
important factor that can affect the value of max flow and run 
time duration. As a future work, the algorithm could be 
improved to reach the possible highest max-flow value using 
less number of iterations by implementing the algorithm on 
supercomputer to evaluate its performance in parallel. In 
addition, we can conduct a comparison between this proposed 
algorithm and other heuristic, meta-heuristic or evolutionary 
algorithms used to solve maximum flow problem in terms of 
their performance. 
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