
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

189 | P a g e

www.ijacsa.thesai.org

Chemical Reaction Optimization for Max Flow

Problem

Reham Barham

Department of Computer Science

King Abdulla II School for

Information and Technology

The University of Jordan

Amman, Jordan

Ahmad Sharieh

Department of Computer Science

King Abdulla II School for

Information and Technology

The University of Jordan

Amman, Jordan

Azzam Sliet

Department of Computer Science

King Abdulla II School for

Information and Technology

The University of Jordan

Amman, Jordan

Abstract—This study presents an algorithm for MaxFlow

problem using "Chemical Reaction Optimization algorithm

(CRO)". CRO is a recently established meta-heuristics algorithm

for optimization, inspired by the nature of chemical reactions.

The main concern is to find the best maximum flow value at

which the flow can be shipped from the source node to the sink

node in a flow network without violating any capacity constraints

in which the flow of each edge remains within the upper bound

value of the capacity. The proposed MaxFlow-CRO algorithm is

presented, analyzed asymptotically and experimental test is

conducted. Asymptotic runtime is derived theoretically. The

algorithm is implemented using JAVA programming language.

Results show a good performance with a complexity of O(I E2),

for I iterations and E edges. The number of iterations I in the

algorithm, is an important factor that will affect the results

obtained. As number of iterations is increased, best possible max-

Flow value is obtained.

Keywords—Chemical reaction optimization(CRO);

Decomposition; Heuristic; Max Flow problem; Molecule;

Optimization; Reactions; Synthesis

I. INTRODUCTION

Imagine a material traveling without obstruction through a
system from a source, where the material is produced, to a
destination, where it is consumed. The flow of the material at
any point in the system is the rate at which the material moves
[1]. We can interpret the weighted directed graph as a flow
networks. Flow networks can represent many real life
situations like petrol flowing through conduits, and parts
through assembly lines [1]. The maximum flow problem
becomes one of the most well known problems for
combinatorial optimization in the weighted directed graph [2].
This problem can be applied in many areas of applications
such as networks, engineering, and transportations [2].

Related to its important, many researches solved this
problem using different methods and techniques [1]. In the
maximum flow problem, the goal is to get the greatest rate at
which we can ship the material from the produced point to the
consumed one without violating any capacity constraint in
which the flow of each edge remains within the upper bound
value of the capacity [1].

Toshinori et al. in [2] define the max flow problem as:
"The problem is to determine an optimal solution for a given
directed, integer weighted graph. The weight at each edge

represents the flow capacity of the edge. Under these
constraints, we want to maximize the total flow from the
source to the sink". In [3] they define it as " In deterministic
networks, the maximum-flow problem asks to send as much
flow (information or goods) from a source to a destination,
without exceeding the capacity of any of the used links.
Solving maximum-flow problems is for instance important to
avoid congestion and improve network utilization in computer
networks or data centers or to improve fault tolerance".

In this study, a potential solution to the maximum flow
problem using a recent algorithm which is called "Chemical
Reaction Optimization (CRO)" is investigated. This algorithm,
as it is reported in [4]: "CRO is a recently established meta-
heuristics for optimization, inspired by the nature of chemical
reactions. A chemical reaction is a natural process of
transforming the unstable substances to the stable ones. The
molecules interact with each other through a sequence of
elementary reactions. At the end, they are converted to those
with minimum energy to support their existence. This property
is embedded in CRO to solve optimization problem".

Furthermore, CRO is a technique which loosely couples
chemical reactions with optimization. It does not attempt to
capture every detail of chemical reactions [4]. In general, the
principles of chemical reactions are governed by the first two
laws of thermodynamics. The first law (conservation of
energy) says that energy cannot be created or destroyed;
energy can transform from one form to another and transfer
from one entity to another. The second law says that the
entropy of a system tends to increase, where entropy is the
measure of the degree of disorder [4]. Potential energy is the
energy stored in a molecule with respect to its molecular
configuration [4].

The rest of this study is organized as follow. Section II will
present the literature review. Section III will illustrate the
maximum flow problem. Section IV will show how chemical
reaction optimization works. Section V presents the proposed
algorithm. Section VI shows the analysis of the algorithm. An
illustrated example is presented in section VII. The
experimental results are presented in section VIII. Section IX
is the conclusion and future work.

II. LITERATURE REVIEW

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

190 | P a g e

www.ijacsa.thesai.org

The maximum flow problem has been widely studied by
many researchers using several methods. The first pseudo-
polynomial algorithm for the maximum flow problem is the
augmenting path algorithm of Ford and Fulkerson (1956) [5,
6]. Dinic [7] and Edmonds and Karp [8] independently
obtained polynomial versions of the augmenting path
algorithm. Edmonds and Karp (1972) and Dinic (1970)
independently proved that if each augmenting path is shortest
one, the algorithm will perform O(nm) augmentation steps,
where n is the number of vertices, and m is the number of
edges in the graph. The shortest path (length of each edge is
equal to one) can be found with the help of breadth-first
search (BFS) algorithm. Since then, several more-efficient
algorithms have been developed. Ahuja and Orlin improved
the shortest augmenting path algorithm in 1987 [12]. The push
and re-label method is introduced by Goldberg [9] and
Goldberg and Tarjan [10], along with some of its more
efficient variants. It maintains a preflow and updates it
through push operations. It introduces the relabel operation to
perform fine-grain updates of the vertex distances. Orlin [14]
presents improved polynomial time algorithms for the max
flow problem defined on a network with n nodes and m arcs,
and shows how to solve the max flow problem in O(nm) time,
improving upon the best previous algorithm due to King, Rao,
and Tarjan [15] who solved the max flow problem in O(nm
logm/(n log n) n) time.

Genetic algorithm (GA), which is considered as
evolutionary algorithm, has been also applied to solve max
flow optimization problems such as in [2]. In [2], each
solution is represented by a flow matrix. The fitness function
is defined to reflect two characteristics: balancing vertices and
the saturation rate of the flow. Starting with a population of
randomized solutions, better and better solutions are sought
through the genetic algorithm. Optimal or near optimal
solutions are determined with a reasonable number of
iterations compared to other previous GA applications.

CRO is a recently proposed general-purpose meta-
heuristic, which has been developed intensely in the past few
years [11]. The CRO was proposed by Lam et al. in 2010, and
was originally designed for solving combinatorial
optimization problems. They solved some classical problems,
e.g., quadratic assignment problem and channel assignment
problem. It could also provide solutions to some applications
solved by other evolutionary algorithms such as genetic
algorithm. As in [13], they use genetic algorithm to deal with
optimization of parameters of constructive cost model.
Therefore, CRO can be used for these types of applications. In
this study, we proposed to use chemical reaction optimization
algorithm to solve the maximum flow problem.

III. MAXIMUM FLOW PROBLEM

Suppose there is a directed network G = (V, E) defined by
a set V of nodes (or vertices) and a set E of arcs (or edges).
Each arc (i,j) in E has an associated nonnegative capacity uij-
where i, j are nodes in V. Also, there are two distinguished
special nodes in G: a source (or start) node s and a sink (or a
target) node t [1]. For each i in V, denote by E(i) all the arcs
emanating from node i. Let U = max {uij by (i,j) in E}. Denote
the number of vertices by n and the number of edges by m [1].

The goal is to find the maximum flow from the source
node s to the sink node t that satisfies the arc capacities and
mass balance constraints at all nodes [2]. Representing the
flow on arc (i,j) in E by xij, an optimization model for the
maximum flow problem can be obtained as in (1) [1]:

(,) ()

 f(x)= subject toij

i j E s

Maximize x

 (1)

{ :(,) } { :(j,i) }

0 i V \ {s,t}ij ji

j i j E j E

x x

0 (i,j) Eij ijx u

IV. CHEMICAL REACTION OPTIMIZATION (CRO)

The CRO algorithm as described in [4]: "is a multi-agent
algorithm and the manipulated agents are molecules. Each
molecule has several attributes, some of which are essential to
the basic operations of CRO. The essential attributes include:
(a) the molecular structure (ω); (b) the potential energy (PE);
and (c) the kinetic energy (KE). Other attributes depend on the
algorithm operators and they are utilized to construct different
CRO variants for particular problems provided that their
implementations satisfy the characteristics of the elementary
reactions. Molecular structure ω captures a solution of the
problem. It is not required to be in any specific format: it can
be a number, a vector, or even a matrix. Potential energy PE is
defined as the objective function value of the corresponding
solution represented by ω. If f denotes the objective function,
then PE(ω) = f(ω). Kinetic energy KE is a non-negative
number and it quantifies the tolerance of the system accepting
a worse solution than the existing one".

There are four types of elementary reactions in CRO, each
of which takes place in each iteration of CRO. They are
employed to manipulate solutions (i.e. explore the solution
space) and to redistribute energy among the molecules [4].
Assume that molecules are in a container, one of the following
four reactions will be possible to occur in each of CRO
iteration.

A. On-wall ineffective collision

An on-wall ineffective collision represents the situation
when a molecule collides with a wall of the container and then
bounces away remaining in one single unit but with new
structure due to collision with wall. In this collision, ω
produces ω', i.e., ω → ω' [4].

B. Decomposition

Decomposition refers to the situation when a molecule hits
a wall of the container and then breaks into several parts.
Assume that ω produces ω1 and ω2, i.e., ω → ω1 + ω2 [4].

C. Inter-molecular ineffective collision

Inter-molecular ineffective collision takes place when two
molecules collide with each other and then bounce away.
Assume that ω1 and ω2, after collision with each other,
produce ω1' and ω2', i.e., ω1 + ω2 → ω1' + ω2'. This reaction
could be similar to on-wall ineffective collision but with two
molecules to collide rather than one [4].

https://www.topcoder.com/community/data-science/data-science-tutorials/maximum-flow-augmenting-path-algorithms-comparison/#1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

191 | P a g e

www.ijacsa.thesai.org

D. Synthesis

Synthesis does the opposite of decomposition. A synthesis
happens when multiple (assume two) molecules hit against
each other and fuse together, i.e., ω1 + ω2 → ω' [4].

In order to find the maximum flow using CRO, there is a
need to explore the search space. To achieve that, number of
solutions, which are called Molecules in CRO, need to be
generated. Each of these solutions or 'molecules' has its own
potential energy which is the objective function value for that
solution, and a kinetic energy which helps in making decision;
if the generated solution is better than its parent or not. Now
imagine that these molecules are in a container and due to
their high kinetic energy, they move inside the container in
arbitrary directions. This situation, leads to perform collisions
between these molecules in different forms. These collisions
are known as chemical reactions. Chemical reactions take
different shapes and conditions [4].

CRO mimics these reactions and use them as operators to
help moving the molecules from local optimum into global
optimum as possible [4]. CRO, as mentioned before, has four
types of reactions. These types differ from each other based on
the nature of the reaction and the numbers of molecules
participate in the reaction [4]. If one molecule is selected, and
an ineffective collision is occurred, then it is on-wall
ineffective reaction. If an effective reaction occurs, then the
decomposition reaction will happen. In the other hand, if two
molecules are selected, then there are possibilities of
occurrence of synthesis reaction which is effective reaction, or
inter-molecular reaction which is ineffective reaction [4].

Through these reactions, some of good solutions will be
generated and some of bad ones will be destroyed. After
particular number of iterations or stop criteria is met, the best
solution among available solutions in the container will be
selected and considered.

V. ALGORITHM: "MAXFLOW-CRO"

Now let us apply CRO to find the possible solution for
Maximum Flow Problem. Figures 1 through 6, present the
pseudo-code for the proposed "MaxFlow_CRO" algorithm.
TABLE 1 shows the main attributes and their meaning related
to the proposed algorithm "MaxFlow_CRO" for the
molecules, in comparison with chemical meaning in CRO.

A. MaxFlow-CRO initialization stage

As in [4], CRO has three main stages: the initialization, the
iterations, and the final stage. The MaxFlow-CRO algorithm,
as shown in Figure1: lines1, 11 and 31, presents these three
stages. First, the initialization stage can be shown in Figure1
as in lines 1-10. From Section III, maximum flow problem has
a graph of nodes and edges; each edge is a directed and
weighted edge. These weights represent the capacity for those
edges. This graph can be represented as a capacity matrix
C[i][j], and used as a basis to generate number of flow
matrices, Figure1:lines2 and 10, which are called parents.
There are number of generated parents based on the value
setting for parentSize variable (Figure1: line3). S is the source
node, and t is the sink. Iteration number variable is important
here, it is used as a stop criterion (Figure1:line3).

TABLE I. PROFILE FOR CRO-MAXFLOW MOLECULE

After that, a number of parents based on the specified
value of the parentSize variable (Figure1: line10), will be
generated. The generated parents are represented by a flow
matrix F[i][j]. Parent, solution and molecule are used
interchangeably. These parents represent the first generation in
the population. Generating parents had been a challenge
because in order to consider them as max flow solutions, they
should obey the constraints as mentioned in formula (1). Max
flow problem has two common constraints. The first one says
the generated flow must not exceed the identified capacity for
any edge. The second says that for each node in the graph, the
incoming flow must equal to the outgoing flow. The first
constraint could be controlled by specifying the upper range of
the generated flow based on the capacity on an edge.
Generating the flow randomly will make second constraint
hard to satisfy. So, MaxFlow-CRO use a function called
objectiveFunction() to repair the flow and compute the current
max flow value. Therefore, a feasible solution meets the
constraints can be obtained. The details of parent generating
function can be shown in Figure 2.

The objective function (Figure2: line5) can be computed
using the known shortest augmenting path algorithm as in [8].
The max flow value, computed by the objective function,
represents the current maximum flow value, and as the
iterations and reactions proceed, this value will be improved
gradually. Note that, objective function and PE are used
interchangeably.

In Figure1, lines 6 and 7, α is a decomposition threshold, β
is a synthesis threshold, and both of them are initially assigned
by dividing parentSize variable value by 2. The reason from
computing α and β like that, to make sure that synthesis and
intermolecular reactions will be possibly happened after
number of on-wall and decomposition reactions are triggered.
The goal is to degrade the chance of synthesis reaction
occurrence. Both of decomposition and on-wall reactions help
to save or increase the number of parents, but synthesis
reactions tend to decrease number of parents.

B. MaxFlow-CRO Iteration stage

The goal from CRO reactions is to increase the ability to
improve the resulted value of max flow. As iterations operate,

Profile: Flow network

Chemical
meaning

CRO-MaxFlow

meaning

Molecular
structure

Candidate solution:
flow matrix

Potential energy
Value of maximum
flow for such candidate
solution

Kinetic energy
Measure of tolerance
of having worse
solution

Number of hits
Current total number
of iterations

Minimum
structure

Current optimal max
flow solution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

192 | P a g e

www.ijacsa.thesai.org

the max flow value will be improved gradually until reach the
best max flow. Iteration stage is shown in Figure 1: lines11-
31. After generating the required parents, PE for each of them
will be computed. Then one or two molecules will be picked
randomly based on the value of the variable "b". The variable
b is generated randomly between 0 and 1 (Figure1: line12). If
the value of b is larger than the value of the variable
"molecule", which is a predefined variable used as a threshold
for the variable b, then one molecule will be selected; but if
not, then two molecules will be selected. Also, the value of the
molecule variable will be generated randomly between 0 and 1
(Figure1:line9).

If one molecule is selected, there is a possibility to on-wall
ineffective or decomposition reactions to happen. So, to be
more accurate, CRO as in [4] puts a criteria, which is HIT > α
(Figure1: line15), where HIT is a variable counts the number
of times the specific molecule participate in a reaction and
initialized to 0 (Figure1: line5 and 29). If this criterion has
been met, then decomposition reaction will be occurred
(Figure1: line16). Else, the on-wall ineffective collision will
be occurred (Figure1: line18).

The same will happen if two molecules are selected but
here the reactions are different. In this case, the possibility is
for synthesis and inter-molecular reactions to be happened.
There are some conditions that must be satisfied, which are
KE<=β [4] (where KE is kinetic energy) and the number of
parents is not less than 2. This is to be sure that synthesis and
inter-molecular reactions can be occurred correctly (Figure1:
line23). If the criterion in line 23 has been met, then synthesis
reaction will occur (Figure1: line24). Else, the inter-molecule
ineffective reaction will occur (Figure1: line26). Each time
the reaction happens, the KE will be decremented by one
(Figure1: line30).

In the final stage and after finishing the specific number of
iterations, which was the stop criterion, the best molecule
which has the largest maximum flow value obtained will be
selected and its maximum flow value will be returned
(Figure1: lines 31-33).

C. Reactions

When on-wall ineffective function is called (Figure3), the
chosen molecule will be changed by regenerating randomly
the flow of its first half, (Figure3: lines1-3). Then, the
objective function will be computed and the max flow value is
compared with that for the original molecule. If it is greater
than the original, then it will be confirmed and the original
solution will be destroyed; else the generated molecule will be
destroyed.

The same will be happened when intermolecular
ineffective collision is called (Figure4), but in this case, there
are two molecules instead of one. Apply the same procedure
used for on-wall function for each molecule separately and
test the resulted molecules if they have max flow greater than
the original molecules or not. Figure4: lines 1-13 are for the
first molecule. Lines 14-26 are for the second one. In synthesis
function (Figure6), the molecules with large max flow value
will be returned and the other ones will be destroyed (Figure6:
lines 1-7).

Algorithm: MaxFlow-CRO
1 //initialization phase
2 Set flow_network_size, C[i][j]: maximum capacity
3 parentSize, iterationNumber, s: source node, t:
4 sink node
5 HIT= 0
6 β = parentSize/2
7 α = parentSize/2
8 KE = parentSize/1.5
9 Generate molecule ∈ [0, 1]
10 parentGenerating(C[i][j] , parentSize)
11 for (int i=1 to iterationNumber) // Iteration phase
12 Generate b ∈ [0, 1]
13 if b > Molecule then
14 Randomly select one parent
15 if (HIT > α) then
16 Decomposition()
17 else
18 OnWallIneffectiveCollision()
19 end if
20
21 else
22 Randomly select two molecules
23 if (KE<=β && parentSize >=2) then
24 Synthesis()
25 else if (parentSize >=2)
26 IntermolecularIneffectiveCollision()
27 end if
28 end if
29 HIT++
30 KE--
31 Check for any new maximum solution
32 end for-loop // final stage
33 return the best solution found

Fig. 1. Pseudo-code for "MaxFlow-CRO" algorithm

 Function: parentGenerating()
 Input: C[i][j]: maximum capacity, parentSize
 Output: Fi: flow matrices

1 for (int i=1 to popSizs)
2 for (int j=1 to no. of edges in the graph)
3 randomly generate Fi[i][j]
4 // where 0 <= Fi[i][j] <= C[i][j]
5 PEi = objectiveFunction(Fi)
6 return Fi, PEi
7 end for-loop
8 end for-loop

Fig. 2. Pseudo-code for parent initialization function

Function: onWallIneffectiveCollision()
Input: Fi //one molecule
Output: Fi' // new molecule

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

193 | P a g e

www.ijacsa.thesai.org

1 for (j=1 to flow_network_size/2)
2 Fi'=generate new flow randomly
3 end for-loop
4 //Compute objective function for the new molecule
5 PE' = objectiveFunction(Fi')
6 //confirm the new solution or dismiss
7 if (PE'> PE) then
8 destroy Fi
9 return Fi'
10 else
11 dismiss Fi'
12 End if

Fig. 3. Pseudo-code for on-wall ineffective collision function

Function: IntermolecularIneffectiveCollision()
Input: F1, F2 // two molecules
Output: F1', F2' //two new molecules

1 // for F1
2 for (j=1 to flow_network_size/2)
3 F1'= generate new flow randomly
4 end for-loop
5 PE1' = objectiveFunction(F1')
6 //Compute PE' objective function for the
7 new molecule
8 if (PE1'> PE1) then // solution confirmed
9 destroy F1
10 return F1'
11 else
12 dismiss F1'
13 end if
14 // for F2
15 for (j=1 to flow_network_size/2)
16 F2'= generate new flow randomly
17 end for-loop
18 PE2' = objectiveFunction(F2')
19 //Compute PE' objective function for the
20 new molecule
21 if (PE2'> PE2) then // solution confirmed
22 destroy F2
23 return F2'
24 else
25 dismiss F2'
26 end if

Fig. 4. Pseudo-code for inter-molecule ineffective collision function

Figure5 shows the decomposition function. In this function
one molecule is used to produce two molecules. First, two
copies, for the original molecule, are produced (Figure 5: lines
2 and 15). For the first copy, take the first half of flows and
randomly regenerate them (Figure5: lines 3-5), then compute
the objective function (Figure5: lines7) and compare it with
that for the original (Figure5: lines 8-13). In order to confirm
the new molecule, it should have max flow greater than that
for the original. The same occurs for the second copy but
regenerate the second half of flows in order to produce a
molecule different from the first one (Figure5: lines 15-18).
Then compute the objective function and compare the result

with that for original to confirm or destroy the second new
molecule (Figure5: lines19-27).

Function: Decomposition()
Input: Fi // one molecule
Output: F1', F2' // two new molecules

1 // generate the first solution F1'

2 Copy the original solution Fi into F1

3 for (i=1 to network_flow_size/2)

4 F1'= Randomly generate new flow
5 end for-loop
6 // objective function for the new molecule
7 PE1'=objectiveFunction(F1)
8 if (PE1'> PEi) then // solution confirmed
9 destroy Fi
10 return F1'
11 else
12 dismiss F1'
13 end if
14 // generate the second solution F2'

15 Copy the original solution Fi into F2

16 for (i= network_flow_size/2 to network_flow_size)

17 F2'= Randomly generate new flow
18 end for-loop
19 // objective function for the new molecule
20 PE2'=objectiveFunction(F2)
21 //confirm the new solution or dismiss
22 if (PE2'> PEi) then // solution confirmed
23 destroy Fi
24 return F2'
25 else
26 dismiss F2'
27 end if

Fig. 5. Pseudo-code for Decomposition function

VI. ANALYSIS OF MAXFLOW-CRO ALGORITHM

A. Time complexity

For initial max flow of the first parent generation, the run
time complexity can be approximated by O(N E f), where N is
the number of parent nodes, E is the number of edges in flow
network and f is the maximum flow in the flow network
graph. The Random Number between 0-1 is approximated by
O(1); which can be ignored since it has a constant value.

Starting the optimization algorithm: the run time
complexity can be approximated by O(I X), where I is the
number of iterations and X is the complexity for each method
(depends on random selection). Below is the complexity
calculation for each reaction, so we will be able to find the
worst case.

1) Decomposition function: O(E2), where E is number of

edges in the graph.

2) On-Wall ineffective collision function: O(E2), where E

is number of edges in the graph.

3) Synthesis function: O(C), where C: constant, synthesis

function contains If and assignment statements, see Figure6.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

194 | P a g e

www.ijacsa.thesai.org

4) Inter-Molecular function: O(E2+E+E)=O(E2),where E

is number of edges in the graph.
The worst case is when randomization leads to O(E

2
), so

replace X with O(E
2
). Therefore the time complexity for the

optimization algorithm is O(I E
2
).

Max flow calculation for the results: This is similar to the
initial O(R E f), where R is the remaining items in the input
array, E is the number of edges in the graph, f is the maximum
flow in the graph. Thus, the final Time complexity will be:
O(N E f) + O(I E

2
) = O(I E

2
).

B. Space complexity:

The initial input needs O(N E
2
), where E is the number of

edges in the graph, and N is the number of nodes. For the four
methods in the optimization algorithm:

1) Intermolecular function: O(2E
2
) = O(E

2
).

2) On-Wall ineffective collision function: O(E
2
).

3) Synthesis function: O(1), the size of the used graph

already calculated in input so no need to include it again.

4) Decomposition function: O(2E
2
). Additional graph

for swapping is needed, so it is O(E
2
). The worst case will be

O(2E
2
)+ O(E

2
)= O(E

2
).

Fig. 6. Pseudo-code for Synthesis function

Therefore, the final space complexity will be: O(N E
2
) +

O(E
2
) = O(N E

2
).

VII. EXAMPLE FOR MAXFLOW-CRO ALGORITHM

To understand how this study uses CRO to optimize
maximum flow problem, refer to TABLE1 again. It shows a
profile for a directed graph of four nodes and five edges, each
edge has its own capacity, which will be used in this example
and called molecule. The goal from this capacity matrix is to
use it as a basis for producing flow matrices within their edges
capacity. This example represents the capacity and the
possible flow on the edge as flow/ capacity, as shown in
Figures 7 through 10.

A. On-wall ineffective reaction

On-wall ineffective reaction uses total-half change method
[4]. First, take the molecule that picked randomly from the
population of parents, as one shown in Figure 7. Then,
regenerate the first half part of its flows. After that, objective
function will be applied to compute the new flow. This max

flow value will be compared with the original max flow value.
If it is larger than before, the new value will be confirmed;
else it will be dismissed and the parent molecule will be
remained. Figure7 shows that the new molecule has max flow
value better than that for original one, so it will be confirmed.

B. Decomposition reaction

In decomposition reaction, the molecule will be copied
into other two molecules. For each of these resulted
molecules, half values will be selected and regenerated
randomly. For the first copy, select the first half, while second
half is selected for the second copy. So, a new two molecules
will be produced. After that, objective function will be
applied, as shown in Figure8. This operation is called total-
half change operator [4].

Fig. 7. On-wall ineffective collision reaction example

Fig. 8. Decomposition reaction example

Fig. 9. Synthesis reaction example

Function: synthesis()
Input: F1, F2, PE1, PE2 // two molecules
Output: F3: solution has greater value of flow

1 If (PE1>PE2) then
2 F3 = F1
3 destroy F2
4 else
5 F3 = F2
6 destroy F1
7 return F3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

195 | P a g e

www.ijacsa.thesai.org

Fig. 10. Inter-molecular reaction example

C. Synthesis reaction

In the synthesis reaction, simply select the molecule which
has greater flow value than the other molecule, as shown in
Figure 9.

D. Inter-molecular reaction

Inter-molecular reaction is the same as on-wall reaction,
but the procedure will be applied on two molecules rather than
one, as shown in Figure 10.

VIII. RESULTS

The MaxFlow-CRO program was implemented and
executed using a dataset of different flow_network_size:
number of nodes in the graph. These dataset sizes are ranging
from 50 to 1000 nodes as shown in TABLE2. Datasets with
further sizes were unable to be tested on the test PC due to
memory limitations. The algorithm was tested using Intel-
core™ i5-2450M CPU with 2.50 GHz, 4 GB RAM (2.5 GB
usable), and windows7 32-bit operating system. The
application program is written using Java and executed in Net-
Beans IDE 7.1.2, using ten structured classes. Each dataset is
experimented 10 times, runtime in seconds is recorded, and an
average runtime is calculated. Figure11 shows the
experimental runtimes depicted from TABLE2. Figure11
represents how execution time behaves with increasing size of
the graph. From this Figure, we can conclude that the
algorithm has a quadratic polynomial time complexity, which
is possibly a good performance. The experiments show that, as
initial parent size and number of iterations increase, better
results for max flow will be obtained. Runtimes in TABLE2
are recorded when the highest possible value for max flow is
reached by the application program.

TABLE II. RUN TIMES (IN SECONDS) FOR DIFFERENT NETWORK SIZES

Fig. 11. Runtime graph for experimental results

Fig. 12. Theoretical runtime graph for O(IE2) complexity

Figure 12 shows the chart for the asymptotic notation
(IE

2
), such that I = 75 and E = 100. It is clear from both

Figure11 and Figure12 that experimental and theoretical
results converge. Many terms are removed from the
asymptotic notation of the runtime complexity when
calculated theoretically, and that explains the slight difference
in shape between the two Figures.

Network Size
Average

runtimes(sec)
Network

Size
Average

runtimes(sec)

50 0.109 550 114.198

100 0.625 600 149.497

150 2.429 650 178.372

200 4.449 700 230.718

250 11.278 750 278.584

300 18.694 800 301.045

350 24.45 850 396.915

400 43.233 900 425.62

450 54.37 950 459.185

500 80.142 1000 506.103

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 7, No. 8, 2016

196 | P a g e

www.ijacsa.thesai.org

IX. CONCLUSION AND FUTURE WORK

This study proposes a potential solution to maximum flow
problem through using chemical reaction optimization
algorithm. The proposed MaxFlow-CRO algorithm is
presented, analyzed asymptotically and experimental test is
conducted. Asymptotically, the algorithm runtime is O(I E

2
).

Asymptotic runtime is proved theoretically. The experiments
show that, as initial value of parent_size variable and numbers
of iterations are increased, better results for max flow will be
obtained. Initial parent_size variable didn’t affect the run time,
because initialization operations, in general, are out of
runtimes consideration. In other hand, iterations number is an
important factor that can affect the value of max flow and run
time duration. As a future work, the algorithm could be
improved to reach the possible highest max-flow value using
less number of iterations by implementing the algorithm on
supercomputer to evaluate its performance in parallel. In
addition, we can conduct a comparison between this proposed
algorithm and other heuristic, meta-heuristic or evolutionary
algorithms used to solve maximum flow problem in terms of
their performance.

REFERENCES

[1] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to
Algorithms, 3rd ed., The MIT Press, 2009.

[2] Munakata, T. and Hashier, D.J. "A genetic algorithm applied to the
maximum flow problem", Proc. 5thInt. Conf. Genetic Algorithms, 1993,
pp. 488-493

[3] Kuipers, S. Yang, and S. Trajanovski, "Constrained Maximum Flow in

Stochastic Networks", IEEE 22nd International Conference on Network
Protocols, 2014, pp. 397-408.

[4] A.Y.S. Lam, V.O.K. Li, "Chemical reaction optimization: a tutorial",
Memetic Computing 4, 2012, pp. 3–17.

[5] Ford jr., L.R., Fulkerson, D.R., Flows in networks. Princeton University
Press, Princeton, 1962

[6] Ford jr., L.R., Fulkerson, D.R., "Maximal flow through a network". Can.
J. Math. 8(3), 1956, pp. 399-404.

[7] Dinic, E.A., "Algorithm for solution of a problem of maximum flow in
networks with power estimation". Sov. Math. Doklady. 11(8), 1970, pp.
1277-1280.

[8] Edmonds, J., Karp, R.M., "Theoretical improvements in algorithmic
efficiency for network flow problems". J. Assoc. Comput. Machinery
19(2), 1972, pp. 248-264.

[9] Goldberg, A.V., "A new max-flow algorithm". Technical Report
MIT/LCS/ TM-291, Laboratory for Computer Science, M.I.T, 1985.

[10] Goldberg, A.V., Tarjan, R.E., "A new approach to the maximum flow
problem". Proc. 18th ACM STOC, 1986, pp. 136-146.

[11] Y. S. Lam and V. O. K. Li, “Chemical-reaction-inspired metaheuristic
for optimization”, IEEE Trans Evol Comput vol. 14, no. 3, 2010, pp.
381– 399.

[12] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin., Network Flows: Theory,
Algorithms, and Applications, Prentice Hall, 1993.

[13] Sheta, A. F. "Estimation of the COCOMO Model Parameters Using
Genetic Algorithms for NASA Software Projects". Journal of Computer
Science 2 (2), 2006, pp. 118–123.

[14] J. B. Orlin. Max flows in o(nm) time, or better. In STOC’13:
Proceedings of the 45th Annual ACM Symposium on the Theory of
Computing, 2013, pp.765–774.

[15] V. King, S. Rao, and R. Tarjan, “A faster deterministic maximum flow
algorithm”, In Proceedings of the 8th Annual ACM–SIAM Symposium
on Discrete Algorithms, 1992, pp. 157–164.

