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Abstract—Nowadays, as the use of cloud computing service 

becomes more extensive and the customers welcome this service, 

an increasing trend in energy consumption and operational costs 

of these centers may be seen. To reduce operational costs, the 

providers should decrease energy consumption to an extent that 

Service Level Agreement (SLA) maintains at a desirable level. 

This paper adopts the virtual machine consolidation problem in 

cloud computing data centers as a solution to achieve this goal, 

putting forward solutions to make the decision regarding the 

necessity of migration from hosts and finding appropriate hosts 

as destinations of migration. Using time-series forecasting 

method and Double Exponential Smoothing (DES) technique, the 

proposed algorithm predicts CPU utilization in near future. It 

also proposes an optimal equation for the dynamic lower 

threshold. Comparing current and predicted CPU utilization 

with dynamic upper and lower thresholds, this algorithm 

identifies and categorizes underloaded and overloaded hosts. 

According to this categorization, migration then occurs from the 

hosts that meet the necessary conditions for migration. This 

paper identifies a certain type of hosts as “troublemaker hosts”. 

Most probably, the process of prediction and decision making 

regarding the necessity of migration will be disrupted in the case 

of these hosts. Upon encountering this type of hosts, the 

algorithm adopts policies to modify them or switch them to sleep 

mode, thereby preventing the adverse effects caused by their 

existence. The researchers excluded all overloaded, prone-to-be-

overloaded, underloaded, and prone-to-be-underloaded hosts 

from the list of suitable hosts to find suitable hosts as destinations 

of migration. An average improvement of 86.2%, 28.4%, and 

87.2% respectively for the number of migrations of virtual 

machines, energy consumption, and SLA violation is among the 

simulation achievements of this algorithm using Clouds tool. 

Keywords—Cloud Computing; Service Level Agreement; 
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I. INTRODUCTION 

Cloud computing is a model that provides access to 
infrastructure including a set of configurable computing 
resources such as servers, storages, applications, services, etc. 
This model provides them for applicants via available 
connection infrastructure such as network and the Internet in an 
easy, rapid and on-demand manner, while taking into account 
quality of service. IaaS, PaaS, and SaaS are the three major 
types of cloud computing services [1, 2]. IaaS presents data 
centre infrastructures, servers and storage spaces as well as 
hardware policies independently from location and 

geographical limitations and under computer networks. Instead 
of purchasing IT infrastructure and getting involved with 
equipment maintenance and enhancement, organizations fulfill 
their computational needs using cloud computing on a pay-as-
you-go basis [3, 4]. 

In recent years, in light of the ever increasing expansion of 
the use of cloud computing services and due to the fact that 
customers welcomed this service, cloud computing service 
providers have increased the number and volume of greedy 
data centres that consume huge amounts of energy [5]. This has 
incurred enormous operational costs. Quality of service 
assurance, included in SLA, and is agreed upon between 
customers and providers, is a necessity for the cloud computing 
environment. Hence, cloud computing service providers tend to 
bring about a trade-off between energy and performance and 
should reduce energy consumption because it would not 
disrupt or decrease quality of service to reduce operational 
costs [3]. 

The major energy loss mainly occurs in hardware 
infrastructure of cloud computing data centres. Research has 
shown that although the power consumed by hardware 
equipment is idle, it is almost equal to that at the peak of 
consumption. Thus, failure  to utilize them in a perfect manner 
will result in a huge energy loss [6]. In this respect, Forrester 
research team observed that when a server is idle for 70% of 
the time, it consumes a power of almost 30% of the 
consumption peak power [7]; therefore, what mainly accounts 
for energy loss in cloud computing data centres is the use of 
equipment while their utilization is at low levels [6]. 
Virtualization, is the key feature and main basis of cloud 
computing, making possible the establishment of several VMs 
on a host as well as the migration of VMs [8]. 

The optimal consolidation problem of VMs using 
virtualization technology is an effective approach to achieve 
energy efficient cloud computing data centres [9-11]. Because 
it allows VMs on hosts to migrate to other suitable hosts when 
the work load of hosts is low, and the hosts that have become 
idle to switch to sleep mode [5]. 

The study employed live migration of VM to transfer VM 
without suspension and with minimum downtime. However, 
any VM migration involves certain performance degradation 
and consequently potential SLA violation [12]. On the other 
hand, unnecessary VM migration will lead to extra 
management costs (such as VM reconfiguration, VM creation 
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and destruction, etc.), resulting in additional energy 
consumption [13]. Hence, the researchers avoided unnecessary 
VM migrations to reduce SLA violation and energy 
consumption to the extent possible, i.e. they should minimize 
the number of migrations. This paper addressed VM dynamic 
consolidation problem in cloud computing data centres as a 
solution to tackle the mentioned problems. 

In some related studies, the authors made decisions just 
based on current utilization of hosts. On the other hand, in 
some other related studies, the researchers made decisions just 
based on upper threshold. However, In this study, Proposed 
Algorithm makes decision based on dynamic upper and lower 
threshold as well as current and predicted CPU utilization. 
Solutions are put forward in this regard that are briefly 
described as follows: 

 Proposing an optimal equation to calculate the dynamic 
lower threshold and presenting a technique to identify 
and categorize underloaded hosts. 

 Decision making regarding the necessity of migration 
from hosts using the comparison of current and 
predicted CPU utilization with dynamic upper and 
lower thresholds as well as the identification and 
categorization of overloaded and underloaded hosts. 

 Identifying a certain type of hosts called troublemaker 
hosts and adopting policies to modify them or switch 
them to sleep mode. 

 Presenting a method to find hosts that are appropriate 
destinations by excluding existing hosts in all of the 
considered categories. 

Further in this paper, section 2 investigates previous 
research. Section 3 describes the proposed algorithm. Section 4 
determines the capability of running the proposed algorithm 
using Clouds tool. Finally, Section 5 presents the conclusion 
and looks into future works. 

II. PREVIOUS RESEARCH 

In [14], Wu et al. used GA to solve the consolidation 
problem. They investigated the energy consumed by physical 
machines and inter-connection networks in data centers. They 
found out that compared with FFD [15], their technique 
generates better solutions. However, FFD is faster in 
calculation compared with their method. 

In [11], the authors put forward MU, MMT, MC, and RC 
policies for the VM selection problem. They proposed MAD 
and IQR techniques to find the dynamic upper threshold,. In 
their study, a host is considered to be an overloaded one 
provided that its current CPU utilization is greater than the 
dynamic upper threshold. 

In [16], Tang and Pan proposed an Hybrid Genetic 
Algorithm (HGA) to solve the consolidation problem. To 
rapidly improve solutions, they adopted a local optimization 
procedure. To gradually work out the violations of conditions 
in infeasible solutions and convert an infeasible solution to a 
feasible one, they employed an infeasible solution repairing 
procedure. They realized that HGA converges faster than GA 

and also exhibits remarkably better results in terms of 
performance and utilization. 

In [17], the authors divided up the entire population to a 
number of families and performed genetic operations on these 
families in parallel in order to generate an optimal mapping 
between the set of hosts and VMs. Thus, they presented Family 
GA, which is a model of Parallel GA. They made use of a self-
adjusting mutation operator to prevent untimely convergence in 
the people of the population. 

In [18], Farahnakian et al. adopted the regression 
forecasting technique k-nearest Neighbor, proposed in [19], to 
forecast resource utilization. They solved the consolidation 
problem using the current utilization of resources and 
prediction of resource utilization in future. 

In [6], the authors proposed policies to determine 
underloaded hosts as well as a policy for the placement of 
migratable VMs, where they used a multi-criteria decision 
making technique. They also put forward a novel and 
comprehensive procedure for cloud resource management 
called Enhanced Optimization (EO) that offers an all-
embracing outlook on the resource management procedure. 

In [12], Singh and Shaw proposed an algorithm for decision 
making about the necessity of migration and finding the 
appropriate destination host using time-series forecasting 
technique as well as dynamic upper threshold and moving 
average, SES, and DES techniques. In their algorithm, a host is 
determined to be overloaded whose current and predicted CPU 
utilization is greater than the upper threshold. 

In [20], the authors made changes to certain parts of the 
original ant colony algorithm, namely pheromone updating, 
definition, and aggregation, in a way that it would be fit to be 
used in multi-objective problems. They adopted the mentioned 
algorithm to allocate resources to VMs in order to reduce 
energy consumption and waste of resources. The results 
indicated a better performance of this algorithm compared with 
GA in terms of both aspects. 

In [13], Fu and Zhou presented two new policies, namely 
MP and MCC. The first policy functions with the aid of 
satisfaction from resources and CPU utilization and selects 
VMs for migration using dynamic upper and lower thresholds. 
The second policy functions using a correlation coefficient and 
finds the suitable destination host. 

III. THE PROPOSED ALGORITHM 

In light of [21], the authors divided the VM dynamic 
consolidation problem in cloud computing data centres into the 
following three parts: 

 Part 1: Decision making regarding the necessity of 
migration from hosts. 

 Part 2: VM selection for migration. 

 Part 3: Finding suitable destination hosts. 

The authors answered the first and the third parts of the 
consolidation problem using the proposed algorithm. To 
answer to the VM selection problem, the study adopted the 
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minimum utilization (MU) policy presented in [11], as in [12]. 
From among the VMs existing on one host, this policy selects 
the VM with minimum CPU utilization. 

A. Decision Making regarding the Necessity of Migration 

from Hosts 

In the proposed algorithm, to make decision regarding the 
necessity of migration from hosts, current CPU utilization is 
not the mere criterion to take action; rather, as in [12], the 
authors also used the CPU utilization history of the host in 
several recent periods and forecasted CPU utilization in near 
future by taking advantage of time-series method and DES 
technique. [22-24] provided further explanation about the 
forecasting method. In contrast with [12], where it merely 
employed dynamic upper threshold, this algorithm also makes 
use of the dynamic lower threshold. Comparison of forecasted 
and current CPU utilization with dynamic upper and lower 
thresholds determined the status of each host. The authors, then 
categorized hosts and made decisions regarding the necessity 
of migration using the categorization mentioned above. The 
following section describes the proposed algorithm. 

This algorithm receives a host as input, examines its status, 
and makes a decision for its migration. As in [12], the method 
presented in [11] (Step 4) calculated the upper threshold, where 
the authors considered the value of parameter s1 to be 2.5 in 
conformity with [11]. To calculate the dynamic lower 
threshold, they proposed and adopted equation (1), (Step 6) 
inspired by the upper threshold method presented in [11] and 
using median absolute deviation (MAD) method. It is 
noteworthy that MAD technique [11] also proposed. In (1), 
they considered the value of s2 to be 2.5 empirically and 
through conducting numerous experiments. 

 Lower Threshold = 0.3 + s2 × MAD 
The study included a great number of experiments to 

identify a certain type of hosts that are prone to the emergence 
of undesirable conditions. These hosts are called “troublemaker 
hosts” in this paper. To prevent the emergence of undesirable 
conditions and improve results, Step 6 of the proposed 
algorithm adopts policies to identify troublemaker hosts given 
the status of the hosts, and then modifies or removes them. 

The first type of troublemaker hosts are those whose MAD 
is greater than 0.065 (this number is obtained empirically). 
Considering that MAD shows the strength of the deviation of 
the host CPU utilization, the experiments demonstrated that 
when the value of MAD exceeds 0.065, the deviations of CPU 
utilization increase and algorithm accuracy in predicting CPU 
utilization decreases. 

On the other hand, as MAD increases, the accuracy of the 
calculation of dynamic upper and lower thresholds decreases, 
in a way that it may consider a host with a normal load to be 
overloaded or underloaded and this may lead to unnecessary 
migrations; or it may consider an overloaded or underloaded 
host to be a host with normal load, and this may lead to SLA 
violation in the host mentioned above. It is notable that the 
bigger the MAD, the smaller the upper threshold. Thus, CPU 
utilization is not used desirably. On the other hand, as MAD 
increases, it is more likely for CPU utilization to reach 100% 
and SLA to violate [11]. In the proposed algorithm, to prevent 

potential problems from arising regarding this type of 
troublemaker hosts, it considered the lower threshold to be 
equal to 0.9. Using this technique, this type of hosts most 
probably become underloaded and all of the VMs thereon are 
transferred to suitable hosts. Then the idle hosts will switch to 
sleep mode. 

 
A MAD empirically below 0.065 and various experiments 

identified the second type of troublemaker hosts. In this case, if 
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the upper threshold is smaller than 0.85, it is equal to 0.9 
because authors determined overloaded hosts incorrectly and 
used their capacity improperly. On the other hand, if the lower 
threshold is greater than 0.35, the lower threshold is equal to 
0.3 because they determined underloaded hosts incorrectly and 
unnecessary migrations increase. 

Contrary to [12] that uses two flags, the proposed algorithm 
uses four flags. Each of the flags flagFO, flagPO, flagFU, and 
flagPU being true respectively shows the host’s being 
potentially overloaded in near future. The host’s being 
overloaded at present, the host’s being potentially underloaded 
in near future, and the host’s being underloaded at present. In 
this algorithm, if current CPU utilization is greater than the 
upper threshold, flagPO will be true (Step 7). If current CPU 
utilization is below the lower threshold, flagPU will be true 
(Step 8). 

As in [12], the length of data array is considered to be 10; 
that is, to forecast a host’s being overloaded or underloaded 
required at least 10 data from CPU utilization history. If fewer 
than 10 data are available and flagPO is true, that host will 
enter the list of overloaded hosts and the algorithm ends; 
otherwise, the algorithm continues and runs the subsequent 
steps (Step 9). Authors used DES technique (Step 10) to 
forecast CPU utilization in near future. They compared the 
resulting value with dynamic upper and lower thresholds and 
flagFO and flagFU values are then set (Step 11 and 12). Step 
[12] considered three categories to categorize overloaded hosts. 
In the proposed algorithm, three other categories will add to the 
previous three categories to categorize underloaded hosts. 
Thus, they categorized overloaded and underloaded hosts in 6 
different categories. Further, section below describes each 
category: 

 First category: FlagFO is false and flagPO is true. In 
this case, the host overloads at present; however, the 
authors forecasted that it will not overload in near 
future. In these circumstances, they adds the respective 
host to the list of currently overloaded hosts 
(currentOverUtilizedHosts). However, the migration of 
VMs does not take place from this category of hosts 
since they forecasted that this host will not overload in 
future and to decrease unnecessary migration (Step 13). 

  Second category: FlagFO is true and flagPO is false. In 
this case, the host does not overload at present; 
however, the authors forecasted that it will overload in 
near future. In these circumstances, they added the 
respective host to the list of hosts that they forecasted to 
overload in future (predictedOverUtilizedHosts). 
However, the migration of VMs does not take place 
from this category of hosts since they will not overload 
at present (Step 14). 

 Third category: FlagFO and flagPO are both true. In 
this case, the host overloads at present and the forecast 
is that it will overload also in near future. In these 
circumstances, the respective host will add to the list of 
overloaded hosts (overUtilizedHosts). To reduce the 
load of this category of hosts, they selected and 
migrated a number of VMs (Step 15). 

 Fourth category: FlagFU is false and flagPU is true. In 
this case, the host underloads at present; however, the 
forecast is that it will not remain underloaded in near 
future. In these circumstances, the respective host will 
add to the list of currently underloaded hosts 
(currentUnderUtilizedHosts). However, the migration 
of VMs does not take place from this category of hosts 
since the forecast is that this host will not underload in 
future and in order to decrease unnecessary migration 
(Step 16). 

 Fifth category: FlagFU is true and flagPU is false. In 
this case, the host does not underload at present; 
however, the forecast is that it will underload in near 
future. In these circumstances, the respective host will 
add to the list of hosts that based on forecast, will 
underload in future (predictedUnderUtilizedHosts). 
However, the migration of VMs does not take place 
from this category of hosts since they does not 
underload at present (Step 17). 

 Sixth category: FlagFU and flagPU are both true. In this 
case, the host underloads at present and the forecast is 
that it will underload in near future as well. In these 
circumstances, the respective host will add to the list of 
underloaded hosts (underUtilizedHosts). To reduce 
energy consumption, all of the VMs on these hosts will 
migrate. Afterward, idle hosts will switch to sleep mode 
(Step 18). 

In the above categorization, migration is necessary merely 
for the hosts in the third and sixth categories. The hosts in the 
third category will definitely be overloaded. In order for their 
load to become normal and their CPU utilization to be below 
the upper threshold, one VM or more should migrate 
therefrom. The hosts in the sixth category will definitely be 
underloaded. All of the VMs thereon should migrate to hosts 
that meet the necessary conditions as migration destinations. If 
the migration of all of the VMs on the source host succeeds, 
that host will switch to sleep mode because it becomes idle. 
Table (1) shows a summary of the above categorization. 

TABLE I. CATEGORIZATION OF OVERLOADED AND UNDERLOADED 

HOSTS 

As mentioned in [12] and in light of the mechanism of 
finding underloaded hosts in [12], it is noteworthy that at load 
peak time, when the utilization of all hosts is at a high level, 
the hosts that have lower utilizations compared with other hosts 
will identify as underloaded hosts and the VMs thereon will 
migrate to other hosts. This may increase the rate of 

List Name flagPU flagFU flagPO flagFO NO. 

currentOverUtilizedHosts - - True False 1 

predictedOverUtilizedHosts - - False True 2 

overUtilizedHosts - - True True 3 

currentUnderUtilizedHosts True False - - 4 

predictedUnderUtilizedHosts False True - - 5 

underUtilizedHosts True True - - 6 
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unnecessary migration. In the proposed algorithm, as stated 
earlier, this problem will resolve using the dynamic lower 
threshold and a proper method to find underloaded hosts. 

B. Finding Suitable Destination Hosts 

To find appropriate destination hosts for migration, the 
authors eliminates a number of hosts that do not fit to be a 
destination host from the list of suitable destination hosts. They 
consider a total of 6 six different categories for overloaded and 
underloaded hosts in this paper. In [12], they exclude only the 
first three categories from the mentioned categorization from 
the list of suitable destination hosts. In addition to the first 
three categories, they also excluded the second three categories 
that contain underloaded hosts or are prone to be underloaded 
from the list of suitable destination hosts in this paper. In fact, 
this prevents the hosts that are underloaded or prone to become 
underloaded from remaining on. A considerable reduction in 
the energy consumption of the data center may be brought 
about by turning them off. In contrast with [12] that tries to 
select the destination host from among underloaded hosts and 
those with normal loads, efforts are made in this paper to select 
those hosts as destination hosts that have normal loads. With 
this policy adopted, they optimized the selection of destination 
hosts. As a result, they eliminated unnecessary migrations and 
energy consumption decreases substantially. 

IV. INTEGRATION OF PARTS OF PROPOSED ALGORITHM 

In the first part of the proposed algorithm, the authors have 
classified the overloaded hosts, those hosts prone to be 
overloaded, also underloaded hosts, and those prone to be 
underloaded into six different categories. 

To make the load normal on the overloaded hosts by 
utilizing MU policy, the authors have selected certain number 
of virtual machines to migrate from these hosts. They have also 
added all the virtual machines available on the underloaded 
hosts, for migration, to the migration list. 

In the second part of the proposed algorithm with the aim 
of preventing from unnecessary migrations of virtual machine, 
authors have excluded the six identified categories in the first 
part from destination host list. Therefore, they can create an 
optimized list of destination hosts. 

Finally, the authors have selected a mapping from among 
virtual machines for migration (from overloaded and 
underloaded hosts) and made a suitable list of destination hosts. 
Then, each virtual machine will migrate to a host that has the 
minimum increasing power after migration of that virtual 
machine. 

V. PERFORMANCE ANALYSIS 

Authors selected Clouds 3.0.3 tool for the simulation of this 
paper. Further explanation about this tool may be found in [25-
27]. To investigate the performance of the proposed algorithm, 
they compared this algorithm, MAD-MU algorithm presented 
in [11], and the algorithm presented in [12] in terms of 
different metrics. They analyzed and examined the results 
obtained from the comparison of these algorithms. 

MAD-MU algorithm, henceforth called MM in this paper 
for brevity, is implemented in Cloudsim tool by the authors of 

[11]. To select a VM for migration, this algorithm makes use of 
MU policy and takes advantage of MAD technique to calculate 
dynamic upper threshold. The algorithm presented in [12], 
henceforth called MMD (MAD-MU-DES) in this paper for 
brevity, functions similarly to MM upon selecting VM and 
calculating dynamic upper threshold. It makes use of DES 
technique for the best results obtained to predict host CPU 
utilization in future. Since the algorithm proposed in this paper 
strives to optimize MMD, it is henceforth called OMMD 
(Optimized MMD) for brevity. 

A. Performance Metrics 

This paper adopted 6 metrics to compare the proposed 
algorithm with MM and MMD algorithms, namely energy 
consumption, the number of VM migrations, PDM, SLATAH, 
SLAV, and ESV. 

PDM metric demonstrates performance degradation due to 
VM migration. SLATAH metric shows the percentage of time 
that the host has a CPU utilization of 100%. SLAV metric 
specifies in what percentage of time the resources allocated to 
the host are less than the resources demanded by that host and 
it determines the rate of SLA violation. ESV metric is obtained 
by multiplying energy consumption by SLAV. It indicates the 
simultaneous improvement of these two metrics and reveals a 
trade-off between them. section [11] includes further 
explanations about each of these metric. 

B. Experiment Settings 

Since the algorithm presented in this paper attempts to 
improve the performance of MM and MMD, the authors 
employed experiment settings similar to these algorithms, 
which are available in [11, 12]. They simulated a data centre 
including 800 heterogeneous physical hosts. Half of these hosts 
are of type HP ProLiant ML110 G4 (Intel Xeon 3040, 2 cores 
× 1860 MHz, 4 GB) and the other half is of type HP ProLiant 
ML110 G5 (Intel Xeon 3075, 2 cores × 2660 MHz, 4 GB). 
This data centre has several types of VMs including High-CPU 
Medium Instance (2500 MIPS, 0.85 GB), Extra Large Instance 
(2000 MIPS, 3.75 GB), Small Instance (1000 MIPS, 1.7 GB), 
and Micro Instance (500 MIPS, 613 MB). 

C. Workload Data 

Today, research projects that require the work load of real 
data centres for simulation make use of the data pertaining to a 
10-day workload from CoMon project [28], which is a 
monitoring infrastructure for PlanetLab and collected in March 
and April 2011. This data comprises CPU utilization data 
collected at 5-minute intervals from over thousands of 
operational VMs relating to service providers in more than 500 
locations around the world. They will embed as defaults in 
Clouds simulator. This paper adopts the same data to evaluate 
the performance of the proposed algorithm and compare it with 
MM and MMD. 

D. Simulation Results 

This section will compare the proposed algorithm with MM 
and MMD algorithms according to the mentioned metrics and 
using the data of 10 workdays. Fig. 1 to Fig. 6 depict the 
comparison results. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 9, 2016 

6 | P a g e  

www.ijacsa.thesai.org 

Fig. 1 shows the comparison of the performances of MM, 
MMD, and OMMD in terms of the number of migrations 
metric. On average, OMMD has achieved 89.16% and 83.25% 
decrease respectively in comparison with MM and MMD. 

In OMMD, the number of migrations has considerably 
decreased using the method presented for finding underloaded 
hosts and adding 3 new categories for categorizing this sort of 
hosts and also by eliminating unnecessary migrations from the 
hosts that are not really underloaded. Another reason why 
OMMD shows improved results regarding this metric is the 
identification of troublemaker hosts and adopting policies to 
modify or eliminate them. 

By modifying the aforesaid hosts, the accuracy of 
identifying overloaded and underloaded hosts increases. This 
fact causes the number of migrations stemming from the 
existence of this type of hosts to decrease. On the other hand, 
in OMMD, in addition to overloaded hosts and those that are 
prone to be overloaded, the authors excluded underloaded hosts 
and those that are prone to be underloaded from the list of 
destination hosts. Consequently, they select the destination 
hosts with higher accuracy and quality. Thus, this will prevent 
the repeated migration of VMs as a result of migration to 
inappropriate destinations. 

Fig. 2 shows the comparison of the performance of MM, 
MMD, and OMMD with respect to the energy consumption 
metric. On average, OMMD has achieved 35.09% and 21.63% 
decrease respectively in comparison with MM and MMD. 
What mainly accounts for the reduced energy consumption is 
the fact that OMMD obtains underloaded hosts optimally and 
with greater accuracy in comparison with the other two 
algorithms. As a result, it prevents energy loss in data centers 
to a great extent by turning off hosts where their utilization is at 
a low level. 

On the other hand, since the authors selected the destination 
hosts more accurately in OMMD, this will prevent from the 
migration of VMs to hosts that are underloaded or prone to be 

underloaded. Thus they provided more appropriate conditions 
to switch to sleep mode. In addition to the above, the policies 
adopted to manage the problems of troublemaker hosts exerted 
favorable effects on the quality of selecting underloaded and 
overloaded hosts and, hence, reduced energy consumption. 

Fig. 3 exhibits a comparison of the performance of the three 
mentioned algorithms with regard to PDM metric. On average, 
OMMD has achieved 90.65% and 87.54% decrease 
respectively in comparison with MM and MMD. What mainly 
accounts for this remarkable improvement is the substantial 
decrease in the number of migrations in OMM 

Fig. 4 depicts a comparison of the performance of MM, 
MMD, and OMMD with respect to SLATAH metric. In 
comparison with MM and MMD, OMMD has shown a poorer 
performance in the majority of cases. Efforts made to 
maximize the utilization of the hosts perhaps have caused this. 
Since SLAV metric is the multiplication of PDM and 
SLATAH metrics, in light of the remarkable results of PDM 
metric, somewhat poor results regarding SLATAH metric is 
negligible in the proposed algorithm. This may be clearly seen 
upon investigating and analyzing the figure pertaining to 
SLAV metric. 

Fig. 5 shows a comparison of the performance of the three 
mentioned algorithms with regard to SLAV metric. On 
average, OMMD has achieved 89.46% and 84.86% decrease 
respectively in comparison with MM and MMD. What mainly 
accounts for this substantial improvement is the improvement 
of PDM metric. 

Fig. 6 shows a comparison of the performance of MM, 
MMD, and OMMD with respect to ESV metric. On average, 
OMMD has achieved 93.17% and 88% decrease respectively 
in comparison with MM and MMD. The reason behind this 
considerable decrease is the decreases in energy consumption 
and SLA violation rate. As a matter of fact, these results 
suggest that there has been a successful trade-off in this paper 
between these two metrics. 

 
Fig. 1. Comparison of algorithms with regard to number of migration for 10 workdays 
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Fig. 2. Comparison of algorithms with regard to energy consumption for 10 workdays 

 
Fig. 3. Comparison of algorithms with regard to PDM for 10 workdays 

 
Fig. 4. Comparison of algorithms with regard to SLATAH for 10 workdays 
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Fig. 5. Comparison of algorithms with regard to SLAV for 10 workdays 

 
Fig. 6. Comparison of algorithms with regard to ESV for 10 workdays 

VI. CONCLUSION AND FUTURE RESEARCH OPPORTUNITIES 

The major concern of cloud computing data centres is the 
decrease in energy consumption and, consequently, reduced 
operational costs and increased profitability of these centres. 

In OMMD, the VM dynamic consolidation problem in 
cloud computing data centers was brought into spotlight as a 
solution to battle this problem. In this respect, the authors have 
provided solutions to make decision about the necessity of 
migration from hosts and finding suitable destination hosts. 

To make decision about the necessity of migration, they 
have compared current and predicted CPU utilization with 
dynamic upper and lower thresholds. Thereby, they have 
identified and categorized underloaded and overloaded hosts. 

According to the categorization and the identity of each 
category, migration took place from the hosts that met 
necessary conditions for migration. The number of migrations 
and, as a result, SLA violation rate decreased remarkably using 
the method proposed for calculating the dynamic lower 
threshold and finding underloaded hosts and adding 3 new 
categories to categorize these hosts and also by eliminating 
unnecessary migrations from hosts that are not really 
underloaded. 

On the other hand, as the accuracy in identifying 
underloaded hosts increased and by turning them off, they 
prevented from energy loss in the data center to a considerable 
extent. 

To encounter and prevent the disruptions and adverse 
effects stemming from the existence of troublemaker hosts, 
OMMD adopted the policy of modifying them or switching 
them to sleep mode given the status of those hosts. Thus, the 
accuracy of identifying overloaded and underloaded hosts 
increased. This fact had a substantial effect on reduced number 
of migrations, SLA violation rate, and energy consumption. 

OMMD managed to establish a proper trade-off between 
energy consumption and SLA violation. The results of 
comparing OMMD with MM and MMD are as follows: 
respectively 89.16% and 83.25% improvement in the number 
of migration metric, respectively 35.09% and 21.63% 
improvement in the energy consumption metric, respectively 

90.65% and 87.54% improvement in PDM metric, respectively 
89.46% and 84.86% improvement in SLAV metric, and 
respectively 93.17% and 88% improvement in ESV metric. 

Proposed future works: 

 OMMD have adopted MU technique for the VM 
selection problem and no new algorithm was put 
forward for that. Therefore, the authors recommended 
that this technique be optimized or a new method be 
adopted to improve the results even more. 

 Given that the improvement of SLA metric can 
substantially affect the quality improvement of the 
results of the proposed algorithm, efforts should be 
made in future studies to alleviate the defect of the 
SLATAH metric. 

 Even though OMMD exhibited remarkable results in 
the simulation environment, the effect of this algorithm 
in a real cloud infrastructure is not clearly obvious. 
Hence, in order to evaluate the performance of the 
proposed algorithm, it can develop in a real cloud 
environment such as OpenStack, which is a free open-
source software, for future works. 

 In addition to physical hosts energy consumption, 
energy consumption can be Investigate, examine and 
take into consideration in the communication 
infrastructures. 
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