
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Proposed Bilingual Model for Right to Left Language
Applications

Farhan M Al Obisat
Computer and Information

Technology Dept.
Tafila Technical University

Tafila, Jordan

Zaid T Alhalhouli
Computer and Information

Technology Dept.
Tafila Technical University

Tafila, Jordan

Hazim S. AlRawashdeh
Department of Computer Science

Buraydah Private Colleges
Buraydah, Saudi Arabia

Abstract—Using right to left languages (RLL) in software
programming requires switching the direction of many
components in the interface. Preserving the original interface
layout and only changing the language may result in different
semantics or interpretations of the content. However, this aspect
is often dismissing in the field. This research, therefore, proposes
a Bilingual Model (BL) to check and correct the directions in
social media applications. Moreover, test-driven development
(TDD) For RLL, such as Arabic, is considered in the testing
methodologies. Similarly, the bilingual analysis has to follow both
the TDD and BL models.

Keywords—software; testing; languages; right to left;
development; application; bilingual; social media

I. INTRODUCTION
Test-driven development (TDD) comprises the major

component of the values of the Agile Manifesto and the agile
development drives from Extreme Programming (XP).
However, TDD is not original. In fact, TDD was mention in
the NASA Project Mercury, which was launch in the 1960s [1].
Some encouraging properties are reported to be attainable with
the use of TDD. Moreover, while it is often considered a
testing method, TDD is also design and development method
where in tests already written before the code to ensure an
error-free code.

In TDD, tests are added to the code. Then, this is
restructured to achieve better internal structure as soon as the
test is successfully passed. Usually, this process is iterated
several times until all functions are fully verified to be well
implementing.

Any software development process encompasses the
following main activities:

1) problem analysis (specification),
2) Software design,
3) Software implementation,
4) Software testing,
5) Software maintenance, and
6) Software operation.
The TDD consists of the following six basic steps:

1) Writing a test meant for a part of functionality,
2) Running the tests to check whether the output of the

new test would fail,
3) Writing codes aims to pass the tests,

4) Running the test to check whether they pass or not,
5) Code rewriting, and
6) Running the tests to check if the rewriting did not alter

the external behavior [2].
The first step is known as test writing, and it includes

writing a code for the purpose of testing the function or
functionality of the tasks. The second stage is performed to
confirm whether the test is working correctly (this means that
the test should not fail at this point as functionality has yet to
be implemented). When the test passes at this phase, the test is
incorrect and it needs rewriting and validation. The third step
involves writing the code into short segments so that it can
effectively pass the test. Finally, all the tests must be run to
confirm whether any desired functionality has been
implemented. The internal structure of the code should be
further improved through rewriting when all tests pass [3].

At this point, researchers perform the TDD test first. To
answer the question as to why this must be done first, one
should consider the key benefits behind adopting this model.
The advantages of the TDD test are listed below.

1) TDD test can capture the intent of the developer or
domain expert (e.g., about RTL languages)

2) It allows thinking about program design.
3) It ensures that the tests are written (and real)
4) It provides a higher quality code and runs faster

because it has fewer integration problems.
5) The Ping Pong Pair Programming-style TDD leads to

better distribution of knowledge in the team and reduces the
“truck factor” (worst case scenario).

Fig. 1. Test-driven development cycle diagram [4]

242 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

TDDs are mostly coded for left to right languages with no
consideration for other languages’ directions, such as a right to
left languages (RLL) or top-down languages, to name a few. In
this work, researchers establish the many issues to be used
when developing software for RLL applications.

As mentioned earlier, TDD is a software development
procedure consisting of short development cycles that are
repeated. At first, the developer creates an (initially failing)
automated test case, which delineates a targeted improvement
(or a new function). Then, the developer creates the minimal
number of codes to pass that test. Finally, the new code is
refractor to acceptable standards [4].

Software testing is an activity that assesses the features of a
code and guarantees that the resulting code meets the essential
output. Accurately finding all the errors (semantic or syntaxes)
in the program is a difficult task. The choice of a correct
approach at the right time will result in an efficient and
effective software testing procedure [5].

“Software testing” refers to a process of the running code
with the goal of finding errors. This method adapts test case
designs into execution steps that are well-planned. This leads to
the design and creation of successful software. The goal of
software testing is to uncover the possible errors that may be
present in the software. Thus, the main goal of a test case is to
generate a set of tests with the highest likely hood of
uncovering the errors. Also, software testing ensures that the
computer code does what it must do. This is similar to a
destructive process of identifying errors. The purposes of
software testing may include reliability estimation, validation,
quality assurance, or verification [6].

Software testing also assesses codes with the purpose of
checking out errors within it, Software testing is a method that
aims to evaluate a capability or attribute of a code or product
and determine whether it satisfies quality requirements.
Software testing is similarly employed to test the code for other
factors use to assess software quality, such as usability,
reliability, maintainability, integrity, capability, efficiency,
security, portability, compatibility, and so on [7].

Software production includes developing codes according
to assured requirements. Software testing is performed to
validate and verify whether the code has been designed to
satisfy these specifications [8]. Software testing for RLL apps
has yet to be completely investigated by researchers in this
field. Hence, this paper tries to establish a software testing
approach for RT languages.

In the next sections the paper clarified the problem
statement in details such as why bidirectional is important, and
why the developers need to test their applications before pilot
any developed software. Also, the research described test cases
from software Facebook and Bocketcode. In the last section the
Proposed Bilingual Model (BL Model) where discussed in
detail.

II. PROBLEM STATEMENT
All the TDDs are mostly coded for a left to right languages

with no consideration for other language directions, such as

RLL or top-down languages, to name a few. In this study, the
work team will focus in TDD for RTL such as Arabic, Hebrew,
Farsi, Urdu, and more. Right to left (RTL) text is supported in
widespread consumer software. Often, this support is explicitly
enabled. Thus, mixing RTL with the left to right (bidirectional)
text is necessary.

There are many user interfaces (UI) points to consider in
dealing with RTL languages. These components involve the
following:

• Arrow direction

• Forms

• Text fields

• Dropdown fields (list/menu/jump menu)

• Scrollbars

• Data entry fields

• Checkbox fields

• Radio buttons

• Bulleted and numbered lists

• Buttons

• Labels

• Pocket Code: Bricks and formulas

• Facebook (direction of the post, i.e., arrow)

A. Why perform tests for RTL features?
Several reasons exist as to why tests must be executed for

RTL features. These reasons are listed below.

• Developers often have little knowledge about how RTL
languages are rendered.

• Later changes in the source code (i.e., refactoring) can
result in layout problems in other languages, especially
RTL, that are already solved in earlier versions.

• Tests are important in documenting coding decisions
relevant to these other languages.

• Automatic tests allow quick locating problems and also
hedging against reoccurring bugs (i.e., regression tests).

III. AN EXPERIENCE REPORT (POCKET CODE, FACEBOOK,
AND SCRATCH)

Pocket Code is a software use to create applications and
games especially for students dealing with school works
through their smart phones, Figure 2 Snapshot from Pocket
code with the bidirectional feature.

Interface for mathematical operation in Pocket Code where
the places of x and y are in the left of the interface but should
be in the right position as in Figure 3 Interface and direction of
the text. User interface for Pocket Code with mathematical
sin() function and the places of x and y are on the left of the
interface but should be in the right position figure 4.

243 | P a g e
www.ijacsa.thesai.org

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Test_case

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 2. Snapshot from Pocket code with bidirectional feature

Fig. 3. Interface and direction of the text

Place at:
X: Y:

 ضع في:

 ص:س:

It should be like

Pocket Code
Draft

244 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

Fig. 4. Interface with mathematical operation

In Figure 5, Pocket Code accepts the equation as it appears
in the snapshot from the Pocket Code where there is just one
parenthesis opened, and the number of closed ones is three; the
places of x and y are on the left of the interface but should be
in the right position.

Fig. 5. Pocket Code equation

In figure 6, we can see that the direction of the arrow is
wrong for RTL languages, and the position of the photo for the
left snapshot should be on the right of the post.

Fig. 6. Snapshots from Facebook

Place at:

 X

sin(2*sin(0))

245 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

IV. PROPOSED BILINGUAL MODEL (BL MODEL)
In the previous section, the study discussed the RTL

problem, which is one of the strongest problems faced by
researchers in this area. As shown in Figure 7, the problems
appear in the directions of the profile image, sender and
receiver information, and the publishing space for users. All
these problems come from using different languages that also
have different directions. Accordingly, researchers tried to
construct a new model to solve this problem. Figure 8 clarifies
the main components and steps or sequences of the processes
that reduce the bidirectional problems in social media.

Fig. 7. Users posts in Social Media applications before applying the BL
Model

The new model consists of nine phases as shown in Figure
8. The first and second phases are related to the language for
both applications and user input so it is important to determine
whether the languages used in this input, are compatible with
the application language. In turn, this can help determine the
correctness of the direction of the post. Accordingly, the test of
the language compatibility will be conducted in the next phase.
If the test succeeds, then no change is required, and the code is
clean; otherwise, if the test fails, then there is a problem that
must be investigated.

Fig. 8. Proposed Bilingual Model (BL) for social media applications

If a problem appears in the compatibility of the languages,
the model must obtain the current location of the profile image
and its details. In this stage, the model will retrieve the
following information: Division width (DW), image width
(IW), offset top (X), and offset left (Y) (see Figure 9). The
model checks the validity of the position of the profile image

according to the retrieved information. In case the location of
the image is incorrect, the model will apply two different
scripts: the first points the new location and the second changes
the direction of the post area according to the user input
language. Also, the model will proceed to apply the second
script directly if the test succeeds. In the end, the interfaces of
social media applications are supposed to appear, as shown in
Figure 9, 10, after applying the proposed BL Model.

Fig. 9. Profile image details in social media applications

Fig. 10. User posts in social media applications after applying the BL Model

V. FUTURE WORKS
Researchers and software developers in general do not

consider testing for RLL applications. This work established
new issues concerning RLL applications, which should be
considered when testing the newly developed applications.
This research work also presents the proposed BL model,
which requires more testing and validation. Our future goal is
to examine these issues to develop additional techniques to test
the RTL or bidirectional language applications.

VI. CONCLUSION
The goal of this research is to establish and consider TDD

issues related to RLL apps. Researchers have also shown that
there are many points that should be considered when

246 | P a g e
www.ijacsa.thesai.org

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 7, No. 9, 2016

developing software for RTL or bidirectional languages. In this
work, we discuss cases from real working software, such as
Pocket Code and Facebook, in which research considered
forms, text fields, drop-down fields (list/menu/jump menu),
scrollbars, arrow direction, data entry fields, checkbox fields,
radio buttons, bulleted and numbered lists, buttons, photo
positions, labels, and places of all objects in the interface.

REFERENCES
[1] http://projekter.aau.dk/projekter/files/204129305/Report_swd903e13_.p

df (2014)
[2] Shrivastava DP, Jain RC. Metrics for Test Case Design in Test Driven

Development. International Journal of Computer Theory and
Engineering. 2010 Dec 1;2(6):952.

[3] Kumar S, Bansal S. Comparative study of test driven development with
traditional techniques. IntJ Soft Comput Eng (IJSCE). 2013;3(1):2231-
307. http://en.wikipedia.org/wiki/Test-driven_development.

[4] Khan ME. Different forms of software testing techniques for finding
errors. International Journal of Computer Science Issues. 2010;7(3):11-
6.

[5] Thakare S, Chavan S, Chawan PM. Software Testing Strategies and
Techniques. International Journal of Emerging Technology and
Advanced Engineering. 2012.

[6] Sawant AA, Bari PH, Chawan PM. Software testing techniques and
strategies. International Journal of Engineering Research and
Applications (IJERA). 2012 May;2(3):980-6.

[7] Batra S. Improving Quality using testing strategies. Journal of Global
Research in Computer Science. 2011 Jul 7;2(6):113-7.

247 | P a g e
www.ijacsa.thesai.org

	I. Introduction
	1) problem analysis (specification),
	2) Software design,
	3) Software implementation,
	4) Software testing,
	5) Software maintenance, and
	6) Software operation.
	1) Writing a test meant for a part of functionality,
	2) Running the tests to check whether the output of the new test would fail,
	3) Writing codes aims to pass the tests,
	4) Running the test to check whether they pass or not,
	5) Code rewriting, and
	6) Running the tests to check if the rewriting did not alter the external behavior [2].
	1) TDD test can capture the intent of the developer or domain expert (e.g., about RTL languages)
	2) It allows thinking about program design.
	3) It ensures that the tests are written (and real)
	4) It provides a higher quality code and runs faster because it has fewer integration problems.
	5) The Ping Pong Pair Programming-style TDD leads to better distribution of knowledge in the team and reduces the “truck factor” (worst case scenario).

	II. Problem Statement
	A. Why perform tests for RTL features?

	III. An Experience Report (Pocket Code, Facebook, and Scratch)
	IV. Proposed Bilingual Model (BL Model)
	V. Future Works
	VI. Conclusion
	References

