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Abstract—This paper proposes an example-based super-
resolution algorithm for multi-spectral remote sensing images. 
The underlying idea of this algorithm is to learn a matrix-based 
implicit prior from a set of high-resolution training examples to 
model the relation between LR and HR images. The matrix-
based implicit prior is learned as a regression operator using 
conjugate decent method. The direct relation between LR and 
HR image is obtained from the regression operator and it is used 
to super-resolve low-resolution multi-spectral remote sensing 
images. A detailed performance evaluation is carried out to 
validate the strength of the proposed algorithm. 

Keywords—Remote sensing Super-resolution; Image-pair 
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I. INTRODUCTION 
Remote sensing is vital for various application such as 

decision support for disaster management, weather monitoring 
and surveillance of land [1]. The data provided by Geo 
Information System (GIS) is significant for remote sensing. In 
recent years, sophisticated imaging devices and state-of-the-art 
technologies have been continuously deployed in the Earth 
observation system to provide precise data for remote sensing. 
The need to have a high spatial resolution for satellite images is 
twofold: apart from the improvement in visual inspection of a 
larger dataset precisely, it also plays a vital role in the post-
processing steps such as feature extraction and segmentation of 
objects from the image. However, despite using sophisticated 
high-resolution (HR) imaging devices for satellite imagery, the 
captured images will inherit a poor spatial resolution due to the 
larger distance between the sensors and the sensed object.  
cartosat series of satellites are used to regularly monitor earth 
for disaster management.. These satellites have evolved over 
past few decades and currently the Cartosat-3 with the 
advanced imaging device is in existence. The panchromatic 
(PAN) and multi-spectral (MS) imaging devices are deployed 
in these satellites to provide progressive imaging. The PAN 
images have high spatial and low spectral resolution whereas 
MS images have high spectral but low spatial resolution. The 

spatial resolution of an MS image captured by cartosat-2 series 
satellite will be approximately 2.5 meters/pixel. 

The modern image sensor element used in MS imaging 
device is typically a charge-coupled device (CCD) or a 
complementary metal-oxide-semiconductor (CMOS) active-
pixel sensor. The image signals are captured by the sensor 
elements that are typically arranged in a two-dimensional 
array. The size of sensor element or the number of sensor 
element present in a unit area determines the spatial resolution 
of an image. The spatial resolution of MS image is 
significantly less due to the limited dynamic range of CCD 
sensors. An imaging device with deficient sensor elements will 
generate low-resolution (LR) images with blocky and 
displeasing visual artifacts due to aliasing effect. However, 
deploying more sensor elements to increase spatial resolution 
will incur additional cost. 

Moreover, the limitation to deploy high precision optics in 
imaging device is diploid. In addition to the cost incurred due 
to the increase in sensor elements, the ceaseless demand to 
improve the spatial resolution cannot be catered by the state-of-
the-art camera technologies. For instance, reducing the pixel 
will increase the spatial resolution but will introduce shot noise 
[2]. Similarly increasing the number of pixels in a unit area by 
increasing the chip size can increase the spatial resolution. 
However, increasing the chip size will increase the capacitance 
which results in undesired artifacts [3].   Due to the 
inherited limitations, the spatial resolution of MS images will 
be poor. Anyhow, in many applications including disaster 
management, rescue operations, resource surveying, etc. 
precise geo spatial information is required. Henceforth, it is 
significant to use an effective post-process technique such as 
image super-resolution (SR) approach to improve the spatial 
resolution of MS images. The need to improve the spatial 
resolution of remote sensing imagery have garnered special 
interest by researchers and have witnessed diverse SR 
algorithms [4-12]. 
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Spurred by the need to improve the spatial resolution of 
Landsat images, Tsai et al. presented a conventional multi- 
image SR algorithm in frequency domain [4]. Classical SR 
algorithm requires multiple frames of the same scene with 
exact registration to super-resolve a LR image [4-7]. To 
overcome this, a wide variety of learning-based single image 
SR algorithm have been proposed [8-12]. SR from single LR 
satellite image is a challenging task as the problem is severely 
ill-posed. However, learning-based SR algorithms can 
effectively handle the ill-posed problem by learning an 
efficient prior to model the relation between low and HR 
training image patches. The prior required to handle the ill-
posed problem can be either explicit or implicit. Explicit priors 
use a mathematical energy functional of an image class such as 
primal sketches, Field of Experts (FoE) [13], Gradient profile 
[14] etc. to model the relation between LR images with its HR 
counterpart. In contrary, implicit priors are learned from the 
training image pairs and give rise to a family of SR algorithms 
called as Example-based SR algorithms [15]. It requires a 
collection high-quality example images and synthetically 
generated LR images to learn the image-pair prior information. 
The correspondence between LR images with its corresponding 
HR image is learned as an implicit prior. 

The implicit prior can be learned either by a direct mapping 
approach or an indirect mapping approach depending on the 
patch reconstruction strategy used. The indirect mapping 
approaches employ nearest neighbor embedding algorithm 
[16,17], which requires an exhaustive search to find the nearest 
neighbor which makes it computationally expensive for 
practical applications like satellite remote sensing. Direct 
mapping approaches will learn the relation between LR and 
HR image as a regression function, thereby computationally it 
will be efficient to super-resolve remote sensing images [18].  
Despite, most of the conventional regression based SR 
algorithms vectorizes the image patches which results in loss of 
image-level information while learning the implicit prior. To 
address this recently a few matrix-based implicit priors have 
been reported [19] [20], which avoids the vectorization step 
and learn the implicit priors as a matrix-based regression 
operator.  The regression operator establishes a direct mapping 
between the training image patches and can be effectively used 
to reconstruct the HR image. 

In this paper, we propose an example-based SR algorithm 
to super-resolve spatially under-sampled cartosat-2 series MS 
images by learning an efficient matrix-based implicit prior 
from a set of HR-MS images. The proposed matrix-based 
implicit prior will preserve the structural similarities in the 
image thereby will not introduce any unpleasant artifacts. 

The reminder of this paper is as follows. A brief discussion 
on implicit prior is presented in section 2. In section 3, the 
methodology of the proposed example-based SR algorithm for 
MS remote sensing image is presented. The performance of the 
proposed algorithm is evaluated and the results are reported in 
section 4 and finally, section 5 concludes the paper. 

II. A BRIEF DESCRIPTION ON IMPLICIT PRIORS 
The fine details that are explicitly missed during the 

degradation process are estimated by an example-based SR 
algorithm. Fig. 1 illustrates the process of example-based SR 
algorithm. 

 
Fig. 1. An overview of Example-based SR Algorithm 

Though the problem is severely ill-posed, efficient priors 
are used for regularizing the solution. For an example-based 
SR algorithms, the prior will be learned from a set of training 
examples itself and hence they are named as implicit priors.  
Training examples will be a collection of HR images and its 
corresponding synthetically generated LR images. An implicit 
prior which models the relation between LR image patches to 
its corresponding HR image patches can be learned as a 
regression function. In most of the state-of-the-art SR 
approaches, the regression function will be learned by 
vectorizing the training image patch-pairs. 
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Fig. 2. An overview of the proposed example-based super-resolution algorithm for multi-spectral remote sensing images 

In vector-based implicit priors, the correspondence between 
LR-HR image pair is learned from the feature vectors and 
hence instead of learning the image-level correspondence; 
feature-level correspondence is learned. In matrix-based 
implicit prior, the image patches will be preserved as matrix 
itself and therefore the image-level structural information will 
be preserved in the image. It is vital to preserve the structural 
information in an MS remote sensing image as it will possess a 
lot of HF details. In literature, quite a few matrix-based implicit 
prior have been reported. In these methods, the correspondence 
between LR and HR image patches will be learned as linear 
matrix-based regression operator.  

A. Matrix-based Implicit Prior 
The matrix-based implicit prior is learned as regression 

operator as follows. Let a set of training example patch-pair be 
denoted as𝑃𝑃 = (𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖)𝑖𝑖=1𝑛𝑛  such that 𝑥𝑥 and 𝑦𝑦 are the LR and HR 
patches of size 𝑚 × 𝑚  respectively. A linear matrix-based 
regression operator 𝑅𝑅:∈ ℝ𝑚×𝑚  serves as an implicit prior, 
such that for an image patch-pair (𝑥𝑥,𝑦𝑦) 

                              𝑦𝑦 = 𝑅𝑅. 𝑥𝑥                                         (1) 
If the image patches are assumed to be full rank, then the 

regression operator can be defined as 

                                𝑅𝑅 = 𝑦𝑦𝑥𝑥−1                                      (2) 
However, as the regression operator will be learned from a 

collection of LR-HR patch-pairs, it is required to find a suitable 
optimal regression operator by solving a least square regression 
problem. The optimal regression operator can serve as an 
implicit prior to learn the correspondence between LR and HR 
image patches. 

III. METHODOLOGY OF THE PROPOSED ALGORITHM 
The overview of the proposed SR methodology is shown in 

Fig. 2. The example-based SR algorithm to super-resolve MS 
images captured by cartosat-2 series satellite will typically 
have two phases, viz. training and reconstruction phase. In 
training phase, the required prior information is learned as a 
matrix-based implicit prior which is performed offline. In the 

reconstruction phase, the learned implicit prior is used to 
reconstruct the HR image. 

A. Training Phase 
In the training phase, high-quality MS images are collected 

from a remote sensing database (For instance, to super-resolve 
existing cartosat 2 series MS images with a spatial resolution of 
2 meters, cartosat-3 images with a spatial resolution of 1 meter 
is collected). These HR images are synthetically degraded to 
obtain the LR images. The degradation process includes a blur 
operator which is modeled by the movement of sensor element 
and a decimation operator, which corresponds to the 
insufficient sensor elements. Also, atmospheric noises can 
degrade the quality of satellite images. A set of HR image and 
its corresponding LR image form the training examples. Let 
the set of training examples is given by 

                                        𝑇𝑇 = {𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖}𝑖𝑖=1𝑛𝑛                            (3) 
Where 𝑋𝑋  and 𝑌𝑌  represents the LR and HR training 

examples respectively. Let 𝐾  patches of size 𝑚 × 𝑚  are 
extracted from the training examples from the same location 
such that a set of patch-pairs is represented as 

                                       𝑃𝑃 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛                                (4) 
Algorithm 1: Learning the regression Operator 

 

                                  𝑃𝑃 = {𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑛𝑛  

𝑅𝑅𝑗𝑗 = ��𝑦𝑦𝑗𝑗𝑥𝑥𝑗𝑗−1�𝑗𝑗≠𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

     𝑅𝑅∗ = argmin
𝑅𝑅𝑗𝑗

�𝑦𝑦𝑖𝑖 − 𝑅𝑅𝑗𝑗𝑥𝑥𝑖𝑖�
𝐹𝐹

2 + 𝑔𝑔�𝑅𝑅𝑗𝑗 − 𝑅𝑅𝚥𝚥� �𝐹𝐹
2

 

Input:Training sample set,   𝑇𝑇 = {𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖}𝑖𝑖=1𝑛𝑛  
Output:   Optimal regression operator, R*         
Step (1):  Obtain the patch pairs, 

Step(2):    Calculate the initial estimate, 

Step(3): Calculate the optimal regression operator 

Output:   Optimal regression operator, R*         
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As the patch-pairs are extracted from the same location, the 
linear regression model can be adopted to relate the LR and HR 
patch-pairs. Therefore 

                                 𝑦𝑦 = 𝑅𝑅𝑥𝑥                                            (5) 
The matrix-based implicit prior is learned from the training 

patch-pairs by solving a least square regression as follows.The 
objective function to learn the optimal regression operator is 
given by 

                          𝑅𝑅∗ = argmin𝑅𝑅‖𝑦𝑦𝑖𝑖 − 𝑅𝑅𝑥𝑥𝑖𝑖‖𝐹𝐹2                      (6) 
In the above equation, let the initial estimate of the 

regression operator is obtained by taking the inverse of 𝑥𝑥, such 
that 

                                𝑅𝑅𝑗𝑗 = �𝑦𝑦𝑗𝑗𝑥𝑥𝑗𝑗−1�𝑗𝑗≠𝑖𝑖                            (7) 
Let the global constraint to estimate the regression operator 

is given by  

     𝑅𝑅∗ = argmin𝑅𝑅𝑗𝑗�𝑦𝑦𝑖𝑖 − 𝑅𝑅𝑗𝑗𝑥𝑥𝑖𝑖�𝐹𝐹
2 + 𝑔𝑔�𝑅𝑅𝑗𝑗 − 𝑅𝑅𝚥𝚥� �𝐹𝐹

2
             (8) 

The above optimization problem to find the optimal 
regression operator is solved by conjugate gradient decent 
method. The term 𝑔𝑔�𝑅𝑅𝑗𝑗 − 𝑅𝑅𝚥𝚥� �𝐹𝐹

2
 is the priori for the 

optimization problem. This is an iterative approach and the 
update equation for the iteration is given by [21], 

             𝑅𝑅𝑖𝑖+1 = 𝑅𝑅𝑖𝑖 + 𝜀�𝑆𝑇 .𝐸𝑡 + 𝑔𝑔�𝑅𝑅𝑗𝑗 − 𝑅𝑅𝚥𝚥� ��                  (9) 
Where 𝐸𝑡 = 𝑦𝑦𝑖𝑖 − 𝑅𝑅𝑥𝑥𝑖𝑖   is the error due to the 𝑖𝑡ℎ  iteration 

and 𝑅𝑅𝑖𝑖 is the learned regression operator after 𝑖𝑡ℎ iteration. The 
optimal regression operator is used to reconstruct the HR 
image. Algorithm 1 summarizes the steps involved to learn the 
optimal regression operator. 

B. Reconstruction Phase 
In the reconstruction phase, the LR MS cartosat images are 

super-resolved using the matrix-based implicit prior which is 
learned as a regression operator given by Eq. (6). The test LR 
MS image is up-scaled by an interpolator by a scale-factor 𝑠. 
Non-overlapping patches of size 𝑚 × 𝑚 are extracted from the 
interpolated image. The collection of the extracted patches is 
represented as a set𝑇𝑇 = �𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖 �𝑖𝑖=1

𝑛𝑛
. All the test LR patches are 

super-resolved using the matrix-based regression operator, 
given by 

                                     𝑝𝑝ℎ𝑙𝑙 = 𝑅𝑅∗𝑝𝑝𝑙𝑙𝑙𝑙                                      (10) 

 

The super-resolved patches are merged to obtain the super-
resolved HR image 𝐻𝐻.  The steps to super-resolve a LR MS 
image is summarized in Algorithm 2. 

Algorithm 2: SR Reconstruction 

IV. RESULTS AND DISCUSSION 
The effectiveness of the proposed SR algorithm to super-

resolve LR multi-spectral image is evaluated on a set of remote 
sensing images captured by cartosat-1 satellite as shown in Fig. 
3. All the experiments are simulated in MATLAB using a 
personal computer with Intel core-i5-2400 @ 2.7 GHz 
processor with 4 GB RAM. To generate training examples, HR 
multi-spectral images captured by COMSAT-1 are collected. 
Sample training images are shown in Fig.4. These HR images 
are downgraded with a scale-factor 𝑠  using bi-cubic 
interpolation to synthetically generate the LR images. In all the 
experiments, the patch-size is 11 × 11 and the LR images are 
super-resolved by a scaling factor of 2 and 4.  The test images 
are shown in Fig. 3 are super-resolved by various state-of-the-
art SR algorithms such as Yang et al.’s sparse representation 
based approach [22], and Dong et al.’s non-local 
autoregressive modeling (NARM) [23]. The results of the 
above algorithms are obtained using the source code available 
on the author’s webpage. 

 
Fig. 3. Low-resolution multi-spectral test images (a) MS-1 (b) MS-2 (c) MS-
3 

 
Fig. 4. Sample training example images 

The performance of the algorithm is examined by the 
experimental results obtained by the proposed algorithm. The 
effectiveness of the proposed algorithm is a measure of visual 
experience obtained from the reconstructed image. The 
reconstructed image is evaluated both qualitatively and 
quantitatively to assess its effectiveness. 

𝑇𝑇 = �𝑝𝑝𝑙𝑙𝑙𝑙𝑖𝑖 �𝑖𝑖=1
𝑛𝑛

 

𝑝𝑝ℎ𝑙𝑙 = 𝑅𝑅∗𝑝𝑝𝑙𝑙𝑙𝑙  

𝐻𝐻 = �𝑝𝑝ℎ𝑙𝑙𝑖𝑖 �𝑖𝑖=1
𝑛𝑛

 

Input: Optimal regression operator𝑅𝑅∗, LR Test set, 𝑇𝑇 
Output:   Super-resolved HR image, H 
Step (1):  Merge the LR test patches, 

Step (2): Obtain the HR patches using regression 
operator obtained from Algorithm-1, 

Step(3): Merge the super-resolved test patches, 

Output: Super-resolved HR image,H 
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Qualitative evaluation of SR depends on a few attributes of 
the reconstructed SR image. The image is visually inspected 
for its naturalness and sharpness to assess the quality of the 
reconstructed image. The sharpness of an image is assessed 
based on the high-frequency details present in it. It is desired 
that the SR algorithm should not introduce any counterfeit HF 
details. Similarly, image naturalness is attributed to the 
distortions and artifacts present in the image. If the fine-details 
in the image are not preserved, it will introduce jaggy and 
ringing and staircase artifacts. These artifacts will severely 
affect the quality of the image. These attributes in the images 
can be evaluated by visual comparison of the images. 

Fig. 5 depicts a visual comparison for three multi-spectral 
images with other state-of-the-art SR approach. It can be seen 
from the super-resolved results for the three test multispectral 
images MS-1, MS-2 and MS-3 in Fig. 5, the results of the 
proposed algorithm is better in terms of visual fidelity. The 
proposed algorithm reconstructs an SR image with minimal 
jaggy and ringing artifacts compared with other approaches 
depicted in Fig. 5 (b & c). 

 
Fig. 5. Visual comparison for three multi-spectral images with state-of-the-art 
SR approaches (a) LR image (b-d) reconstructed SR image by Yang et al.’s 
method, Dong et al.’s method and proposed method respectively 

The quantitative measure to evaluate the quality of the 
reconstructed image is figured by the PSNR (peak signal-to-
noise ratio) and SSIM (structural similarity index measure).A 
high PSNR score indicates that the magnified image is free 
from distortions and is more likely to carry HF details. SSIM 
value [24] (typically close to 1) indicates the similarity 
structure between the reconstructed image and its ground truth. 

The PSNR of an image is defined by, 

                               𝑃𝑃𝑆𝑁𝑅𝑅 = 10𝑙𝑜𝑔𝑔10 � 2552

𝑀𝑆𝐸𝑥𝑦
� 

Where   𝑀𝑆𝐸𝑥,𝑦 = ‖𝑥−𝑦‖2

𝑊∗𝐻
,  𝑊  is the width of the image 

patches 𝑥𝑥  and 𝑦𝑦, 𝐻𝐻 is height of both the image patches. 

The SSIM of the reconstructed image is obtained using 

𝑆𝑆𝐼𝑀(𝑥𝑥,𝑦𝑦) =  
�2µ𝑥µ𝑦 +  𝑐1�(2𝜎𝑥𝑦 + 𝑐2)

�µ𝑥2 + µ𝑦2 + 𝑐1�(𝜎𝑥2 + 𝜎𝑦2 + 𝑐2)
 

Where, 

µ𝑥 =  
1

𝑊 ∗ 𝐻𝐻∑ 𝑥𝑥𝑖𝑖𝑊∗𝐻
𝑖𝑖=1

 ;  µ𝑦 =  
1

𝑊 ∗𝐻𝐻∑ 𝑦𝑦𝑖𝑖𝑊∗𝐻
𝑖𝑖=1

 

 𝜎𝑥 =  
1

𝑊 ∗ 𝐻𝐻 − 1∑ ((𝑥𝑥𝑖𝑖𝑊∗𝐻
𝑖𝑖=1 − µ𝑥)2)

1
2

 

𝜎𝑦 =  
1

𝑊 ∗ 𝐻𝐻 − 1∑ ((𝑦𝑦𝑖𝑖𝑊∗𝐻
𝑖𝑖=1 − µ𝑦)2)

1
2

 

𝑐1 and 𝑐2 are constants. 

TABLE I. A SUMMARY OF QUANTITATIVE EVALUATION (PSNR/SSIM) 
FOR MULTI-SPECTRAL IMAGES 

Table I summarizes the quantitative comparison of the 
proposed method with various SR algorithms on multispectral 
LR images. The results tabulated in Table-1 shows that the 
proposed SR algorithm has the highest quantitative measures 
compared with other state-of-the-art algorithm. From Table-1, 
it is evident from the PSNR index that the proposed algorithm 
reconstructs the HR image with minimum distortions and the 
high SSIM index validates that the image-level information is 
preserved by the proposed matrix-based implicit prior. 

V. CONCLUSION 
In this paper, an example-based SR algorithm to super-

resolve multi-spectral remote sensing image is presented. The 
proposed SR algorithm will learn a matrix-based implicit prior 
to map the correspondence between LR and HR images. The 
implicit prior is learned as a regression operator using the 
conjugate decent method. The learned matrix-based implicit 
prior is effectively used to super-resolve clean LR multi-
spectral remote sensing images. In the future, the proposed 
algorithm will be extended to super-resolve noisy MS remote 
sensing images. The proposed algorithm is evaluated on clean 
images.  Qualitative and quantitative experiments on various 
remote sensing images validates the efficacy of the proposed 
algorithm. 
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