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Abstract—The method of computational homology is used
to analyze natural image 8 × 8 and 9 × 9-patches locally. Our
experimental results show that there exist subspaces of the spaces
of 8× 8 and 9× 9-patches that are topologically equivalent to a
circle and a Klein bottle respectively. These extend the results of
the paper ”on the local behavior of spaces of natural images.”
To the larger patches. The Klein bottle feature of natural image
patches can be used in image compression.
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I. INTRODUCTION

Many results on statistics of images were obtained in the
recent years [1], [2], [3]. Lee, Pedersen, Mumford [3] discuss
the distributions of 3 × 3 image patches, they found that
the majority of high-contrast 3 × 3 patches concentrate near
A circle. Carlsson, Ishkanov, de Silva, and Zomorodian [4]
analyze 3×3 natural image patches; they find a high density the
subset is called the primary circle and prove that there exists
the large 2-dimensional subset with the topology of a Klein
bottle Which includes the primary circle. In [5], we showed
that 4× 4, 5× 5, 6× 6 and 7× 7 natural image patches have
the circle behavior.

In this paper, we utilize the methods of the paper [4] to
study the structure of n×n high-contrast natural image patches
for the cases n=8 and n=9. In particular, we find the largest
2-Dimensional subspace of each case, whose topology is that
of a Klein bottle. The results of the paper enlarge the results of
[4] To 8×8 and 9×9 patches. The Klein bottle feature of image
patches can be used in techniques of image compression [4],
[6]. The data sets used in this paper were chosen from INRIA
Holidays dataset [7], which are different from that of the paper
[4].

II. THE DATA SETS OF NATURAL IMAGE PATCHES

As the dimensional problem of the data, it is very difficult
To directly analyze the pixel distribution of images. We divide
each natural image into small n×n-patches, and consider each
patch as an n2-dimension vector, we study the topology of the
space of n×n-patches for sufficiently small n, here we study
the cases of n=8, 9.

We sample data sets of high-contrast 8 × 8 and 9 × 9
Patches from 550 sampled natural images in INRIA Holidays
dataset [7]. Each data set consists of about 55 · 105 high-
Contrast log patches. INRIA Holidays dataset is available at
http://lear.inrialpes.fr/%7ejegou/data.php. Fig.1 has two sam-
ples.

Our main spaces X8 and X9 are sets of 8 × 8 and 9 × 9
Patches of high contrast created by the following steps. The
routine handled here is similar to [3], [4], [8].

Step 1. Sample 550 images from INRIA Holidays dataset.

Step 2. Using MATLAB function rgb2gray to compute the
intensity at each pixel for each image.

Step 3. We randomly select 5000 8× 8 and 9× 9 patches
from each image.

Step 4. We treat each patch as an n2-dimensional vector,
and take the logarithm of each coordinate.

Step 5. For any vector x=(x1, x2, ..., xn), we calculate
the D-norm: ‖ x ‖D. Two coordinates of x are neighbors,
expressed by i ∼ j, if the corresponding pixels in the n × n
patch are adjacent. The formula of D-norm is: ‖ x ‖D=√∑

i∼j(xi − xj)2.

Step 6. We select the patches which have a D-norm in the
top t percent in each image. We take t = 20%, as done in [3],
[4], [8].

Step 7. Subtract an average of all coordinates from each
coordinate.

Step 8. We map X8 ( X9) into a unit sphere by dividing
each vector with its Euclidean norm. We do not translate to
the DCT basis for convenience.

Step 9. We randomly select 50,000 points from X8 and X9

for computational convenience, the subspaces of X8 and X9

are indicated by X̄8 and X̄9 respectively.

III. COMPUTATIONAL METHOD

For determining topological features of an underlying space
by sampled finite points, the computing method used in this
paper is persistent homology, which is set up by Edelsbrunner,
Letscher, and Zomorodian [9] and distilled by Carlsson and
Zomorodian [10]. To apply persistent homology, we firstly
build lazy witness complexes for a sampled point set P from
underlying space X .

For a point cloud P , a landmark subset L, for all p ∈ P .
Let t(p) be the distance p to the closest landmark point. The
lazy witness complex LW (P,L, ε) is formulated as follows:
(i) the vertex set is L; (ii) for vertices a and b, edge [ab] is in
LW (P,L, ε) if there is a witness point p ∈ P such that

max{d(a, p), d(b, p)} ≤ ε+ t(p);

(iii) a higher dimensional simplex is in LW (P,L, ε) if all of
its edges are.
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Fig. 1. Samples from INRIA Holidays dataset

The most important parameter in a sequence of lazy witness
complexes is ε, but there is no an optimal value of ε without
prior information of the underlying space, we do not know
how To pick the value of ε. However, using the Javaplex
package developed by Adam and Tausz [12], we can compute
the Betti numbers in an interval of ε and explain the result by a
Betti barcode. The instinctive explanation is that long intervals
accord to actual topological features of the underlying space
while short ones are explained as noise.

To uncover the topological features of our spaces X8 and
X9, we use the different core subsets of X8 and X9. We
evaluate the local density of the space at a point by its the
nearest neighbor. For y ∈ X and k > 0, let ρk(y) =| y− yk |,
here yk is the kth nearest neighbor of y. The larger k-
Values contribute more global estimations, while small k-
Values result in local density estimates. For a given k, we
arrange the points of X by descending density; we pick the
points with densities in the top p percent, written as X(k, p).
The core subset X(k, p) possibly give important topological
information, which may be disappeared for all the points of
X .

Here we examine core subsets X̄n(k, p) of X̄n for n = 8, 9.
Core subsets have two parameters k and p, they demonstrate
some topological features of their underlying space for k and
p with suitable values.

IV. RESULTS FOR X̄8(k, p) AND X̄9(k, p)

The authors of the paper [4] applied persistent homology
to detect the topologies of high-density subsets of natural
image patches. They discovered that the topology of the core
sets vary from a circle to a 3-circle model as decreasing of
Density estimator k. In this paper, we use INRIA Holidays
data set, which is other than that of the paper [4], to prove
experimentally that some core sets of X8 and X9 possess the
similar results as above.

We take the core subsets X̄8(300, 20), X̄9(300, 20), and
calculate the barcodes by Javaplex software, their sample
barcode plots are displayed in Fig.2, Fig.2 separately. In Fig.2,
Fig.3, there exist a single long line of Betti0 and a single
long Betti1 line (i.e. β0 = 1 and β1 = 1), which means that

they have the topology of a circle. When we project core sets
onto some plane, their circle feature is visible in Fig.4 and
Fig.5. Choosing different landmark points, we run many times
experiments on X̄8(300, 20), X̄9(300, 20), and the results are
very steady.

For 8×8 and 9×9 patches, there are much different cores
subsets of X̄8 and X̄9, if we take proper values of parameters
k and p, the core sets also have the topology of a circle. For
X̄8(100, 20), X̄8(200, 20), X̄9(100, 20) and X̄9(200, 20), We
ran many trials and found that they have the topology of a
circle and the results to be robust.
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Fig. 2. PLEX results for X̄8(300, 20)
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Fig. 3. PLEX results for X̄9(300, 20)

When we consider the core subsets X̄8(15, 20),
X̄9(15, 20), and calculate the barcodes, their sample
barcode plots are shown in Fig.6, Fig.7 separately. In Fig.6
(Fig.7), there are a single long line of Betti0 and five long
Betti1 line for ε from 0.06 to 0.18 (from 0.05 to 0.19), which
shows that they have the topology of three circle model [4]
(Fig.8), that is, Betti numbers β0 = 1 and β1 = 5.
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Fig. 4. Projection of X̄8(300, 20) onto a plane
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Fig. 5. Projection of X̄9(300, 20) onto a plane

V. EMBEDDING OF THE KLEIN BOTTLE INTO S63 AND S80

The Klein bottle is a very important non-orientable surface,
it can be sketched by the quotient space of the square [0, 1]×
[0, 1] with sides glued by the relations (0, y) ∼ (1, y) for y ∈
[0, 1] and (x, 0) ∼ (1 − x, 1) for x ∈ [0, 1]. To identify the
Klein bottle features of subspaces of X8 and X9, we embed
the Klein bottle into S63 and S80, and get another theoretical
model of the Klein bottle.

We define the map g : S1 × S1 7−→ P by
(cosα, sinα, cosβ, sinβ) 7−→ cosβ(x cosα + y sinα)2 +
sinβ(x cosα+y sinα) ([4]), where P consists of all functions
with the form cosβ(x cosα + y sinα)2 + sinβ(x cosα +
y sinα), α, β ∈ [0, 2π], it is obvious that g is onto, but not
one to one, since the points (cosα, sinα, cosβ, sinβ)
and (− cosα,− sinα, cosβ,− sinβ) are mapped to
the same function, that is, (cosα, sinα, cosβ, sinβ) ∼
(− cosα,− sinα, cosβ,− sinβ) is an equivalent relation,
the relation can be rewritten as (α, β) ∼ (π + α, 2π − β).
The space P=im(g) is homeomorphic to S1 × S1/(α, β) ∼
(π + α, 2π − β), as no other identifications produced by g.
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Fig. 6. PLEX results for X̄8(15, 20)
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Fig. 7. PLEX results for X̄9(15, 20)

A torus has a similar representation to that of the Klein
bottle as glued a square with the opposite edges (Fig.9). The
effect of the map g on a torus is displayed in Fig.10. Each
half is a representation of the Klein bottle, thus the image of
g is homeomorphic to the Klein bottle and so is P ([4]).

We define a map h8 : P 7−→ S63 by a
composite of evaluating a polynomial at each point
of the plane grid G8 = {−3,−2,−1, 0, 1, 2, 3, 4} ×
{−3,−2,−1, 0, 1, 2, 3, 4} subtracting the mean and nor-
malizing. In a similar way, we define h9 : P 7−→
S80 on the grid G9 = {−4,−3,−2,−1, 0, 1, 2, 3, 4} ×
{−4,−3,−2,−1, 0, 1, 2, 3, 4}. Because continuous 1-1 map
on a compact space is a homeomorphism onto its image, as
Proved in [4], the images im(h8) and im(h9) are homeomor-
phic to the Klein bottle.

To embed the Klein bottle into into S63 and S80, primarily,
we uniformly take 200 points ({x1, ..., x200}) from the unit cir-
cle, all possible tuples (xi, xj) produce a point set on the torus
S1×S1. Secondly, we map each of the 40000 points into S63

and S80 through compositions of h8 ◦ g and h9 ◦ g separately,
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Fig. 8. Three circle model

Fig. 9. Denotation of a torus as a quotient space

and the image of the composition is presented by K8(200) and
K9(200) respectively. Fig.11, Fig.12 display the PLEX results
of the spaces K8(200) and K9(200) respectively, they provide
the Betti numbers β0 = 1, β1 = 2 and β2 = 1, these are the
mod 2 Betti numbers of the Klein bottle. Therefore, K8(200)
( K9(200)) is an appropriate approximation of the Klein bottle
in S63 ( S80).

VI. RESULTS FOR X8 AND X9

We have embedded the Klein bottle into S63 and S80, and
the subspaces K8(200) and K9(200) are a proper approxima-
tion of the Klein bottle in S63 and S80 respectively. Applying
K8(200) and K9(200), we can find subspaces of X8 and X9,
whose topology is that of the Klein bottle. The constructing
process of the subspaces of X8 and X9 are as following.

For each point of X8, we compute the Euclidean distance
from the point to point set K8(200), then we resort points
of X8 according to increasing of their Euclidean distances
to K8(200), then we take the top t percent of the closest
distances, and represent the subspace of X8 as XP8(200, t).
The subspace XP9(200, t) of X9 is constructed by a similar
way.

To find subspaces of X8 and X9 having the topology
of the Klein bottle, we take the parameter t=20 we do
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Fig. 10. Klein bottle, the image of the map g
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Fig. 11. PLEX result for K8(200)

many experiments on XP8(200, 20) for the parameter num-
landmark-points from 80 to 100 and the result is very stable.
Fig.13 displays one PLEX result for XP8(200, 20), which
gives Betti numbers β0 = 1, β1 = 2 and β2 = 1 for ε from
0.019 to 0.059. When taking t = 25, the space XP8(200, 25)
experience a topological change. Indeed, we do 50 trials on
XP8(200, 25) for different parameters, where there exist 23
trials whose PLEX results producing the topology of the Klein
bottle and most barcode intervals with the homology of the
Klein bottle is in very small ranges, the other 27 trials give
no the homology of the Klein bottle. Fig.14 gives the Betti
numbers of XP8(200, 25): β0 = 1, β1 = 2 and β2 = 1 for ε
from 0.025 to 0.035. The PLEX result Fig.15 of XP8(200, 25)
shows that it has no the Klein bottle’s homology. Similarly, we
do many experiments on XP9(200, 18) and XP9(200, 23) re-
spectively, we discover that the largest subspace of X9 having
the homology of the Klein bottle is about XP9(200, 18), and
the subspace XP9(200, 23) experiences a topological change.
Fig.16 displays one PLEX result for Xp9(200, 18), which
gives β0 = 1, β1 = 2 and β2 = 1 for ε in [0.032, 0.086].
Fig.17 shows XP9(200, 23) having the Klein bottle feature
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Fig. 12. PLEX result for K9(200)

in a very small range of ε values (from 0.014 to 0.033). The
PLEX result for XP9(200, 23) in Fig.18 gives no the Klein
bottle feature.
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Fig. 13. PLEX result for XP8(200, 20)

From the results of [5], we knew that the largest subspaces
with the homology of the Klein bottle of 3× 3, 4× 4, 5× 5,
6×6 and 7×7 patches are about 40%, 35%, 30% and 25% of
points of X3, X4, X5, X6 and X7 respectively. Combining the
current results, we may conclude that the size of the largest
subspace having the Klein bottle’s homology of n×n patches
depends on the patch size n, and the larger of patch size the
smaller the size of the largest subspace. Hence it is necessary
to discuss different sizes patches in natural images.

VII. CONCLUSION

In this paper we apply persistent homology to study natural
image 8 × 8 and 9 × 9 patches, and obtain similar results to
the papers [4], [5], the results of in this paper enlarge image
analysis to larger patches. We find the largest subspaces of X8

and X9 with the Klein bottle’s homology, and the size of the
largest subspace of n × n natural image patches having the
Klein bottle’s homology is decreases as increasing of n. Thus
we need only study n×n natural image patches for sufficiently
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Fig. 14. PLEX result for XP8(200, 25)
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Fig. 15. PLEX result for XP8(200, 25)

small n. The Klein bottle’s feature of natural image patches
may improve techniques of image compression [4], [6]. But
it is worth to study that for how big of n, the n × n natural
image patches have no the Klein bottle feature. As increasing
of n, the computing for n×n patches becomes more difficult.
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