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Abstract—Finding approximations to the eigenvalues of non-
linear eigenvalue problems is a common problem which arises
from many complex applications. In this paper, iterative algo-
rithms for finding approximations to the eigenvalues of nonlinear
eigenvalue problems are verified. These algorithms use an efficient
numerical approach for calculating the first and second deriva-
tives of the determinant of the problem. Here we present and
examine a technique for solving nonlinear eigenvalue problems
using Newton method. Computational aspects of this approach
for a nonlinear eigenvalue problem are analyzed. The efficiency
of the algorithm is demonstrated using an example.
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I. INTRODUCTION

A method is presented in [5] for obtaining lower and upper
bounds on eigenvalues and eigenfunctions for linear integral
equations.

Another method is described in [6] for the calculation of
the eigenvalues of general integral operators. Several classical
results from functions of a complex variable and the theory
of integral equations are combined with a recent technique for
converting Fredholm integral equations into an initial-valued
system of differential equations. The algorithm, which is based
on a Cauchy system for the Fredholm determinants, is related
to the Nyström method and results of Anselone and Atkinson
become applicable.

Another method is presented in [7] for the calculation of the
eigenvalues and eigenfunctions of complex-valued symmetric
kernels which occur in laser theory. The method combines
some classical results of integral equations and complex vari-
ables with a recent technique for transforming Fredholm inte-
gral equations into a Cauchy system of differential equations.

In this paper, a numerical method for solving the following
eigenvalue problem is proposed. Here the method and the
notations presented in [4] is used to simplify our method.

Let D(λ) be a given n-by-n matrix that is a nonlinear
function of the spectral parameter λ. It is required to find the
values λ ∈ C (called the eigenvalues) such that the equations

x∗D(λ) = 0, D(λ)y = 0, (1)

have nontrivial solutions x, y ∈ Cn.

Here, the asterisk in the superscript indicates the Hermitian
adjoint operation. Both problems in (1) have the same desired
values of λ that solve the equation

f(λ) ≡ detD(λ) = 0. (2)

In what follows, it is assumed that the entries of D(λ)
are sufficiently smooth functions of λ varying in a certain
domain. This process is an improved Newton method as
applied to finding a simple real eigenvalue considered as a root
of the corresponding nonlinear scalar equation (2); however, in
equation (2), the left-hand side is not expressed in an explicit
form. Instead, it is proposed an algorithm for calculating
the values of f(λ), f ′(λ) at a fixed λ; to this end, the LU-
decomposition of D(λ) is used.

Moreover, the proposed algorithm, combined with the argu-
ment principle for analytic functions, makes it possible to find
the number of eigenvalues belonging to a given domain G in
the complex λ-plane, as well as to find initial approximations
to all of these eigenvalues. The approximations found can then
be refined using any of the available iterative methods; in
particular, an improved Newton method can be applied.

II. CALCULATING f(λ) AND f ′(λ)

It is well known that, for any fixed λ, the matrix D(λ) can
be represented in the form

D(λ) = L(λ)U(λ), (3)

where L(λ) is a lower triangular matrix with unit diagonal
and U(λ) is an upper triangular matrix. It follows that

f(λ) = detL(λ)detU(λ) =
n∏
i=1

uii(λ),

Since the entries of the square matrix D(λ)(and, hence,
those of U(λ))are differentiable functions of λ , that is

f ′(λ) =
n∑
r=1

vrr(λ)
n∏

i=1,i6=r

uii(λ),

for any λ, here vii(λ) = u′ii(λ).
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To find vii(λ) equation (3) is differentiable with respect
to λ. This yields

B(λ) = M(λ)U(λ) + L(λ)V (λ), (4)

where

B(λ) = D′(λ),M(λ) = L′(λ), V (λ) = U ′(λ),

and vii(λ) are the entries in the matrix V (λ). Thus, to calculate
f(λ), f ′(λ) , at a fixed λ = λm, it is necessary to find the
matrices

D = LU,

B = MU + LV. (5)

This yields

f(λm) =
n∏
i=1

uii(λm),

f ′(λm) =
n∑
r=1

vrr(λm)
n∏

i=1,i6=r

uii(λm). (6)

The entries of the matrices appearing in decomposition (5)
can be calculated using the recursions

r = 1, 2, . . . , n

urk = drk −
r−1∑
j=1

lrjujk,

lir = [dir −
r−1∑
j=1

lijujr]u
−1
rr , i = r + 1, . . . , n,

vrk = drk −
r−1∑
j=1

(mrjujk + lrjvjk), i = r + 1, . . . , n,

mir = [dir −
r−1∑
j=1

(mijujr + lijvjr)− lirvrr]u−1
rr ,

i = r + 1, . . . , n.

This algorithm may be unstable and even incorrect if urr =
0 for some r. To avoid such occurrences, one uses permutations
of the rows (and/or columns) of D in the process of its LU -
decomposition; simultaneously, a pivot is chosen similarly to
the Gaussian elimination. In this case, decomposition of (5)
can be written as

PD = LU,

PB = MU + LV,

where P is a permutation matrix; and det P = (−1)q ,
where q is the number of permutations. Thus, relations (6)
take the form

f(λm) = (−1)
q
n∏
i=1

uii(λm),

f ′(λm) = (−1)
q

n∑
r=1

vrr(λm)
n∏

i=1,i6=k

uii(λm).

After that, this algorithm is used for calculating the deriva-
tives on the basis of the LU -decomposition of D(λ).

III. COMPUTATIONAL ASPECTS OF THE ALGORITHM

The argument principle was repeatedly used to solve var-
ious problems in which the number of eigenvalues belonging
to a given domain must be determined. By assumption, the
characteristic function (2) is analytic. Suppose that f has m
zeros λ1, . . . , λm in G (with the multiplicities counted) and
has no zeros on the boundary Γ of G.

It is well known from the argument principle that the
number m is determined by the formula [1]

m = S0 =
1

2πi

∫
Γ

f ′(λ)

f(λ)
dλ. (7)

Define the quantities

Sk =
1

2πi

∫
Γ

λk
f ′(λ)

f(λ)
dλ, k = 0, 1, 2, . . . , (8)

then, it can be shown that
m∑
j=1

λkj = Sk, k = 0, 1, 2, . . . . (9)

Thus, if m and Sk, (k = 1, 2, . . . ,m) are known, then
system (9) determines the zeros of function (2), that is, all the
eigenvalues of problem (1) belonging to the given domain G.

Let us dwell on the computational aspects of this algo-
rithm, namely, on the stage at which the quantities Sk(k =
1, 2, . . . ,m) are calculated. Thus, it is proposed to use the LU -
decomposition of D(λ) for calculating both f(λ) and f ′(λ)
.

Without loss of generality, take the circle G(λ∗, ρ) of radius
ρ centered at λ∗ as the domain G bounded by the contour Γ.
The change of the variable

λ(t) = λ∗ + ρexp(2πit)

transforms integral (8) to the form

Sk =

∫ 1

0

λ(t)kρ exp(2πit)
f ′(λ(t))

f(λ(t))
. (10)

Partition the interval [0, 1] into N equal subintervals and
replace integral (10) by a quadrature (for instance, following
[2], the rectangle rule can be used).

This yields

Sk =
1

N

N∑
j=1

λkj ρ exp(i
2πj

N
)
f ′(λj)

f(λj)
, (11)

where

λj = λ∗ + ρexp(i
2πj

N
).

Thus, formula (11) requires that only the values of f(λ)
and of its derivative on the boundary of G is calculated.
This can be done by using decomposition (5). Then, using
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representations (6), it can be rewritten the ratio
f ′(λ)

f(λ)
in the

form

f ′(λj)

f(λj)
=

n∑
r=1

vrr
urr

. (12)

In view of (12), the following formulas for calculating
Sk(k = 0, 1, . . . ,m) is obtained:

Sk =
1

N

N∑
j=1

(λkj ρ exp(i
2πj

N

n∑
r=1

vrr
urr

). (13)

Hence, using relations (13), the number m = S0 of the
eigenvalues belonging to G, as well as the right-hand side of
equation (9) can be found. Following [4], the Newtons method
for solving this system, may be applied which results in certain
(in general, rather rough) approximations to all the eigenvalues
are belonging to G.

IV. AN IMPROVED NEWTON METHOD(IM NEWTON)

The use of iterative method for refining the rough approxi-
mations to the eigenvalues that were obtained by the algorithm
described above is proposed.

Theorem 1: Let p(x) be a real polynomial of degree n ≥ 2,
all zeros of which are real, ξ1 ≥ ξ2 ≥ . . . ≥ ξn. Let α1 be
the largest zero of p′(x):ξ1 ≥ α1 ≥ ξ2. For n = 2, it is also
required that ξ1 > ξ2. Then for every z > ξ1, the numbers

z′ = z − P (z)

P ′(z)
,

y = z − 2
P (z)

P ′(z)
,

y′ = y − P (y)

P ′(y)

are well defined and satisfy α1 < y, ξ1 ≤ y′ ≤ z′. It is readily
verified that n = 2 and ξ1 = ξ2 imply y = ξ1 for any z > ξ1.

Suppose that an approximation λ0 to the eigenvalue λ∗ is
given such that the Im Newton method described in [3] can
be initiated from λ0:

ym = λm − 2
f(λm)

f ′(λm)
, (14)

y′m+1 = ym −
f(ym)

f ′(ym)
. (15)

At each step of iterative process (14), the values of f(λ)
and its derivatives at a specific λ are used. Therefore, to cal-
culate these values, use of decomposition (5) and of relations
(6) is made. As a result, process (14) and (15) takes the form

ym = λm − 2

(
n∑
k=1

vkk
ukk

)−1

, (16)

y′m+1 = ym −

(
n∑
k=1

vkk
ukk

)−1

. (17)

Thus, the following algorithm for solving the nonlinear
eigenvalue problem (1) is proposed.

Algorithm 1: Iterative process for refining the rough
approximations

Step 1.Choose an initial approximation λ∗ to the sth
eigenvalue of problem (1).

Step 2. for m = 0, 1, . . . until the required accuracy
is attained do.

Step 3. Determine the entries ukk, vkk in decomposi-
tion (5).

Step 4. Calculate ym and y′m+1 using formula (16)and
(17) .

Step 5. Let λm+1 = y′m+1.

Step 6. end for.

V. NUMERICAL EXAMPLE

The algorithm for calculating rough approximates of eigen-
values presented in section II was tested for the quadratic
eigenvalue problem with the matrix

D(λ) = λ2A0 + λA1 +A2,

where

A0 =

 1 0.17 −0.25 0.54
0.47 1 0.67 −0.32
−0.11 0.35 1 −0.74
0.55 0.43 0.36 1

 ,

A1 =

 0.22 0.02 0.12 0.14
0.02 0.14 0.04 −0.06
0.12 0.04 0.28 0.08
0.14 −0.06 0.08 0.26

 ,

A2 =

 −3.0475 −2.1879 −1.9449 −2.8242
−2.6500 −2.4724 −2.3515 −2.1053
−0.7456 −0.6423 −1.3117 −0.1852
−4.0500 −3.0631 −2.8121 −3.7794

 .
First, the number of eigenvalues belonging to a given

domain G was determined. In presented calculations, G was
a circle G(λ∗, ρ) centered at λ∗ = 0.

The following radii were used: ρ = 0.3, 1.0, 1.3, and 3.0.
The results are presented in TABLE I. For each ρ, the number
of eigenvalues belonging to G, the eigenvalues themselves (λ),
and the number k of iteration steps required to calculate the
eigenvalues to an accuracy of ε = 10−4 are shown.

The approximate eigenvalues found at this stage may not
have the required accuracy. To refine these approximations, the
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TABLE I. THE NUMBER OF EIGENVALUES

ρ = 0.3 ρ = 1.0 ρ = 1.3 ρ = 3.0
k = 2 k = 68 k = 25 k = 77
λ λ λ λ

0.2423 0.6383 0.2383 2.3229
0.2423 −0.8499 0.7967
−0.3778 −1.2261 0.6383
0.7967 0.3878 0.2423
−0.8394 0.7956 −0.3778

0.6408 −0.8394
−1.2234
−2.6354

algorithms presented in above can be used.

The results of refine are presented in TABLE II. The exact
eigenvalues, and initial approximations, are respectively shown
in columns 2 and 3. The next column provides numbers of
iterations steps required to calculate the eigenvalues to an
accuracy of ε = 10−9 and the refined eigenvalues are presented
in the last column.

TABLE II. REFINED EIGENVALUES

k exact initial m refined
eigen. approx. eigen.

1 0.2422606951 0.2423 2 0.2422606954
2 0.6382838292 0.6383 3 0.6382838295
3 0.7967066727 0.6383 3 0.7967066725
4 2.322748800 2.3229 2 2.322748800
5 −0.777442689 −0.3778 2 −0.777442685
6 −0.8393977662 −0.8394 1 −0.8393977663
7 −1.223471197 −1.2234 2 −1.223471198
8 −2.635389128 −2.6354 2 −2.635389128

VI. CONCLUSION

In this paper, an improved Newton method for solving non-
linear eigenvalue problems was presented. The results showed
that the improved Newton method is an efficient method. The
presented method is very efficient and competitive with other
methods used to solve nonlinear eigenvalue problems. Here
MATLAB 2012 software was used to implement the algorithm.
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