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Abstract—In this paper we present a method to search  q 
circulant matrices; the concatenation of these circulant matrices 
with circulant identity matrix generates quasi-cyclic codes with  
high various code rate q/(q+1) (q an integer). 

This method searches circulant matrices in order to find the 
good quasi-cyclic code (QCC) having the largest minimum 
distance. A modified simulated annealing algorithm is used as an 
evaluator tool of the minimum distance of the obtained QCC 
codes. Based on this method we found 16 good quasi-cyclic codes 
with  rates (1/2, 2/3 and 3/4), their estimated minimum distance 
reaches  the lower bounds of codes considered to be the better 
linear block codes  in Brouwer’s database. 

Keywords—Circulant matrix; quasi-cyclic Codes; Minimum 
Distance; Simulated Annealing;  Linear Error Correcting codes 

I. INTRODUCTION 
In coding theory, a large side of research   has been 

interested in design and construction of error correcting codes 
families which are the basis of the channel coding element in 
the digital communication system. This research is not an easy 
problem. Moreover, the sphere packing problem is equivalent 
to finding a linear code with largest minimum Hamming 
weight in a given space [1]. The term good codes in this work, 
refers to maximizing the minimum distance for a binary linear 
code of a given parameters: length and dimension or various-
code rate and/or high-code rate. 

The author in [2] used the canonical form based in 
circulant matrices to found many good codes: quadratic 
residue codes and high quality group codes, and the author in 
[3] found the best quadratic residues with the same circulant 
property over the field GF(3) 

More generally, the author in [4] proposes a quadratic 
double circulant codes schemes which are a generalization 
over any field GF(q) and for any length code, on the contrary, 
of the construction methods cited  in  [1] [2]. 

The design of good error correcting codes is a difficult 
problem, which remains open in coding theory. Recently this 

problem is attacked with meta-heuristic methods. Some of 
these works, A. El Gamal et al. [5] used simulated annealing 
to build good source codes, good channel codes and spherical 
codes. in [6] Chatonnay  et al. introduced genetic algorithms 
for finding good linear codes. In [7] [8] the authors found 
good double and triple circulant codes, using the multiple 
pulse method and genetic algorithms. Comellas et al. [9] used 
genetic algorithms to design constant weight codes. Walice et 
al. [10] have presented a comparative study of meta-heuristic 
techniques applied to estimate the minimum distance of BCH 
Codes. 

The determination of the minimum distance of linear block 
codes (minimum Hamming weight) by classical methods is 
hardly feasible; in general, this is an NP-hard problem [11]. 
The combinatorial nature of the problem requires an 
enumeration of the codewords for a linear code in order to 
find one with the minimum weight. Unfortunately, exhaustive 
exploration of the search space, is not possible, especially 
when the length n increases [12][13], which means that the 
size of the search space that is 2k  codewords, becomes 
prohibitively high, where k is the dimension of code. Hence, 
the need of a met-heuristic technique to estimate the minimum 
Hamming weight value or in some cases, to find its true value. 

We present in this paper, a method to search a good quasi-
cyclic codes with rate q/(q+1) (where q is an integer) based in 
extensive random search for circulant matrices, and we chose 
the heuristic simulated annealing method (SA) to find the 
value of the minimum distance of quasi-cyclic codes that we 
have constructed. 

The remainder of this paper is presented in six sections. 
On the next section, we give an introduction on quasi-circulant 
codes, the minimum distance of linear block codes, encoding 
operations and simulated annealing method. In section III we 
present the method for searching the good quasi-cyclic codes. 
The modified Simulated Annealing method is presented in 
section IV. The obtained codes and experiment results are 
presented in section V. Finally, concluding remarks and 
perspectives of this work are given in section VI. 
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II. ERROR CORRECTING CODES  AND SIMULATED 
ANNEALING METHOD 

A. Quasi-Circulant Codes 
Let (n, k, d) denote the linear block code over a field 

GF(q) with q elements of length n, dimension k, minimum 
distance d and the code rate k/n. 

Let r=n-k be the code redundancy. 

Definition1: 

A matrix M square of order r over GF(q) is called circulant 
if each successive row a cyclic shift of the previous one, it has 
the following form: 
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The vector of the first row (m0,m1…, mr-1) is called the 
header of the  circulant matrix M 

Definition2: 

A Quasi-Cyclic Code QCC(n, k), is a linear block code of 
length n and the rate T which satisfies the following 
properties: 

• Any cyclic shift of a code word by s symbols gives 
another code word of QCC. 

• The smallest integer s check this, is called the index of 
the code. 

Quasi-cyclic codes are the general case of cyclic codes. 
When the integer s=1 the QCC are cyclic codes 

The quasi-cyclic codes can be generated by parallel or 
serially concatenated schemes of the circulant matrices. 

The case of Double Circulant Codes (DCC) 

A code linear of length n=2r and dimension k=r, with 
generator matrix of the form G=[I M] is called a double 
circulant code, where M is an r x r circulant matrix and I is an 
r x r  identity matrix over GF(2).More properties of DCC 
codes are given in [14]. 

Example of DCC: The QCC(24, 12, 8) code is a double 
circulant code of header vector [1,1,0,1,1,1,1,0,1,0,0,0], with 
generator matrix G: 
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The case of Triple circulant codes (TCC)

 

A code linear of length n= n=3r and dimension k=r, with 
generator matrix of the form G=[I | M | N] is called a triple 
circulant code, where M and N are two r x r circulant matrix 
and I  is an r x r  identity matrix over GF(2). 

We can define the generator matrix of Triple Circulant 
Code TCC by two vectors headers [m0, m1,…, mr-1] and [n0, 
n1,…, nr-1] which are respectively associated with the matrices 
M and N as the follow 
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Example of TCC: The QCC (27, 9, 6) code is a Triple 
circulant code, of  the two vectors headers [0,1,1,1,0,1,0,0,1] 
and [1,1,0,1,1,0,1,1,0], with generator matrix G : 
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B. Minimum distance of a linear code 
Let C be an (n, k ,d) linear  block code over a field GF(2) 

with 2 elements. The code C has 2k codeword which is a k-
dimensional subspace of the GF(2)n. 

Let a be an element of GF(2),  the Hamming weight WH is 
defined as follows 
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We call minimum Hamming weight of the code C over 
GF(2) the positive integer: 

                       min{ WH(A) : AϵC, A≠0} 

The minimum distance dmin (or the minimum Hamming 
distance) of the linear code C is the minimum Hamming 
weight of any nonzero codeword. 
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C. Encoding  linear  codes 
The encoder transforms each input information vector D 

into n-tuple codeword A: multiplying D by G the generator 
matrix of the code C with n > k, (see Figure 1) 

 

 

 

 
 

Fig. 1. A simplified Encoder representation 

D. Simulated Annealing Method 
We can say that simulated annealing is a neighbor search 

technique where the principle search is deeply inspired on the 
Metropolis [15] algorithm and the behavior of atoms in metals 
annealing process. The main idea is to use iteratively the 
Metropolis algorithm with reduction of the temperature. The 
annealing concepts in combinatorial optimization problems 

were introduced in 1980 by Kirkpatrick [16]. These concepts 
are equivalence to find an optimal energy of solidification in 
physical process by applying the Metropolis algorithm and 
search the feasible solutions of the cost function which 
converge to an optimal solution for a combinatorial 
optimization problem. 

III. THE PROPOSED METHOD FOR SEARCH THE GOOD  
QUASI-CYCLIC CODES 

In this section we give a method to search good quasi-
cyclic codes with different rate q/(q+1) (where q is an 
integer), this method is based on the search of a  header called 
Total Header TH of length q*(n-k); after we generate q 
circulant matrices over F, each matrix is defined by the header 
of length (n-k), the serial concatenation of these headers give 
the Total Header TH. 

The quasi-cyclic code of the code rate q/(q+1) is generated 
by  parallel  concatenation of q circulant matrices, that will be 
serially concatenated with circulant identity matrix. The 
generator matrix G of the generated quasi-cyclic code is as the 
following: 
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Where I is a circulant identity matrix over F of size (q*(n-
k))(q*(n-k)) and Ai , 1≤i≤q  is a circulant matrices over F of 
size (n-k)(n-k) 

The matrix G is of size (q*(n-k))((q+1)*(n-k)), and of code  
rate is q/(q+1). 

Once the generator matrix G of the quasi-cyclic code is 
constructed, we move to determine the value of the minimum 
distance of this code. This is made by developing the function 
F(A) named Cost Function as follow: 

Let G be the generator matrix of the quasi-code QCC(n,k) 
,with elements gij over GF(2), whose lines form a basis of 
QCC. 

If the information vector D= (d1, d2,…, dk) ϵ {0,1}k Then the 
corresponding codeword  A=( a1, a2,…, an) can be uniquely 
written  as follows. 
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Then we have  
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The minimum value of the function F(A) presents  the 
value of minimum distance of the QCC, in other words we 
want to find a vector information D over {0,1}k-{0}  which 
minimizes F(A). To determine the minimal solutions 
(minimum distance) of the F(A) function we use a modified 
simulated annealing algorithm (see section IV) . 

A. The proposed search method algorithm 
We implement an algorithm which uses the features of the 

aforementioned method. This method searches the good Total 
Header, so as to find a largest value of the minimum distance 
of the quasi-cyclic code. 

The algorithm   is given in Algorithm 1 
 
Algorithm 1: Algorithm of the proposed search method 

 
Inputs: q, n-k, nbr-test, LB: lower bound of dmin 
 
Outputs: list of good quasi-cyclic codes 
 
 
For i=1 to nbr-test  do: 
 
Step1: Generate randomly the Total Header TH of length 

q*(n-k) 
Step2: Generate q circulant matrices Ai related to TH 
Step3: Generate the Generator matrix G of the quasi-cyclic 

code related to  Ai  matrices 
Step4: Calculate the minimum distance dmin of the generated 

quasi-cyclic code using simulated annealing 
(In Algorithm 2) 

Step5: If (dmin >= LB) then take the Total Header TH 

      End If 

End For 

Example : Let q=3, r=n-k=6, if the Total Header is           
TH=[ 0 1 1 0 0 1 1 0 1 1 1 1 1 0 1 0 0 1] 

Then we generate 3 circulant matrices A1, A2 and A3 of 
sizes 6*6 

Where the header of A1 is h1=[0 1 1 0 0 1], the header of 
A2 is h2=[1 0 1 1 1 1], the header of A3 is h3=[1 0 1 0 0 1] and  
TH=[h1 h2 h3] 

The quasi-cyclic code generated has the following 
characteristics: 

• Length n=24 

• Dimension k=18 

•  Distance minimal d=4 by algorithm 2 

• Noted QCC(24, 18, 4) 

• Code rate T=3/4 

• The matrix G of  QCC is as follow: 
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IV. THE MODIEFED SIMULATED ANNEALING ALGORITHM 
The use of SA method gives rise to a new SA algorithm. 

This algorithm is an efficient evaluator of the minimum 
distance for linear block codes, already has been tested on 
several family of linear codes in our previous work [17]. 

The Modiefed Simulated Annealing algorithm which is  
used to calculate the minimal distance of a QCC codes is 
given in Algorithm2: 

 
Algorithm 2: The basic algorithm of the modified simulated annealing. 

 
Input(s): 
N:  number of iterations in each  Ti where  10≤N ≤10000   
Ti=1.2, Tf=0.001, α=0.9:cooling factor 
Initial Task= Task_1 
Output(s): minimum distance of the QC code 
  
Generate randomly Di a starting   information vector  
Repeat: 
 Repeat: 
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  If (Task== Task_1) then determine a 

neighbor information vector (Di+1) from task_1; 
  Else determine a neighbor information 

vector (Di+1) from task_ 2; 
       End if 
  Evaluate ∆F = F (Di+1) – F (Di); 
  If ∆F ≤ 0 then Di           Di+1; 

Generate q= random [0, 1[; 
  Else if (q ≤ Exp (-∆F/T)) 
   Then    Di           Di+1; 
          End if 
  End if 
 Until  (iterations number < N) 
 
 If (Transition criterion is satisfied==yes ) Then 

switch between Task_1 and Task_2; 
 End if 
   T         α.T; 
 
 Until (T > Tf) 

Task_1: Let Di = (Di1,..., Dik) be the current information 
vector over GF(2)k and  Si = (si1,..., sik) a  switch vector over 
GF(2)k, randomly generated, where 1 ≤WH(Si)≤ k. The 
neighborhood information vector Di+1 is defined as follows: 

Step1. )6(         mod2            1 iii SDD ⊕=+  

Step2. WH(Di+1)  must be between 1 and minimum 

distance  upper bound  of the QC code  

Step3. Di+1 ϵ GF(2)k-{0} 

Task_2:  Let Γp be the cyclic shift of p places of elements 

The neighborhood information vector Di+i is produced by 
generate a random integer number p over  [1, k-1], and we 
apply the cyclic shift Γp on  Di. 

( ) )7(                                                      1 ipi DD Γ=+  

Criterion of transition between Task_1 and Task_2 

The transition between Task-1 and Task-2 is made 
randomly from an uniform distribution. 

V. COMPUTATIONAL EXPERIMENT RESULTS 
We performed the computational experiments with: 

- Software: program developed in language C 
- Hardware: CPU CORE 2Duo 2GHz and 2GB of 

RAM 
We used the parameters in algorithm 2 for simulated 

annealing algorithm. 

All good quasi-cyclic codes that we found by this method, 
using the modified simulated annealing method, have been 
verified and validated independently using the well known 
computer algebra package, MAGMA [18]. 

Here, the term good quasi-cyclic code refers to a binary 
quasi-cyclic code with the largest dmin for a given length n and 
dimension k. In cases where there is more than one good code, 
only one is chosen. 

The Tables I, II and III as following summarize the 
obtained good quasi-cyclic codes with code rate q/(q+1) 
where q is an integer between 1 and 3. 

Note that LB and UP, respectively, denote Lower Bound 
and Upper Bound on the minimum distance of a linear code 
for a given parameters, these limits are taken from the 
Brouser’s data base[19]. dmagma is the minimum distance 
calculated by the calculator algebraic Magma[18] and dfound is 
the minimum distance of QCC obtained by the modified 
simulated annealing algorithm. The obtained QCC codes seem 
to be good codes because their estimated minimum distance is 
equal to their lower bounds. 

TABLE I. GOOD  QUASI-CYCLIC CODES FOUND USING ALGORITHM 1, WITH Q=1, CODE RATE T=1/2 

Rate QCC Binary Total Header TH dfound dmagma LB UB 

1/2 

C(60,30) 000010111001111001000000110000 12 12 12 14 
C(52,26) 00010111000000010010111110 10 10 10 12 
C(58,29) 01110111110010100111010101010 12 12 12 14 
C(76,38) 11111010011110011011111011011011000011 14 14 14 18 
C (94,47) 10001101010110011011010000000111110110001110010 16 16 16 22 

TABLE II. GOOD QUASI-CYCLIC CODES FOUND USING ALGORITHM 1, WITH Q=2, CODE RATE T=2/3 

Rate Codes Binary Total Header TH dfound dmagma LB UB 

2/3 

QCC(93,62) 01111101111100011010111011101101011111011100101101001000000100 10 10 10 14 
QCC(99,66) 011011111101101111011110000001110010100111100110111111011110010101 10 10 10 14 
QCC(105,70) 0101100100000100011100001000011000001110001100100010000001110001001100 10 10 10 15 

QCC(123,82) 1100011000100001111101000110101001010010111000011111111111010110110011
011001001111 12 12 12 17 

QCC(150,100) 0111110011101100110001100001011001010001000000001011111000110010101000
011111111100100000001111011111 14 14 14 20 

QCC(156,104) 0000010110100010010111011000011011011101110011000011001000011100010010
0100001101100011000110000100110001 14 14 14 22 
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TABLE III. GOOD QUASI-CYCLIC CODES FOUND USING ALGORITHM 1, WITH Q=3, CODE RATE T=3/4 

Rate Codes Binary Total Header TH dfound dmagma LB UB 

3/4 

QCC(68,51) 000110111111101011101101001100100101110100011011001 6 6 6 8 
QCC(72,54) 101000111000000110000010011001100001111110010110011111 6 6 6 8 
QCC(92,69) 100101011111100011111011101111001000010010101001010011001010111100111 8 8 8 10 
QCC(96,72) 010011110110100010110000110110000101100000110000001000000100101110001101 8 8 8 10 
QCC(108,81) 111100111111010110011110101110011011101111001011111110001011101111111011111001101 8 8 8 11 

VI. CONCLUSION 
We gave a method to search good quasi-cyclic codes with 

different rate q/(q+1) (where q is an integer) and we presented 
16 new quasi-cyclic codes with minimum distances equal to 
lower bounds of the good linear codes in Brouwer’s database. 
The fact that we have integrated a modified simulated 
annealing in the search algorithm speeded up the extensive 
random search process. In the future work, we will try to 
search with this efficient technique others   better linear block 
codes, and to test the obtained codes in Encoder/Decoder 
systems for computational complexity and BER performance. 
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