
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

347 | P a g e

www.ijacsa.thesai.org

Optimized Order of Software Testing Techniques in

Agile Process – A Systematic Approach

Farrukh Latif Butt

Department of Software Engineering

Bahria University Islamabad,

Pakistan

Shahid Nazir Bhatti

Department of Software Engineering

Bahria University Islamabad,

Pakistan

Sohail Sarwar

Department of Computing and

Technology

Iqra University Islamabad, Pakistan

Amr Mohsen Jadi

Department of CSSE

University of Hail, Hail, KSA

Abdul Saboor

Department of Software Engineering

International Islamic University Islamabad, Pakistan

Abstract—The designing, development of a software product

needs lot of efforts whereas software testing is also a very

challenging task but it is equally mandatory activity in order to

ensure the quality of the product before shipping to customer.

When it comes to the Agile model under which software builds

are developed very frequently and development goes on a very

high pace, software testing becomes more important and critical.

Organizations following the agile methodology, encounter

number of problems in formulating a software testing process

unless they come up with a systematic testing approach based on

right testing technique at a proper stage of the agile process. This

paper addresses the relevant software testing techniques feasible

at different stages of the agile process and proposes a dedicated

software testing framework producing quality software products

developed under agile methodology.

Keywords—Agile methodology; software testing techniques;

software build; software quality

I. INTRODUCTION

Customers are demanding rapidly developed software
products which is why organizations are shifting over agile
methodology to deliver quality applications in short span of
time [11]. The encouraging results of appropriate testing
approaches in agile are making these software testing
techniques more popular. In [2] authors highlights the need of
automated software testing to better measure the quality of
applications to be delivered to different industries. In addition
to recognizing the need of automated testing, an automation
framework has also been presented.

The quality assurance and testing activities add significant
cost to the project which asks for the rational management and
allocation of testing resources. Authors in [13], emphasizes on
automated testing strategy to certify repeatable tasks through
available tools. The stable and less error prone areas and
features of a software product are good candidates for
automated software testing. In agile process, software builds
are provided to testing teams in a tight schedule that naturally
creates pressure where testers have to cope sensibly with
limited resources in terms of time and cost. The very first
testing technique in this scenario is smoke testing that takes
very small amount of time to assess the health of the build and

results are communicated to whole team like whether this alpha
build appears fine to continue for further use or not [4]. On the
other hand, software developers implement user stories
accommodating them in the software application that they
certify at their own through writing unit tests against every user
story or bug they fix that eventually make a library of unit tests
[15]. On the availability of next build, software testers also
assume the responsibility of regression testing to know whether
fixing of bugs has ripple effects on other areas of the product or
not? This aspect of regression testing has been elaborated in
[6][17].

Once a release cycle goes through all the succession of
iterations in agile process and reaches to the milestone of
delivery, the Release Readiness Review (RRR) criteria is
assessed before shipping the product. The research work [8],
proposes a checklist for evaluating all the mandatory and
relevant aspects for releasing a quality product and concerning
responsible authorities sign off the checklist.

This paper proposes an optimized combination of testing
strategies considering the appropriate techniques at right stage
of the agile methodology for developing and delivering a
quality product. The rest of the paper has following section:
Section II provides the literature review based on the existing
research in this domain. Section III proposes the methodology
based on the efficient order of software testing strategies.
Section IV presents results whereas section V concludes the
research and outlines future work.

II. METHODS AND MATERIALS

The authors [1] proposes a software testing process
dedicated to agile process which is based on a particular order
of testing techniques with an intent of achieving more accurate
and reliable results. They have presented an algorithm that
minimizes cost and time of software testing phase as well as
brings better results in terms of software quality.

In the execution of smoke test plan, automated software
testing plays important role in replicating full length coverage
with reduced sample size achieving reliable results and saving
time and cost for other useful testing activities [10]. The
authors make twofold research contribution [3], offering study

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

348 | P a g e

www.ijacsa.thesai.org

on agile testing process comprehensively and, on the other
hand, provides useful documentation for engineers interested in
extending software test framework specialized in agile model.
The researchers suggest complete automation software testing
process instead of manual certification of a software product
compelling test engineers for irrelevant changes in the
application. Moreover, in this age of industrial competition,
automated software testing has become almost a must-do
practice [2].

Authors emphasizes agility in the software testing process
which, in addition to meeting user’s requirements, improves
throughput of software delivery and development process and
minimizes the overall time of release cycle [12].

The validation of software product through unit testing
before performing integration testing improvises the success
possibility while working in agile. The research effort has been
validated in five different projects deriving positive results
[12].

Regression testing technique is very useful in validating the
functionality of system after making modifications. There are
different techniques to conduct regression testing however [6]
used control graph based technique to assess the quality of the
software when changes are made.

The verification of release readiness becomes vital to
software quality when a sensitive system like JPL is under test.
The goal of release readiness review is to assess the quality of
the product with reference to any risks involved in delivery of
product [8].

III. METHODOLOGY

It is presented that agile methodology for software
development works on iterative philosophy in iterations one
after the other [5]. The work done is reviewed in daily scrum
meet ups and the progress is reviewed at the end of each
iteration anyway. Thus, the quality assurance team has an
opportunity to be indulged in the project right from the day one
which asks for the formulation of a testing framework based on
different software testing strategies. The testing framework in
form of a combination of various practical testing approaches
has been presented below.

A. Smoke Testing

In agile methodology, it is portrayed in [4] as soon as an
alpha build gets handed over to testing team, initial round of
testing is conducted to reveal bugs or problems in that software
build. The objectives of the smoke testing are to test the basic
features of the application; if they appear fine then testing team
communicates smoke test results to the whole project team.
One of the primary goals of performing smoke test is to save
the time consumed on detailed testing in case the build is not
stable and cannot be used further. Smoke testing is mainly
done manually whereas there is possibility of doing the same
with automation.

1) Manual Smoke Testing
Once the build is ready, it is released to QA, which takes

into account the high priority test cases to find the critical bugs
in the system. If the build fails, it is floated back to
development end. Manual smoke tests are optimal if we have
frequent changing product functionalities.

2) Automated Smoke Testing
If we have a stable version of product where major

functionalities are not changing and there is high frequency of
builds, then it is better to design the automated smoke tests.
Each time the build is delivered, we just run the same
automated smoke test to assess stability of build for further
testing. Fig. 1 shows how smoke testing is carried out.

Fig. 1. Smoke testing process

B. Regression Testing

The defect fixing is the process of removing issues or
problems reported in previous or older builds, once the defects
are fixed they should not cause any ripple effects on other or
same areas of the product. Regression testing expressed in [14],
that ensures the changes committed to fix the identified bugs
work fine and they have not introduced any side effects. The
reduction of test suite is also a potential advantage offered by
regression testing.

1) Reduction of Test Suite
The objective of reduction of test suite is to find out

duplicate tests and to minimize the length of test plan by
excluding the duplicates. Certainly, the assumption here is that
individual requirement can be met by a particular test case. The
Fig. 2 below gives an idea of identification of redundant test
cases. On the horizontal axis requirements have been denoted
by r while test cases are represented by t along y axis. We can
learn from this figure that the goal of test case t1 can be
achieved by selecting and executing merely test cases t2, t3 and
t4. This way we can mark test case t1 redundant and eventually
eliminate it from the test suite.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

349 | P a g e

www.ijacsa.thesai.org

Fig. 2. Identifying duplicate tests

2) Change-Based Method
The change-based method divides the system under test

into different entities and observes the execution of tests to
figure out the connection between tests and the entities of the
program they run. The change-based method also categorizes
the modified version of the program into different entities and
finds out the entities which are changed by the original version
of the program. This way all the tests that run entities of the
changed version need to be re-run. Finally, any tests that run
changed functions will be eventually shortlisted.

C. Unit Testing

For the sake of testing individual units of a software
product, [7] recommends testing the smaller units of an
application individually before they are collectively merged to
form the whole product. Unit testing is typically performed by
programmers or software developers though software testers
can also conduct this testing.

1) NUnit test tool

Fig. 3. Architecture of NUnit tool

NUnit is a tool for performing unit testing for Microsoft
.Net technologies. This is an open source tool and serves the
same purpose as JUnit does for Java. NUnit tool is based on the
xUnit architecture that we will discuss later. It might be worthy

to mention here that NUnit is neither an automated GUI tester
nor a tool for scripting rather it is a unit or Application
Program Interface (API) testing tool. Fig. 3 below
demonstrates the architecture NUnit tool is based on for testing
the underlying system.

2) xUnit Architecture
The NUnit tool is based on xUnit family of architectures

which is specialized in providing basis for unit or API testing.
Fig. 4 provides an overview of xUnit architecture.

Fig. 4. xUnit design

3) Writing unit test in NUnit
A unit test is written in NUnit test tool in a test project that

refers to Dynamic Linked Library (DLL) an API is based on.
Also, the framework of NUnit tool must have been configured
in the test project. The code snippet below illustrates a sample
test written in NUnit as an example:

[SetUp]

 public void test_Setup()

 {

 n = new int[3] { 2, 4, 6};

 i = new int[10] {3456, 5667, 76890, 67689, 64530,

65789, 6758926, 64548903, 6476589, 63535885,};

 }

 [TearDown]

 public void test_CleanUp()

 {

 n = new int[3] { 0, 0, 0 };

 }

 // A = (a1, a2, a3) and n = length of A

 // A.M = (a1 + a2 + a3) / n

 [Test]

 [Category("ValidCases")]

 public void Test_ArithmeticMean()

 {

 int total = 0;

 foreach (int a in n)

 total = total + a;

 total = total / n.Length;

Assert.AreEqual(total, objMath.ArithmeticMean(n));

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

350 | P a g e

www.ijacsa.thesai.org

The execution of test suite in NUnit compiles results that
can be exported for customization purpose for instance, the
XML report. Fig. 5 below let’s get an idea of the Automated
Test Plans (ATP) executed using NUnit. In the scenario below,
there are 9 tests in the test assembly loaded in NUnit GUI. The
tests have been run to know the correctness of underlying API
that performs arithmetic calculation. Intentionally, all of the
flavors of tests results like passed, failed and ignored have been
catered to better brief the execution. The passed tests nodes
appear in green, failing are highlighted in red while ignored are
yellow.

Fig. 5. Tests execution in NUnit

D. Automated Testing

Software automated testing has proved to be very handy in
the field of software testing where test engineers can unhide
flaws in the application and report them using automated
testing tools and computer systems. The two basic aspects like
application program interfaces and user interfaces which are
the ideal candidate areas in a software product for automated
testing [16]. Not necessarily all the components and functional
areas must be considered for automated testing, rather it’s the
job of a test manager to decide which parts of the product
should be considered for automated testing and which for
manual or other testing strategies. The code coverage is
measured through automated testing tools, however the
effectiveness of faults detection on the basis of scripted unit
tests has been demonstrated in [9].

1) Automation Process
The automation process can be commenced the moment

requirements specification gets formalized. Fig 6. depicts
automated testing process ranging from requirements
specification through final report and deliverables. The
specification of requirements provides basis to examine needs
of end user as well as sets direction for software developers
and test engineers. The test template can be used as a container
for methods or areas to be tested through automated scripts.
The script writers may check in their contents in the test
template. The preliminary investigation of the system under
test through automated testing reveals bugs or issues which are
fixed eventually. The script or code in automatic software
correction template keeps on updating depending upon the fix
or changes committed to it. Finally, the summary based on the
execution of all automated test plans, test cases, bugs
identified, failed test cases etc. is generated in form of test
report. On the other hand, at the same level, all or partial stuff

involved in automated testing activity is presented as a
deliverable.

Fig. 6. Automated testing process

2) What is not automated testing?
Software automated testing does not mean translating all

manual test cases into a script or test code rather automation is
writing tests for best possible scenarios like to provide broader
coverage through the tool or software being used. Moreover,
test cases that need to be repeated in multiple environments are
one of the ideal candidates for automation. While learning the
automated testing, we realize manual test cases in a test plan do
not have one to one mapping with automated test plans. At
times, organizations assume automation as substitute to the
manual testing which does not prove to be realistic. A very
well-known example is Windows Vista release which went
through with lots of inconsistencies making way to the end
product and none of them was identified by the automated
scripts. Interestingly, the automated scripts concluded the final
report with 100% successful execution. Conclusively, most of
the client organizations advised their users to stick with
Windows XP instead of Vista as prior was relatively more
reliable as compared to later.

E. Concept of Virtual Machines

The organizations running business in distributed
environment, particularly in agile world, come across the issue
of customers demanding versatile operating environments.
Vendor organizations have to manage this issue of versatility
by developing same product compatible with numerous
operating systems that test engineers have to validate
accordingly. The use of virtual machines makes it easy to build
and test applications on different operating systems. Firstly,
agile based software developing organizations break down and
manage user stories in backlog management systems.
Secondly, they leverage virtualization platform to meet target
objectives of producing and testing software systems
interoperable with let’s say Windows 7, Windows XP,
Windows Vista and also all combinations with different OS
architectures like x86 and x64 i.e. 32 bit and 64 respectively.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

351 | P a g e

www.ijacsa.thesai.org

1) Testing on Virtual Machines
From testing perspective, quality assurance teams manage

their certification tasks through preparing and running different
virtual machines based on respective client’ requirements. For
example, a particular client demands for a software product
running on Windows 7 x64 bit architecture to meet his
business needs. The software vendor will develop the system
for the said operating environment that test engineers will have
to validate on same OS using a virtual machine for Windows 7
x64. In nutshell, the use of virtualization in quality assurance is
useful in many perspectives like:

 Software testers can save good amount of time on
configuring test platforms.

 When software developers have access to virtual
machines demonstrating found or known defects then
identification and fixing of bugs becomes easier.

 Virtual machines provide the facility of rollback to any
of the previous states if the current state fails or
crashes.

 We can create as many numbers of users as required on
physical environment and can opt the configuration of
our choice while performing testing on a virtual
machine.

Fig. 7. Checkpoints in virtual machine

2) Checkpoints in Virtual Machines
The support of preserving a particular state of the system in

form of snapshot proves to be very useful especially for testers.
There are some tools available to manage and work on virtual
machines like VMWare Workstation, Hyper-V Manager etc. to
name a few. These tool offer the option to create snapshot (in
VMWare Workstation) and checkpoint (in Hyper-V Manager)
that software programmers or testers create with an intent of
preserving the system state in case they have to reproduce a
bug or restore to a specific version of product under
development or test at a later point. Both of the above
mentioned software for virtual machines manage checkpoint in

hierarchical format like a tree. Users name individual
checkpoints which are customizable. Primarily, checkpoint
names are comprehensive representing the OS, system
architecture, version of the product installed and date
checkpoint created on. Figure 6 below shows the management
of checkpoint.

F. Release Readiness Review (RRR) Criteria

In [8] the idea of Release Readiness Review is to certify a
combination of checks necessary before rolling out a software
release. In agile methodology, a software product is assessed
with respect to RRR document at the end of final iteration. The
RRR document validates the checklist like: user requirements
have been developed and tested; the documentation work has
been completed and is available for user; the pending problems
pertaining the release have been accommodated; the end
product is safe to be run in the client’s environment; in case
user specific scenarios are required, if any, they are mentioned
in known issues section.

The proposed mechanism in Fig. 8 below represents the
order of software testing techniques to develop and deliver
software products of good quality considering the limited
resources under agile methodology.

Fig. 8. Proposed order of testing techniques in agile

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

352 | P a g e

www.ijacsa.thesai.org

G. Algorithm

The word Algorithm below has been devised from the above given order of software testing techniques in scrum model.

Stage I: Start of the iteration

Stage II: Execution of Unit Testing on System Under Test (SUT). The outcome of this activity is Automated Test Plans (ATPs).

Stage III: Preparation of Alpha Build to be given to testing team.

Stage IV: Running the Smoke Test Plan

 IF (Smoke Test Passed)

i. Publish Smoke Test results

ii. Go to Stage V

ELSE

 Go to Stage III

Stage V: Execute Regression Testing

 IF (Regression Test Passed)

i. Publish Regression Test results

ii. Go to Stage VI

ELSE

 Go to Stage III

Stage VI: Perform Functional Testing

IF (Functional Test Passed)

i. Publish Functional Test results

ii. Go to Stage VII

ELSE

 Go to Stage III

Stage VII: Develop Test Report

i. Print test results

ii. Go to Stage VIII

Stage VIII: Assess Release Readiness Review Criteria

IF (RRR Passed)

i. Release the software product

ii. End process

ELSE

 Go to Stage I.

IV. RESULTS

There are three basic dimensions derived through the
proposed optimized order of testing techniques based on the
algorithm developed above: systematic test process in scrum,
opportunity for Application Program Interface (API) testing
prior to developing alpha build and quick evaluation of build’s
stability.

A. Systematic Test Process in Agile

The proposed order of software testing techniques provides
us a systematic testing process. In scrum methodology,
software development process is based on successive iterations
where each iteration begins with a sprint planning meeting and
ends on a sprint review meeting. From testing aspect, all
stakeholders of the product plan and review their work
including testing progress. The proposed order analyzes testing
progress systematically, leads test team to appropriate stage of
the process advising the right testing technique.

B. Opportunity of Application Program Interface Testing

Traditionally, software testing is performed once the end
product is built and it comes under the dedicated testing phase

of the project. The proposed testing order and algorithm
optimize the test process giving an opportunity to test and
reveal bugs in the underlying API of the product under
development. At times, there are potential logical bugs in the
software that remain uncovered and eventually are reported by
the customer after releasing the product. We have tried to
address this issue in this research work putting the API testing
in form of unit testing before making an alpha build available
for testing. In agile methodology, unit testing performed on an
API generates very useful results finding logical errors that are
reported through bug tracking systems like Team Foundation
Server (TFS), VersionOne, and Flawtrack which are very
effective in scrum based development.

C. Quick Evaluation of Build’s Stability

This research contribution recommends performing smoke
testing on a software build before any detailed testing taking
several hours that brings useful results to know the stability of
the build which saves significant amount of testing time. In
case smoke test passes, testing process moves to the next stage,
otherwise testing order leads to the previous stage

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

353 | P a g e

www.ijacsa.thesai.org

D. System Validity Estimation

Fig. 9 portrays how different testing techniques appear to
be effective in the particular order in a series of iterations while
working in scrum. In this scenario, 4 iterations have been
considered in a project where each iteration lasts for 6 weeks.
The unit testing yields significant hours saving in terms of
testing effort as it uncovers bugs in the software in very early
stage of the project life cycle.

In continuation, functional testing reveals bugs and issues
when it comes to testing the functionality of features offered by
the product that saves time making developers and testers focus
on other critical tasks. In agile development process, the
execution of smoke testing and regression testing techniques at
appropriate stage of the project offers dual advantages. First,
these activities measure health of the product in minimal
amount of time. Secondly, they explicitly focus relevant areas
of the application under test where changes or bug fixing was
made ensuring effort of the team gets put in right dimension.

Fig. 9. Validity estimation of optimized order of testing techniques

V. CONCLUSION AND FUTURE WORK

The preferred following the agile methodology provides
little time cushion to software testing team for exercising
testing operations to reveal defects and issues in the product
under test that makes software testing a challenge for the test
managers. We have presented a combination of software
testing techniques in agile that give software testers an

opportunity for executing appropriate testing technique at
relevant phase while working in scrum. The proposed model
takes into account software testing methods like smoke testing,
Automated Test Plans (ATPs) in unit testing and regression
testing to assess health and stability of an alpha build under
testing in a particular sequence. With the execution of
aforementioned model, it addresses software testing aspects
like manual testing, automated testing and Application
Program Interface (API) testing achieving maximum code
coverage testifying a broader range of software aspects.

Although, we have devised a testing framework to be
considered in scrum model that can provide software testers
encouraging feedback regarding adopting appropriate testing
approach at a particular stage of software testing process, the
future direction could be the complete automation of software
testing process. The complete automation may involve
automated testing activities ranging from downloading an
alpha build, generating test cases automatically, performing the
particular testing technique, analyzing test results and
generating a comprehensive test report to be shared with the
team.

REFERENCES

[1] J. Singh, “Algorithm and framework for testing and implementation
technique in automation of university,” no. 2, pp. 140–148, 2016.

[2] M. Ali and T. Saha, “A proposed framework for full automation of
software testing process,” Informatics, Electron. Vis. (ICIEV), …, pp.
436–440, 2012.

[3] J. Berłowski, P. Chruściel, M. Kasprzyk, and I. Konaniec, “Highly
Automated Agile Testing Process : An Industrial Case Study,” vol. 10,
no. 1, pp. 69–87, 2016.

[4] V. K. Chauhan, “Smoke Testing,” Int. J. Sci. Res. Publ., vol. 4, no. 1,
pp. 2250–3153, 2014.

[5] D. S. Cruzes, N. B. Moe, and T. Dybå, “Communication between
Developers and Testers in Distributed Continuous Agile Testing,” 2016.

[6] N. Frechette, L. Badri, and M. Badri, “Regression Test Reduction for
Object-Oriented Software: A Control Call Graph Based Technique and
Associated Tool,” ISRN Softw. Eng., vol. 2013, no. 2013, pp. 1–10,
2013.

[7] G. Di Fatta, “KNIME as a Teaching Tool in Higher Education,” vol.
01107, 2013.

[8] D. Port and J. Wilf, “The value of certifying software release readiness:
An exploratory study of certification for a critical system at JPL,” Int.
Symp. Empir. Softw. Eng. Meas., pp. 373–382, 2013.

[9] S. Shamshiri, R. Just, J. M. Rojas, G. Fraser, P. McMinn, and A. Arcuri,
“Do automatically generated unit tests find real faults? An empirical
study of effectiveness and challenges,” Proc. - 2015 30th IEEE/ACM
Int. Conf. Autom. Softw. Eng. ASE 2015, pp. 201–211, 2016.

[10] A. Brooks, J. Chambers, C. N. Lee, and F. Mead, “A partial replication
with a sample size of one: A smoke test for empirical software
engineering,” Proc. - 2013 3rd Int. Work. Replication Empir. Softw.
Eng. Res. RESER 2013, pp. 56–65, 2013.

[11] P. Singh and P. Patel, “Impact of agile testing over traditional testing,”
vol. 1, no. 2, 2015.

[12] S. M. Shahabuddin and Y. Prasanth, “Integration testing prior to unit
testing: A paradigm shift in object oriented software testing of agile
software engineering,” Indian J. Sci. Technol., vol. 9, no. 20, 2016.

[13] K. Schwede and K. Tucker, “A survey of test ideals,” vol. 105, no. 4, p.
44, 2011.

[14] Y. Shin and H. Mark, “Regression testing minimization, selection and
prioritization: a survey,” Softw. Testing, Verif. Reliab., pp. 67–120,
2010.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

354 | P a g e

www.ijacsa.thesai.org

[15] V. Garousi and N. Koochakzadeh, “Testing – Practice and Research
Techniques,” Test. - Pract. Res. Tech. Proc. 5th Int. Acad. Ind. Conf.
TAIC PART 2010, vol. 6303, no. October 2016, 2010.

[16] C. J. Hunt, G. Brown, and G. Fraser, “Automatic testing of natural user
interfaces,” Proc. - IEEE 7th Int. Conf. Softw. Testing, Verif. Validation,
ICST 2014, pp. 123–132, 2014.

[17] C. T. Lin, K. W. Tang, C. D. Chen, and G. M. Kapfhammer, “Reducing
the cost of regression testing by identifying irreplaceable test cases,”
Proc. - 2012 6th Int. Conf. Genet. Evol. Comput. ICGEC 2012, pp. 257–
260, 2012.

