
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

361 | P a g e

www.ijacsa.thesai.org

Detection of J2EE Patterns based on Customizable

Features

Zaigham Mushtaq, Ghulam Rasool, Balawal Shahzad

COMSATS Institute of Information Technology, Lahore

Abstract—Design patterns support extraction of design

information for better program understanding, reusability and

reengineering. With the advent of contemporary applications, the

extraction of design information has become quite complex and

challenging. These applications are multilingual in nature i.e.

their design information is spread across various language

components that are interlinked with each other. At present, no

approach is available that is capable to extract design

information of multilingual applications by using design patterns.

This paper lays foundation for the analysis of multilingual source

code for the detection of J2EE Patterns. J2EE Patterns provide

design solutions for effective enterprise applications. A novel

approach is presented for the detection of J2EE Patterns from

multilingual source code of J2EE applications. For this purpose,

customizable and reusable feature types are presented as

definitions of J2EE Patterns catalogue. A prototype

implementation is evaluated on a corpus that contains the

repository of multilingual source code of J2EE Patterns.

Additionally, the tool is tested on open source applications. The

accuracy of the tool is validated by successfully recognizing J2EE

Patterns from the multilingual source code. The results

demonstrate the significance of customizable definitions of J2EE

Pattern’s catalogue and capability of prototype.

Keywords—Source code analysis; Cross-language; Analysis

methods; Reverse Engineering; Source code parsing

I. INTRODUCTION

Design patterns are verified solutions that provide solid
foundation for the development of effective software
applications [1, 2].Every design pattern has its own intent and
particular aspect. Accurately recovered design patterns helps to
understand the structure and behavior of the application [3-7].
Therefore, they can be used in better program understanding,
reverse engineering, reengineering and refactoring[4-6, 8-14].

Modern applications are essential part of our daily life.
They are all around us from navigational systems to medical
equipment. These contemporary applications are
heterogeneous in nature and composed of multiple source code
languages. They are present in the form of embedded systems,
enterprise applications (J2EE environment), mobile
applications and web based applications etc. The analysis of
multilingual applications is difficult and challenging due to the
presence of multi-language artifacts, external files and hidden
dependencies of multiple interacting components [4].
Moreover, the recovery of cross language artifacts is hard as
most of the program comprehension approaches focus on
extracting information from homogeneous applications. The
existing approaches do not provide generic and extensible
solutions to support multilingual applications.

Java Enterprise applications are one of the examples of
distributed multilingual applications. This environment
contains multiple language components such as JavaBeans
(EJBs), JSPs, Servlets etc. The analysis of J2EE application is
difficult and challenging due to the following reasons.

 J2EE applications are multitier applications i.e. the
software components fall across different layers. The
information is scattered across various components and
sources. In order to get the structure of the application
we have to deal with all the layers.

 J2EE applications are difficult to analyze because of
the presence of cross language artifacts. These artifacts
are built in multiple languages including Java, JSP,
HTML, XML, SQL etc. There is heterogeneity across
language boundaries and the information is distributed
in cross language artifacts that are interdependent with
each other. The cross language artifacts interact with
each other to perform a particular task. They may have
hidden dependencies. It is very difficult to resolve
these cross language artifacts (XLAs) and extract
architectural details.

J2EE environment is equipped with proven solutions in the
form of J2EE Patterns. They help in building flexible
enterprise applications [13]. The importance of J2EE Patterns
cannot be ignored in terms of its recovery and reusability.
Following points characterize the significance of J2EE
Patterns.

 J2EE Patterns expose the design and intent of
multilingual applications. Their recovery helps in
identification of key aspects of common design
structures.

 Recovery and utilization of design is beneficial in
minimizing work effort in terms of maintenance,
development and investment cost, brings improvement
in software security and design consistency.

 J2EE Patterns help to improve software quality. Their
reusability supports maintainable, simple, and clean
enterprise applications [2].

 The utilization of J2EE Patterns enhances design
vocabulary and allow to build an application at higher
level of abstraction.

Patterns of Java enterprise applications (JEAs) or J2EE
Patterns are described to build an effective enterprise
application [5, 6, 8]. In order to build an effective analyzer, it is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

362 | P a g e

www.ijacsa.thesai.org

necessary to completely define the features of the J2EE design
patterns. The prototype model should analyze the source code
on the basis of definition and features of J2EE Patterns and
recognize these patterns from source code of multiple
languages (Java, JSP, Servlets, SQL etc.).

A complete definition of J2EE Patterns is required for
effective detection and analysis of multilingual enterprise
applications. There are no specifications or definitions
available for the detection and recovery of J2EE Patterns.
Definitions and features are required for the accuracy and
flexibility of feature is the key in recognition of patterns. The
expected model shall incorporate the complete features.

The recovery of J2EE Patterns is challenging due to the
following reasons.

 J2EE Patterns have abstract representations and usually
their documentation is not available in the source code.
The instances of J2EE Patterns are scattered in
different Languages and there is no formal rule of their
composition.

 As far as the recognition of J2EE Patterns is concerned,
to the best of our knowledge there is no approach or
tool available which is capable to detect J2EE pattern
from multilingual source code of enterprise
applications.

 There is no benchmark system available for
comparison and validation of results of J2EE Patterns.

In this paper, enhanced semi-formal definitions of J2EE
Patterns are presented in the form of customizable and reusable
feature types. These feature types cover the aspects to redefine
J2EE Patterns in the form of inheritance, composition,
delegation, association and cross language links (XLLs) etc. A
novel approach is presented for the recovery of J2EE Patterns
from multilingual source code of enterprise applications.
Initially pattern‟s definitions are extracted from standard
resources of J2EE Patterns [5, 6, 8, 10, 15, 16]. On the basis of
these definitions, features types are developed.

Following objectives have been achieved as major
contributions.

 First of all, fundamental properties of J2EE Patterns
are extracted from reliable and authentic resources.

 On the basis of J2EE Pattern‟s properties, customizable
and reusable feature types are created. The capability
of features can be enhanced easily. Moreover, new
patterns can be included simply in the existing features.
The presence of features enhances the adaptability in
improved catalogue of J2EE Patterns.

 A catalogue of J2EE Pattern‟s definitions is created by
using customizable feature types. Customizable and
adaptable features allow to add new pattern definition
or accommodate their variants.

 A prototype is developed as a plugin with Visual
Studio.Net framework using Sparx Enterprise Architect
Modeling Tool. This tool uses pattern definitions and is

capable to recover J2EE Patterns. From multilingual
source code of Java Enterprise Applications.

 A corpus is built that contains the repository of source
code of J2EE Pattern definitions from reliable
resources [5, 6, 8-10, 15-17]. This repository is used to
test the validity of the prototype. This prototype is also
evaluated on open source code J2EE applications.

This paper is organized as, Section II contains related work
of design pattern detection approach, Section III describe J2EE
Pattern‟s definitions, Section IV presents J2EE Pattern‟s
Feature, Section V contains Pattern representation in terms of
Feature Types, Section VI describes process of Feature Types
extraction and pattern recognition and Section VII presents
conclusion and future research.

II. RELATED WORK

Design patterns recognition promotes extraction of
architectural details and design decisions from source code.
Recovering pattern instances supports program comprehension
and helps to adapt applications to meet with the current and
future requirements. A number of different design pattern
detection approaches are proposed in the literature. Some of the
important tools and approaches are presented in this section.

Coppel et al. [18], presented a deprogramming approach for
architectural understanding of large and complex software
applications. Deprograming is a process to recover concept,
design and patterns from source code. They proposed a tool
DeP that translates source code into dependency graph and
then mines through the design patterns. This tool supports
design pattern detection, code smell detection and automated
source code documentation.

Costagliola et al. [19], presented a visual language based
tool for the recovery of design patterns. They followed a two
phase model. The 1st phase involves recovery of design
instances using coarse grained analysis and in 2nd phase,
design patterns are recognized by using fine grained analysis.
They use UML class diagram that is mapped on language
grammar for design pattern detection. The proposed tool
focused on structural aspects of design patterns. However, the
proposed tool suffers from scalability issues and disparity in
design pattern recovery.

Dong et al. [20], presented a toolkit DP-Miner that recover
design patterns from source code by following weight and
metrics criteria. They inspect the source code by providing
structure and design pattern descriptions in the form of a
metrics. This tool however, has limited precision and recall.

O. Kaczor et al. [21], presented a reverse engineering tool,
PTIDEJ, for the analysis and maintenance of object oriented
applications. This tool performs pattern trace identification and
enhancement in object oriented software. This tool performs
model analysis by using PADL Meta model (Pattern abstract
and level description language). The results of presented
approach show maximum recall, however, the precision of
pattern recovery is compromised.

N. Shi et al. [7], developed an automated design pattern
recognition tool, PINOT. PINOT is built on an open source

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

363 | P a g e

www.ijacsa.thesai.org

compiler, Jikes along with a pattern analysis engine. This tool
is capable to recognize structural and behavioral aspects of
design patterns. Although this tool recognizes all GOF
patterns, the main drawback of PINOT is that it is not
customizable for new or extended data structures.

Fontana et al. [22], presented a tool, MARPLE as an
eclipse plugin for design patterns extraction and software
architecture reconstruction. This tool is designed to be
language independent, however, currently it available for Java.

G. Rasool et al. [3], presented an approach for design
pattern detection that is based on variable feature types. They
use multiple search techniques that allow the flexible detection
of design pattern variants. The results ensure the accuracy of
the approach in successful recognition of design patterns as
compared to previously presented techniques. The idea of
using customizable feature types for pattern detection is quite
effective for handling variants of design patterns. We used this
concept for providing customizable and flexible definitions of
J2EE patterns.

Concluding from the discussion of related work is that the
proposed approaches are focused towards the detection of GOF
Patterns and suitable for homogeneous applications. There is
no approach capable to detect design patterns from
multilingual applications. For example, the intent of J2EE
Patterns is implemented in multiple languages, including Java,
JSP, Java Beans, Servlets, SQL etc. In-order to recover J2EE
Patterns, complete understanding of multi-language artifacts is
required that participate in pattern‟s definition. Moreover, the
cross language artifacts may have hidden dependencies.
Therefore, in-order to recover architectural information of
J2EE Patterns, we need to resolve the complexity and inter-
dependency of cross language components.

III. PROCESS OF CREATING PATTERN‟S DEFINITIONS AND

FEATURE TYPES

In this section, complete detail in the form of different
aspects of J2EE patterns is presented. J2EE Pattern‟s definition
covers the prospects in terms of implementation and reverse
engineering details. The implementation perspective ensures
the most common and necessary components that are required
for implementing the desired patterns. Whereas, the reverse
engineering approach ensures the successful recovery of J2EE
Patterns from the enterprise applications. This aspect covers
the features comprising the definition of the requisite pattern
that needs to be extracted from source code.

In this research each and every aspect of the J2EE Patterns
is discussed that provide the basis for building pattern detection
criteria. These aspects include definition, description,
components, roles and features. The standard definitions of
J2EE Patterns are extracted from quality resources [5, 6, 8, 10,
15, 16]. These definitions are presented in the form of
extendable and reusable features, which can be translated in the
form of multiple techniques and algorithms. These features can
be used for further enhancement and detection of other
patterns.

Once a pattern definition is completed; it is then added to
the pattern definition catalogue. The pattern search engine can
get a pattern definition one by one and execute a search by

traversing feature types in each of pattern‟s component‟s
definition.

Fig. 1. Pattern Definition Approach

IV. DEFINITIONS OF J2EE PATTERNS

Features are building block for a pattern. A pattern is a
combination of multiple features that is implemented in the
source code. These features are helpful for the development
and recovery of patterns from source code.

In this section, multiple components of J2EE Patterns are
identified and then one or more features are built together to
define a pattern‟s instance. A pattern is defined by its
components and relationship between them. First of all,
multiple components of J2EE Patterns are identified and then
for each component multiple feature types are added. After
defining two or more components, relationships (Feature type)
between those components are specified.

A. Data Access Object (DAO) Pattern

 DAO pattern detach data accessing API from client or
business object, it separates domain logic to
communicate with database by introducing data access
layer between business object and Database.

 It decouples persistence storage implementation from
rest of the application.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

364 | P a g e

www.ijacsa.thesai.org

 DAO layer is responsible for data access from
persistence storage and manipulates data in persistence
storage.

TABLE I. FEATURES OF DATA ACCESS OBJECT PATTERN

Index F # Feature’s Signature

PF1 F1 HasClassesWithGeneralizations (AllObjs)

PF2 F2 HasCRUDOperations (PF1)

PF3 F3 HasConnectionString (AllObjs) OR HasDataSource

(AllObjs)

PF4 F35 HasNoCRUDOperation (PF3)

PF5 F5 HasAssociation (PF1, PF3)

PF6 F6 HasDTOs (AllObjs)

PF7 F5 HasAssociation (PF5, PF6)

PF8 F5 HasAssociation (PF7, AllObjs)

B. Data Transfer Object (DTO) Pattern

DTO is Only a Data Buffer to reduce the remote procedure
calls (RPCs) on data Access layer and thus reducing the
network traffic.

TABLE II. FEATURES OF DATA TRANSFER OBJECT PATTERN

Index F # Feature’s Signature

PF1 F7 Count (AllObjs, Methods)

PF2 F8 Count (AllObjs, Attributes)

PF3 F9 IsTrue (AllObjs, PF1>=PF2)

PF4 F36 HasNotMethodsCount (PF3, <0)

PF5 F37 HasNotAttributesCount (PF4, <0)

PF6 F10 HasGettersCount (PF5, >=PF2)

PF7 F11 HasSettersCount (PF6, >0)

PF8 F38 HasNotDefinedType (PF7, “DataSource”||“Connection”)

PF9 F35 HasNoCRUDOperation (PF8)

PF10 F5 HasAssociation (PF8, AllObjs)

C. Value Object (VO) Pattern

Value object is Only a Data Buffer to reduce the RPCs on
data Access layer and thus reducing the network traffic. The
difference between DTO and VO is that VO are immutable, as
they do not allow change once created, they are read only.
Thus they don‟t provide setter Functions.

TABLE III. FEATURES OF VALUE OBJECT PATTERN

Index F # Feature’s Signature

PF1 F7 Count (AllObjs, Methods)

PF2 F8 Count (AllObjs, Attributes)

PF3 F9 IsTrue (AllObjs, PF1>=PF2)

PF4 F36 HasNotMethodsCount (PF3, <0)

PF5 F37 HasNotAttributesCount (PF4,<0)

PF6 F10 HasGettersCount (PF5, >=PF2)

PF7 F11 HasSettersCount (PF6, <0)

PF8 F38 HasNotDefinedAType (PF7,

DataSource”||“Connection”)

D. Service Locator (SL) Pattern

This pattern is used to locate JMS or EJB services by JNDI
registry service lookup. This pattern uses context object to
locate requisite service and cache (object) mechanism to
reduce cost of JNDI lookup.

TABLE IV. FEATURES OF SERVICE LOCATOR PATTERN

Index F # Feature’s Signature

Service

PF1 F12 GetAllInterfaces ()

PF2 F13
HasClassWithGeneralizations (AllObjs) //Candidate

Service Objects

Service Locator

PF3 F5 HasAssociation (PF2, PF1)

PF4 F14 HasMethodWithRType (PF3, PF1|“Object”)

PF5 F15 HasMethodWithParameterType (PF3, PF2|“String”)

Initial Context

PF6 F5 |

F39 &
F14 &

F14

(HasAssociation (F5, F5, Where (PF5! = PF5)) OR

HasNoMethodWithParameterType (PF5, PF2)) AND
HasMethodWithRType (PF3, PF1) AND

HasMethodWithRType (PF3, PF1)

PF7
F5

HasAssociation (PF5, PF6) OR
HasMethodWithParameterType (PF6, PF1)

Cache Objects

PF8 F15 HasMethodWithParameterType (PF6, PF2)

PF9 F5 HasAssociation (PF5, PF8)

E. Value List Handle (VLH) Pattern

A value list handler pattern provides an efficient way to
iteratively manage a large set of data in the form of a read only
list of values. This pattern helps the client to iterate through
collection of results populated in list of user interface.

TABLE V. FEATURES OF VALUE LIST HANDLER PATTERN

Index F # Feature’s Signature

PF1 F17 GetAllDtos ()

PF2 F5 HasAssociation (PF1, AllObjs)

PF3 F18 HasGeneralization (PF2, AllObjs)

PF4 F19 HasRealization (PF3, AllObjs)

PF5 F19 HasRealization (PF5)

PF6 F20 HasDefinedAType (PF5,“Itrator”|”List”)

PF7 F21 HasMethodNameWhichContains (PF6,“Next”|

“Previous”)

PF8 F22 GetAbstractClasses ()

PF9 F18 HasGeneralization (PF7, PF8)

F. Front Controller (FC) Pattern

The front controller pattern is a single controller that
handles all the requests for a web application. This pattern
provides centralized request handling mechanism and act as
entry point for all requests coming to the web application.

TABLE VI. FEATURES OF FRONT CONTROLLER PATTERN

Index F.# Feature’s Signature

Helpers

PF1 F20 HasDefinedAType (AllObjs, “Dispatch”)

PF2 F40 HasNoRealizationWithType (PF1, “HttpServlet”)

Front Controllers

PF3 F18 HasGeneralization (AllObjs, “HttpServlet”)

PF4 F21 HasMethodNameWhichContains (PF2,”doGet” |

“doPost”)

PF5 F5 HasAssociation (PF3, PF2)

PF6 F23 HasDelegation (PF5, PF2)

G. Session Façade (SF) Pattern

The session façade is implemented as a session bean that
exists at higher level and connected with the lower level
business tier components. The lower level components could
be entity bean, session bean or DAO. This pattern serves as
layer that wraps the lower level business components. The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

365 | P a g e

www.ijacsa.thesai.org

client could only access the methods of business components
only though the session bean.

TABLE VII. FEATURES OF SESSION FACADE PATTERN

Index F.# Feature’s Signature

PF1 F42|

F24

HasRealizationWithType (AllObjs,
“javax.ejb.SessionBean”) OR HasAnnotation (AllObjs,”

@stateless” | “@stateful”)

PF2 F20|
F14&

F43

HasDefinedAType (F1, GetDAO ()) OR
HasMethodWithRType (F1, GetDTO()) AND

HasMethodContainsDelegation (F1,GetAllMethods (F1))

PF4 F27 HasMethodLineOfCode (FP3, <= F3)

Business Object

PF5 F28 GetAllClasses ()

PF6 F5 HasAssociation (F5, F6)

H. Business Delegate (BD) Pattern

Business Delegate serves as layer between client and
business service. This layer is responsible for accessing
business service methods using lookup service. This pattern
decouples presentation tier from business tier. Business
Delegate pattern is responsible to hide business service detail
from client such as lookup and access mechanism. In order to
provide access to business services, the business delegate use
lookup service to business service.

TABLE VIII. FEATURES OF BUSINESS DELEGATE PATTERN

Index F.# Feature’s Signature

Business Lookup

PF1 F12 GetAllInterfaces ()

PF2 F5 HasAssociation (AllObjs, F1)

PF3 F15 HasMethodWithParameterType (AllObjs, F2| “Object”|
“String”)

PF4 F14 HasMethodWithRType (F3, F2| “Object”| “String”|

“T”)

PF5 F41 HasNoDelegation (F4, F2)

Business Delegate

PF6 F28 GetAllClasses ()

PF7 F15 HasMethodWithParameterType (F6,”String”| “string”)

PF8 F39 HasNoMethodWithParameterType (F7, F1)

PF9 F23 HasDelegation (F8, F5)

Service

PF10 F19 HasRealization (AllObjs, F2)

Client

PF11 F23 HasDelegation (AllObjs, F9)

I. Composite view (CV) Pattern

A composite view pattern allows a parent view to aggregate
sub views so that overall view becomes a combination of small
atomic parts. We can create composite view from multiple
atomic sub views. Composite view is actually used for
separating and managing layout from the actual contents.

TABLE IX. FEATURES OF COMPOSITE VIEW PATTERN

Index F.# Feature’s Signature

Mapper

PF1 F29 GetXMlObjects ()

PF2 F30 HasNumberOfAssociationsWithType (F1,>=2, “HTML”

| “JSP”)

PF3 F31 HasTheseXMLTags (F2, “Include”| “Put”)

Template

PF4 F32 GetJSPObjects ()

PF5 F33 GetHTMLObjects ()

PF6 F30 HasNumberOfAssociationsWithType (F4, >=1, “HTML”
| “JSP”)

PF7 F5 HasAssociation (F5, F3)

View

PF8 F34 HasNoNumberOfAssociationsWithType (F4 >=1,

“HTML” | “JSP”)

PF9 F5 HasAssociation (F7, F3)

J. Intercepting Filter

An intercepting filter offers pluggable filters, providing
common services for preprocessing incoming client requests
and post processing the responses.

TABLE X. FEATURES OF INTERCEPTING FILTER PATTERN

Index F.# Feature’s Signature

Filter Chain

PF1 F28 GetAllClasses

PF2 F30 HasNumberOfAssociationsWithType(1,

(“Class”&&”Interface”),PF1)

Filter

PF3 F32 GetAllAssocationsOfObject(PF2)

PF4 F19 HasRealization (PF3)

Filter Manager

PF5 F23 HasDelegation (AllObjs,PF4)

Client

PF6 F23 HasDelegation(AllObjs,PF5)

V. CATALOGUE OF FEATURE TYPES OF J2EE PATTERNS

In this section 43 different feature types of J2EE patterns
are presented. The feature types include 35 positive features
(Table 1) and 8 negative features (Table 2). Our technique
exploits reusable feature types and utilizes them to characterize
pattern definitions. Predefined feature types are provided as a
catalogue and the user is allowed to create its own definition by
selecting multiple features to recognize a specific pattern. Our
Catalogue of features is also easily extendable. Following
characteristics are observed during the process of creating
J2EE features/patterns.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

366 | P a g e

www.ijacsa.thesai.org

 JEE Patterns are assembled by using object oriented
features.

 Programming language construct are used to elaborate
the features.

 Generic parameters are used which are implementable
in multiple languages.

 The features are extendable and customizable to
accommodate new patterns or to adapt with any
variation.

Feature types are mentioned and described
comprehensively in Table 2.

Negative Features: Negative feature types are used to
negate the specific characteristics of the patterns. During
pattern‟s detection process the negative feature types help to
reduce false positives.

J2EE Patterns by Using Feature Types: In this section
J2EE Patterns are redefined on the basis of feature types
(mentioned in previous section). These patterns can be
represented as a combination of feature types.

TABLE XI. FEATURE TYPES OF J2EE PATTERNS

F. # Feature types Description

F1 HasClassesWithGeneralizations (AllObjs) This feature returns all the classes which are inherited from at least one object (class or interface) or API.

F2 HasCRUDOperations (C)
This Feature takes all the classes from source code as a parameter and returns all those classes which

contain SQL based CRUD (create, read, update, delete) operation.

F3 HasConnectionString (C) This Feature returns all those classes which define a connection string with database.

F4 HasDataSource (C) This Feature returns all those classes which define object of Data Source type.

F5 HasAssociation (C1,C2)
This Feature returns Boolean expression (true) if class, C1 has an association with class, C2, e.g. C1 create

s C2 inside its code.

F6 HasDTOs (AllObjs)
This feature accepts all the objects as a parameter and returns only those classes which have defined only

attributes and provides getter and setter methods for these attributes.

F7 Count (Obj, Methods) This feature returns method count from a given object.

F8 Count (C, Attributes) This feature returns attribute count from a given class.

F9 IsTrue (AllObjs, F1>=F2)
This feature accepts all the objects and count of features from F or F2 and returns all those objects which

are matched with the given condition

F10 Has GettersCount (AllObjs, Condition Expr) This feature returns classes with Getter methods count matched with the specified conditional expression.

F11 HasSettersCount (ALLObjs, >X) This feature returns classes with Setter methods count matched with the specified conditional expression.

F12 GetAllInterfaces () This feature returns all Interfaces from source code.

F13 HasClassWithGeneralizations (C) Returns Classes from C which have inheritance relationship

F14 HasMethodWithRType (C1, C2|”Object”)
This feature returns only those Classes from C1, whose method‟s type is matched with Classes C2‟s

methods or method‟s return type matches with „string‟ or „object‟.

F15
HasMethodWithParameterType

(C1,C2|”String”|"Object")

This feature returns only those classes from C1 whose methods parameter‟s type is matched with Classes

of C2‟s method‟s parameter types or method parameter type matches 'string' or "object".

F16 GetCacheObjects () This feature returns all classes which can cache another class.

F17 GetAllDtos () This feature returns all Classes that can act as a data transfer object

F18 HasGeneralization (C1,C2) This feature returns classes from C1, in case if classes in C1 have Generalization with classes in C2

F19 HasRealization (Objs1,Objs2) This feature returns objects from Obj1, if Objs1 has Generalization with Objs2

F20 HasDefinedAType (C1,T = “Iterator”|”List”) This feature returns Classes, if class C1 matches with type name in T e.g. (iterator or list).

F21
HasMethodNameWhichContains (C, M =

“Next” | ”Previous”)
This feature returns Classes, if class C matches with Method Name in M e.g. (Next or Previous)

F22 GetAbstractClasses () This feature returns all abstract classes from source code.

F23 HasDelegation (C1, C2) This feature returns Boolean expression “True”, if class C1 calls class C2.

F24
HasAnnotation (AllObjs, ” @stateless” |

“@stateful”)
This feature filters out all those object which don't have the annotations (stateless or stateful)

F25
MethodsContainsDelegation (GetAllMethods

(C1))
This feature returns Boolean expression “True”, all methods of class C1 contains a Delegation.

F26
HaMethodsCount (C1, Condition Expr = "

<=X")
This feature returns all those classes from C1 which have method count matches with condition X.

F27
HasMethodLineOfCode (C1, Condition Expr

= "<=Y")

This feature returns all those classes from C1 which have method Line count matches with the condition

Y.

F28 GetAllClasses () This feature returns all classes from source code

F29 GetXMlObjects () This feature returns all XML objects from source code.

F30
HasNumberOfAssociationsWithType (Obj1,

Condition Expr =">=”X, T=”HTML”|”JSP”)

This feature returns all those Objects which have number of Association given in Condition Expression

and object Type provided in T.

F31
HasTheseXMLTags(Objs1, TG
=”Include”|”Put”)

This feature returns objects in Objs1 contain Tags given in TG.

F32 GetJSPObjects () This feature returns all objects of type JSP from the source code.

F33 GetHTMLObjects () This feature returns all objects of type HTML from the source code.

F42 HasRealizationWithType (F1,”HttpServlet”) This feature returns classes from F1 which implement a specific interface

F43
HasMethodContainsDelegation
(GetAllMethods (C1))

This feature returns Boolean value true, if given methods of C1 contains a delegation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

367 | P a g e

www.ijacsa.thesai.org

TABLE XII. NEGATIVE FEATURE TYPES

F. # Negative feature types Description

F34
HasNoNumberOfAssociationsWithType
(F4 >= X, ”HTML” | ”JSP”)

This feature returns all those Objects which will not have number of Association given in Condition
Expression and object Type provided in T.

F35 HasNoCRUDOperation (F3)
This Feature takes all the classes from source code as a parameter and returns all those classes which will not

contain SQL based CRUD (create, read, update, delete) operation

F36 HasNotMethodsCount (F3, < X)
This feature returns all those classes from C1 which do not have method count according to the provided

condition.

F37 HasNotAttributesCount (F4, < X)
This feature returns all those classes from C1 which do not have Attribute count according to the condition

provided.

F38
HasNotDefinedAType (F7, T =”
DataSource” ||” Connection”)

This feature returns Classes, if classes return by F7 Do not matches with type name in T (Data Source or
Connection).

F39
HasNoMethodWithParameterType (C1,

C2)

This feature returns only those methods from classes C1 whose parameter‟s type is Not matched with Class

C2.

F40
HasNoRealizationWithType (F1,”

HttpServlet”)
This feature with return those classes from F1 which will have implemented a specific interface

F41 HasNoDelegation (F4, F2) All those classes from F4 which do not have any delegation to classes in F2

VI. J2EE PATTERN‟S RECOGNITION APPROACH

J2EE patterns are presented by Sun Micro Systems [6, 8,
23]. These patterns exhibit interclass relationships like GOF
patterns. J2EE patterns uses GOF patterns [7] as their base,
however, they support multiple and different language
components.

In-order to recover J2EE Patterns from source code, the
user needs to build a pattern definition by using different
feature types in the form of pattern‟s catalogue. It is necessary
to understand feature types and how they are used in pattern‟s
definition. For this purpose, source code of J2EE Patterns is
analyzed from authentic resources [5, 6, 8-10, 15-17] and then
necessary components and relationships between these
components are realized.

The feature extraction and pattern recognition approach
exploits object oriented classes (abstract classes, concrete
classes, and interface classes etc.) and interclass relationships
(inheritance, association, realization, delegation etc.). In order
to get precise recognition of interclass relationships [24]
between pattern‟s components, some filters are also applied in
the form of negative feature types that filters out false
negatives. Successful mining of these relationships helps in
detection of pattern‟s instances.

A. Explaination of The Approach

The feature types cannot be compared directly from source
code. First of all, the source code is transformed and abstracted
into relational database model (RDB Model). The Enterprise
Architect Tool is used to abstract the source code into relational
data model (RDB Model). The main advantage of using RDB
model is that we can execute any SQL statement easily.
Following steps transform source code in a proper intermediate
representation.

1) Use of Source Code:
Our approach uses source code for further processing, not

the binary data.

2) Creating Initial model using Enterprise Architect (EA):
In the first step, Enterprise Architect (EA) recovers source

code of multiple languages into its RDB model one by one. The
RDB model is an initial model which contains abstract
information of parsed source code. This model contains a rich
set of R-Tables which encapsulate many possible aspects of
source code. This information is further used by J2EE Pattern
Detection (JPDT) Tool. This model has following major tables
of our concern, which contains abstract information about the
parsed source code.

a) t_object Table: In this table main entities from source

code are parsed. For an example, if Java source code is parsed,

classes and interfaces are stored in this table. This table is

connected with all other table in model‟s schema, by defining

t_object. Some most important attributes of this table are

explained in the form of Objetc_ID, Object_Type, Name,

Abstract, GenType, GenFile and GenLinks.

b) t_connector Table: This table contains all types

object oriented relations identified by EA tool. However,

capability of EA is limited and cannot completely resolve all

type of relationships (limitation of EA is discussed in later

section). For example, if Class A is inherited from Class B

then t_connector retains that information which notifies that

Class A is inherited from Class B. This Information is

presented in the form of a Start_object_ID as (Class A) and

End_Object_Id as (Class B).

c) t_operations Table: This table contains information

about methods or procedures duly parsed from source code.

Since many languages support procedural programming,

therefore all EA‟s supported languages contain procedures in

same format.

d) t_Attribute: This table contains all the class level

member of a GPL which support object oriented concepts,

attributes are those variables which are created with class level

access.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

368 | P a g e

www.ijacsa.thesai.org

e) t_operationParams: Method/Procedures are called by

passing them parameters. This table contains all parameter

along with their reference to the related method and with their

type and name.

f) t_package: This table contains all the packages

/namespaces in a source‟s base line.

3) Limitations of Enterprise Architect (EA) Tool:
Enterprise Architect (EA) is a powerful modeling tool. This

tool incorporates plethora of information and supports the
analysis of source code applications by providing easy SQL
statements. However, EA tool is deficient to analyze
multilingual applications; their mechanism only supports the
query of single source code applications. Enterprise
applications like J2EE/ JAE applications are composed of
multiple language artifacts. These artifacts interact with each
other across language boundaries by using different cross
language associations. Therefore, in-order to analyze
multilingual application (like J2EE applications) we need to
extend the basic enterprise architect model so that multilingual
aspects can be extracted by executing SQL statements.
Enterprise Architect (EA) however has deficiencies in basic
model of EA tool. This tool has following limitations.

a) EA can only parse single source code applications.

e.g. Java, Python, C# etc.

b) EA do not support web based languages like

ASP.Net, HTML, JSP, PHP etc.

c) EA cannot parse Domain Specific Languages (DSLs).

d) EA can only extract strong inter-class relationships.

e.g. EA can detect only class level association, like a class

defining an attribute of another class.

e) EA cannot extract cross language relationship at any

level, which in our case is required for the detection of J2EE

Patterns.

f) EA cannot resolve relationships slightly complicated

relationship like Delegation relationship, uses relationship etc.

g) EA is deficient to support queries to extract links

between Cross language artifacts e.g. how one artifact refers to

other or how one artifact is referred in other artifact.

h) In initial model there is a limited support to extract

association relationships between artifacts. EA do not support

weaker forms of relationships (associations) between the

artifacts of general purpose languages (GPLs). e.g. A class

defining an object of another class in a function‟s body or in a

function‟s parameter. EA is deficient to detect

 Delegation between artifacts of multiple languages;

 Associations through local variables;

 Associations through function‟s parameters;

 Associations through function return type;

 Associations between cross language components;

 Other forms of associations like aggregation.

4) Extended Super Model (JPSP), an Enhancement of

Enterpsise Architect Model:

Enterprise Architect is a well-recognized UML based
modeling tool for design and development of software system
[25-29]. This tool is capable to reverse engineer source code of
multiple languages separately. We take source code of an
application and apply reverse engineering using Enterprise
Architect Tool by creating an initial RDB model. The initial
RDB model is processed by J2EE Pattern Detection Tool
(JPDT) JPDT tool. JPDT uses JPSP module to parse
multilingual source code and extend the initial RDB model
created during initial parsing process.

JPSP is a super parser which contains support for source
code parsing and searching using multiple search techniques
i.e. using parsers, Regex, simple string search with custom
rules. Initially JPSP contains four parsers and mappers for Java,
JSPs, XML and XML based DLS, HTML, but the architecture
of JPSP is easily extendable for adding support for a newer
language by building a new parser or mapper.

Upon plugging in the initial RDB model created out of raw
source code using Enterprise Architect, JPSP transforms the
initial model into an extended super model. During this
process, some of the old tables are enhanced to accumulate
extended information. Moreover, some new tables are added,
which improve the capability of the Initial-RDB Model. JPSP
performs the following additions and upgradations.

a) Detection of Associations BY using JPSP Module:

Pattern detection by mining the interclass relationships is
one of many techniques for design pattern detection. But
detecting pattern instances from a toy dataset, may only needs a
simple form of associations between two classes on the other
hand in applied or industrial strength applications, the
programmers use different strategies to apply associations
(discussed in limitations of E.A Tool). These associations are
necessary to identify interclass relationships like „Delegation‟
and „Uses‟ which are required for the detection of a J2EE
pattern. For example, a DAO Pattern „uses‟ Data Transfer
Object or Value Object for the extraction and storage of data.
This property reduces extensive remote database calls and
network traffic. In-order to extract „Uses‟ relationship from
source code, we first need to extract all types of association that
can statically be created in source code (E.A can identify only
one type of association).

Extracting local variables and resolving their scope:
Enterprise architect‟s parser could not detect associations,
which are created by using a local variable of another class
inside its function‟s body. Consider an example

Public Class a {

void function () { ̀

B InstanceOF B = new B ();

}}

In this example, the class A has association with Class B.
In-order to extract this type of association, we first need a full
featured parser which can parse all local variables of a class,
and then we need a „Symbol Table‟ to resolve the scope of
those local variables.

For this purpose, JPSP uses JavaCC parser with Java
grammar and we have also used an abstract syntax tree of Java

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

369 | P a g e

www.ijacsa.thesai.org

Parser. This parser gives complete abstract syntax tree and
number of visitors to traverse the abstract syntax tree. Java
Parser generated by JavaCC can only detect all object creation
statements defined in Java class. The generated parser and tree
visitor has no mechanism to resolve a local variable and its
scope.

Java Parser can parse any object creation statement like B
InstanceOF B = new B (); but it can‟t actually resolve the scope
e.g. what is „B‟ and in which package and file „B‟ is defined. In
other words, we have to resolve the type of local variable.

Another aspect is that; detection of object creation
statement does not describe that the object is a local variable or
an attribute. Therefore, in-order to resolve the scope of a
variable (local/Global), we need to know that whether the
object is created inside a function or not. For this purpose, all
classes and their functions are needed to be parsed from source
code.

Fortunately, EA parser provides the information about
classes in t_object table and operation names in t_operation
table. Therefore, we need to parse all function types and then
link our object declaration statements parsed with JavaParser in
EA model by matching the type parsed with parser to the types
of EA model.

In many cases, the Initial model created by EA parser do
not provide a complete information about many of the aspects
required from source code, however, much of the information
can be gathered from different tables of EA model e.g. method
name is present in t_operation, and method parameters are
present in t_operationParms and parmeter‟s type is present in
t_object table. We have extended t_operation table with
another column “Operation_Signature” by extracting method
signature and then inserting complete signature with a method
name. In this way, it becomes a lot easier and faster to resolve
local variables inside a function. Otherwise we have to
repeatedly search function types at run time.

Using symbol table for resolving types: Resolution of type
in an object creation is necessary to determine that a class A
has association with class B. For this purpose, a symbol table is
required. A symbol table is a structure which contains all
classes names/references and their objects. Our symbol table
not only captures the name of class but it also contains the
function in which an object is created, Global variables/
attributes have empty function part. Fortunately, we do not
need to parse class names, packages names or function names.
EA has already built these metrics inside the initial model. A
new table t_localVariable (Symbol Table) is created by JPSP
that contains all object instances and then merge the object
creation statements with respective operation_id and object_id.
The operation_id refers function information in t_operation
table and the object_id refers to a record inside the t_object
table. Moreover, the t_localVariables table contains the
reference to a class as an object creation type. The
t_LocalVariable has a structure mentioned as:

Object_ID -:::- OperationID -:::- VarName -:::- VarType-:::-
VarValue

It is important to mention that VarType is calculated by
matching the package name of class creating object and then

matching the varType with all class names available in the
package of t_object table.

b) Addressing Weak Associations of EA Tool by JPSP

Module:

In this section, multiple types of associations are addressed
by using J2EE super parsing module.

 Detecting Associations through Local Variable:

In order to detect this type of associations, EA model is
extended. The initial model created by EA contains a table
t_connector, that stores different interclass relationships in the
form of connector_Type, Start_Object_ID and end_Object_ID.
We can compare local variables of each class by matching their
types with classes in t_object (All Classes), if a match is found
then this class is added as end_object of t_connector table as a
new record (relationship). If the class type is not matched with
the object, then it is assumed that the object is created by using
some library e.g. its source code is not available.

 Detection of Association through Operation Parameter

Enterprise Architect is not capable to detect the association
through parameters. Consider a scenario; an object of a „Class
A‟ has to use „Class B‟ for a specific purpose e.g. „Class B‟ is
providing data to „Class A‟ by grouping different elements into
an object. Then instead of creating a class level attribute, the
object of „Class B‟ is created with in the function parameter of
„Class A‟. Thus, we can say that the „Class A‟ has association
with „Class B‟.

In-order to determine this type of association, we need to
query EA model because model already contains enough
information about function names and their parameters and
their types. Following information is already available.

o t_operation table contains attributes as function name.

o t_operationParams table contains parameter and their
types.

o t_object table contains information including classes,
interfaces, abstract classes, structs etc.

So, we only need to query EA model to resolve parameter
types and then based on parameters type, we added a new
record in t_connector table as a new association type. We use
following queries to our model.

o Get All Classes from t_object table.

o For each class get all function parameters.

o For each classes function parameters, match class
names from t_object table.

o Insert a new row as, Start_object_Id from source class
and End_object_ID as matched class.

TABLE XIII. QUERY FOR FINDING ASSOCIATIONS IN FUNCTION

PARAMETER

Function
Parameter

Association

"select distinct t_operation.Object_ID From t_operation
cross join t_operationparams where t_operation.Object_ID

=" + iStartObjectID + " AND t_operation.OperationID

t_operationparams.OperationID" +" And
t_operationparams.Type like '" + sEndObjectName + "'";

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

370 | P a g e

www.ijacsa.thesai.org

 Detection of Association through Function Return
Type:

This type of association can also be extracted by using
suitable queries to EA model. It is quite possible that a
developer simply caste „Class C‟ to „Class B‟ and return from
„Class A‟ or uses „functionA ()‟ to convert „Class C‟ to „Class
B‟ and then return „Class B‟ from „Class A‟. Thus, it is neither
passing the „Class B‟ through parameter nor it is creating an
object of „Class B‟, but it is creating an association of „Class A‟
with „Class B‟ through function return type. We can query in
flowing manner to resolve function return type associations.

o Get all classes.

o Get each class‟s all function except function with void
return type.

o Get each function‟s return type.

o Matches return type in class names.

o If match found, add source class as start_object_ID and
matched class as end_object_ID in t_connector table as
new function return type association.

TABLE XIV. QUERY FOR FINDING FUNCTION RETURN TYPE ASSOCIATION

Association
with function

return type

select Object_ID from t_operation Where Object_ID
= "+iStartObjectID+ " AND t_operation.Type =

'"+sEndObjName+"'"

c) Detection of Delegation Relationship

Delegation is a common relationship that exists in different
components of a pattern. For Example, in Intercepting Filters,
the Filter chain object must delegate the client‟s request to
appropriate filter class. After applying the filter, the
authenticity of the request is checked according to defined rules
e.g. If a client wants to access the admin panel of a website, the
intercepting filter is set to capture all the incoming requests and
passes them to admin authentication filter. The role of the user
is extracted from the given http request. The admin
authentication filter verifies the user‟s role. If authentic user is
found, the request will be sent to the requested services,
otherwise an appropriate error message will be given back to
the user.

Intercepting filter basically make it very simple to add
preprocessing of all incoming requests to the server. Its
structure makes it very simple to add or remove new filters, due
to the decoupling between filter chain and filter object class.
From reversing engineering perspective, the important point is
the relationship between the „filter Chain‟ object and between
„filter class‟. Because of a diverse range of filter requirements,
it is quite possible that the filter class appears just as a normal
class, thus, the only way to extract out a filter class is to first
detect a filter chain object and then find “Delegation
Relationship” between all other available object, that is,
Delegation relationship is necessary in pattern‟s reverse
engineering definitions. Unfortunately, Enterprise Architect‟s
initial model neither provides delegation information nor any
support to extract delegation relationships from already
available abstract source code.

 Detecting Delegation by Call Scope Table:

In-order to extract complex delegation relationship from
source code, JPSP module use Java Parser. It is important to
note that Java Parser do not parse delegation directly. Java
Parser statically detect all “Calls” in a class by giving complete
call statement and its scope name (name of the variable from
where the call is initiated). For example

Class A

{

Class B b = new B ();

b.doSomething ();

}

Java Parser parse „b.doSomething ()‟ statement.

There are two important key points for delegation detection.

o Delegation occurs only when one class calls the
function of some other class to perform some task.

o Delegation does not take place when a function calls a
local function (function of the same class).

In-order to detect, weather the function belongs to the same
class or to some other class, we check three conditions.

o The calls using „This‟ keyword are local calls and can‟t
be considered in call scope table.

o The calls without any scope are also local calls and
can‟t be included in call scope table.

o Resolution of scope‟s type is necessary e.g. in
„b.doSomething ()‟ we need to resolve the type of b by
using „Symbol Table‟.

In-order to avoid runtime comparison, „Call Scope‟ table
also includes EndObjectId (the object from where the
delegation is made). The endObjId is resolved by matching
with „scope name‟ e.g. „b‟ from „local variable‟ table and then
extracting out the value of VarType and ObjectID. It is noticed
that this matching (VarType and ObjectID) helps in successful
mapping of endObjectId in „CallScope‟ table with information
presented in EA‟s model.

 Detecting Delegation Relationships in J2EE Patterns:

Design pattern mining techniques use interclass
relationships which depend on inheritance association,
composition and delegation etc. However, delegation has a key
role for the detection of J2EE Patterns. Usually one source
code artifact is involved in delegation with some other artifact.
Upon the successful detection of delegation relation between
source code artifacts leads to the detection of other components
of a pattern and thus detecting the whole pattern instance. For
example, „Service locator Pattern‟ is invoked by „Client‟
object. The client usually gives the name of service to be
located from „JND registry services‟. Thus, client give name to
„service locator‟ which uses „Initial context‟ object to resolve
the type of service (The target object). The „Initial Context‟
object is a component which can only be detected by inferring
delegation relation between Service Locator object with other
objects e.g. If SL has „delegation‟ with any object by passing
the object the name of service, then, that object is „Initial
context‟ object .

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

371 | P a g e

www.ijacsa.thesai.org

The JPSP extends Enterprise Architect by defining a new
table t_delegations, which is basically a Call Scope table.
Delegation relations are furnished at run time by checking the
type of Call scope and then examining the function parameters
list e.g. in InitialCtx.FindService(“service”), type of Initial
Context is resolved and then it is checked that weather this call
is receiving some parameter or not. The checking of delegation
process is not further ensured because of couple of reasons.

o In the presence of „Call Scope Table‟, delegation
checks are despicable due to the redundancy of
information.

o Most of the times, single object delegate information to
other objects by several separate calls. Resultantly a
significance amount of information is required to be
stored to treat each delegation separately. Whereas,
only one clue of presence of delegation relation is
necessarily required in the detection of a pattern
component.

B. JPDT: J2EE Patterns Detection Tool

J2EE/JEA Pattern Detection Tool (JPDT) is a prototype
tool that performs flexible static analysis of enterprise
applications. This tool uses pattern definitions to analyze the
input source and is capable to detect J2EE Patterns. Detected
results can be helpful in overall analysis of J2EE
Multilanguage application.

Prototype model of JPDT contains the following three
modules.

1) J2EE Pattern’s Detection Engine (JPDE).

2) J2EE Pattern’s Super Parser (JPSP).

3) J2EE Pattern’s Visualization Module (JPVM).
These Modules combined together form the parent project

(an EA‟s plugin) to detect J2EE pattern within the source code
of J2EE Enterprise applications.

1) J2EE Pattern Detection Engine (JPDE):
This module deals with the automatic recovery of J2EE

Patterns from multilingual source code of J2EE applications.
This module contains a repository for the definition of J2EE
Patterns in the form of customizable feature types and pattern
detection algorithm. The pattern detection algorithm use
enhanced information of multilingual source code updated by
super parser for the recognition of J2EE Patterns. JPDE has
flexible and extendable nature to accommodate new patterns
definitions or pattern‟s variants.

2) J2EE Pattern’s Super Parser Module (JPSP).
JPDE is assisted by parser module (JPSP). This module

addresses the limitations of Enterprise Architect Tool. During
initial parsing some valuable information is missed by EA
Tool. This information includes association through function
parameters, local variables, function return types and
delegation among artifacts. The Super Parser extracts this
information and extends the existing model. This module has
following features.

 Capable to parse General Purpose Languages, Web
Based Languages and Domain Specific Languages

(DSLs).

 Capable to detect delegations as well as weaker forms
of association.

 Extract cross language associations from multilingual
source code.

 Extendable to parse new languages.

3) J2EE Pattern’s Visualization Module (JPVM).
The third component of J2EE Pattern Detection Tool is the

visualization module that provides the metrics of recovered
pattern‟s instances. This module offers navigational feature to
move across various components and finding the source code
dependencies. The navigational feature is capable to search
both pattern‟s and non-pattern‟s components.

The visualization results are provided in the form of
components (columns) and their instances (rows). The
components are clickable instances of a pattern that can be
navigated from source code. The user can precisely analyze the
source code. Moreover, the cross language associations are
placed in the same tabular format. This aspect helps in
visualization of cross language dependency analysis. Our future
plan is to extend the visualization module by providing the
UML diagram of J2EE Pattern‟s instances.

C. J2EE Pattern’s Detection Process:

The process of J2EE Pattern Detection (explained in Fig. 2)
works in following order -

1) In the first step, Enterprise Architect (EA) recovers

source code of multiple languages into its RDB model. The

RDB model is an initial model that contains abstract

information of parsed source code. This information is further

used by J2EE Pattern Detection (JPDT) Tool.

2) In this step, the initially parsed source code is presented

to the super parser. The super parser detects missing

delegations and associations from multilingual source code.

3) In this step, the original source code along with

reversed DB model and try to find missing aspects needed for

Multilanguage source code analysis. The facts extracted by the

super parser are mapped to RDB model.

4) In this step, patterns definitions are selected from

pattern definitions catalog. The J2EE patterns are defined by

using customizable and reusable feature types.

5) The J2EE Pattern Detection Tool (JPDT) contains

analyzer that mines through the information from super RDB

model and compare them with features of pattern‟s definitions.

6) In this step, detected patterns are represented by using

prescribed metrics.

D. J2EE Pattern’s Visualization Module (JPVM):

The recovered J2EE Pattern‟s instances are represented
through J2EE Pattern‟s Visualization Module (JPVM) in the
form of components that constitute a J2EE Pattern (Fig 3). This
module provides source code navigation and access to
particular pattern instance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

372 | P a g e

www.ijacsa.thesai.org

Fig. 2. J2EE Pattern Detection Tool

Fig. 3. Visualization of a Pattern through JPVM

VII. EVALUATION

This research lays a foundation for the detection of J2EE
patterns. There is not approach available in the research to
recognize J2EE Patterns from source code. Therefore, the
performance of proposed system needs to be critically
evaluated. In order to observe the capability of the prototype
and completely recognize J2EE Patterns from enterprise
applications, the pattern‟s definitions need to be

comprehensive and precise and the detection algorithms is
required to be perfect and effective.

A. Project Selection

The purpose of conducting this experimentation is to
validate the quality of our approach in terms of completeness
and effectiveness. Since detection of J2EE Patterns has not
been presented before and we are setting a base line for future
research, therefore, an extra care is required to evaluate our

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

373 | P a g e

www.ijacsa.thesai.org

approach. We ensure the following considerations to select the
appropriate applications.

1) Open source J2EE applications i.e. their source code is

available for evaluation;

2) The selected applications must be of applied nature and

being used in the industry;

3) The applications contain maximum number of J2EE

Patterns; and

4) The selected applications are of different sizes and

complexity levels.

B. Determining Baseline

It is already mentioned that recognition of J2EE Patterns is
presented for the first time; therefore we cannot compare the
results with any previous approach. Another concern in
validation process is the computation of correctness and
completeness. The size and complexity in enterprise
applications is quite high, therefore determining accuracy and
entirety in J2EE applications is quite difficult and challenging.
The correctness of proposed approach can be measured by
comparing the recovered instances of J2EE Patterns with their
definitions. However, the completeness of the approach is very
difficult because there is not documentation available that
provide details of J2EE Pattern‟s instances. Due to the large
size of source code, the manual verification is not possible.
Therefore, we are limited with the information shared with us.
Tables 17-19 lists the metrics of the selected software
applications.

C. Project Evaluation

The proposed approach is validated on two types of
application environments.

1) Corpus of Test System’s Repository (CTSR)

2) Open Source Enterprise Applications

1) Corpus of Test System’s Repository
This Corpus contains the repository of more than 23 source

code examples of J2EE Patterns from recognized resources [6,
8, 9, 15]. The main benefit of using this test system repository
is that the manual validation is possible and number of
available patterns is already known.

All pattern instances were manually validated and were
found correct, this validate that our developed features were
precise enough to extract these patterns from a large source
code base. The statistics of results of test system repository are
presented below.

2) Open Source Enterprise Applications
In order to evaluate our system, we choose different

medium and large scale open source enterprise applications.
All of these applications are well-known and are functional in
the software industry. These applications are selected after
thorough search, study of documentations and discussions with
the software community, associated with the development of
ERP applications. Source code of these applications is already
available either on their corresponding websites, source forge
or on GitHub. Table 16 provide name of open source
applications along with their selected versions.

EJBCA or Enterprise Java Beans Certificate Authority
[30], is an open source enterprise application which is based on
Public Key Infrastructure (PKI) Certificate Authority (CA)
[31-33]. It is a fully functional integrated certificate authority
developed under J2EE technology. EJBCA provides complete
PKI infrastructure in the form of large scale enterprise solution.

Openbravo [34], is an open source, web-based commerce
and business ERP suit for small and medium-sized
organizations [35-39]. Open bravo is developed under Java EE
Platform that uses Contexts and Dependency Injection (CDI)
and provides modern multi store management and retail ERP
solutions.

Apache OFBiz [40], is an open source integrated suite
under Apache Software Foundation. The OFBiz is a J2EE
based ERP solution that contains framework components and
business applications [41-43].

GeoServer [44], is an open source server for sharing
geospatial data. It is a Java J2EE application that publish data
from spatial data source using open standards [45, 46]. These
services can be integrated with enterprise applications to create
amazing mapping applications or integrate maps and GIS
capabilities into existing web, mobile and desktop applications.

Java Pet Store [47], is a sample application, developed
under Java Blue Prints program by Sun Microsystems. It is a
reference application for Ajax web applications on Java
Enterprise Edition Platform that uses J2EE Patterns.

TABLE XV. SELECTED OPEN SOURCE APPLICATION

Application Version

EJBCA [30] ejbca_ce_6_3_1_1

Geoserver [44] geoserver-1.7.0

Ofbiz [40] Apache OFBiz 16.11.01

Openbravo [34] openbravo-3.0

Java Pet Store [47] petstore-1_3_1_02

The source code information metrics are provided in Table
17. Most of the open source applications are medium and large
enterprise level solutions. During the process of source code
parsing and detection of J2EE Patterns, object oriented and
cross language metrics were also recovered which are
mentioned Tables 18 and 19 respectively.

Discussion

Our prototype tool recovered healthy number J2EE
Pattern‟s instances from every application. The results of
recovered J2EE Pattern‟s instances are provided in Table 20.

It is important to note that the selected applications are
large and composed of thousands lines of code. Therefore,
these applications are analyzed by keeping in mind that the
manual validation the number of all applied patterns is not
possible. The detection results are manually validated, by
opening all the components in our pattern browser tool‟s and
then manually inspecting the source code for further validation.
Initially some false positives were found but after looking into
definitions and further refining the definitions the entire false
positive were disappeared. The metrics of the results show
single instance for some of the J2EE patterns, because some

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

374 | P a g e

www.ijacsa.thesai.org

patterns have single or very few instances for the whole
application.

The approach presented in this research, has shown 100 %
results when evaluated on repository of source code examples
of J2EE patterns. In analyzing open source enterprise
applications, we also found promising results. However, few
J2EE Pattern‟s instances were not recognized. We investigated
this problem by manual inspection of these pattern instances, it

is found that these patterns were implemented in the source
code but their implementation is deviated from the original
definitions provided by sun micro system. They were present
with a variation and do not qualify for the actual definition of
J2EE Patterns. The variation detection of J2EE Patterns is
another aspect of design pattern research. We have tried to
accommodate more and more Pattern definitions but do not
attempted to deviate from the core definitions of J2EE Patterns.

TABLE XVI. METRICS FOR SELECTED OPEN SOURCE APPLICATIONS

Source Code Metrics
CTSR

(Corpus)

Open Source Enterprise Applications

EJBCA

[30]

GeoServer

[44]

OFBiz

[40]

Openbravo

[34]

Java Pet

Store [47]

Size Application size 45.7 MB 57.4 MB 104 MB 146 MB 380 MB 11.1 MB

Directories Directories 2,882 980 1,040 1,745 1,591 378

LOC Lines of Code 238,152 357,952 192,403 356,474 434,043 6,573

BLOC Blank Lines of Code 33,164 39,871 28,745 39,221 44,596 4,603

SLOC-P Physical Executable Lines of Code 98,104 230,877 98,738 259,761 306,605 17,891

SLOC-L Logical Executable Lines of Code 67,147 174,124 74,019 203,697 221,021 13,957

MVG McCabe VG Complexity 10,051 23,501 13,867 43,723 38,267 1,796

C&SLOC Code and Comment Lines of Code 1,329 2,241 571 771 2,109 77

CLOC Comment Only Lines of Code 114,215 87,204 64,920 57,492 82,842 14,079

CWORD Commentary Words 603,781 505,004 276,208 392,418 508,444 103,222

HCLOC Header Comment Lines of Code 48,561 20,230 3,778 20,805 32,930 10,828

HCWORD Header Commentary Words 156 122,211 26,577 149,924 240,627 86,048

TABLE XVII. OBJECT ORIENTED METRICS PARTICIPATED IN J2EE PATTERN DETECTION PROCESS

Metrics

CTSR

(Corpus)

Open Source Enterprise Applications

EJBCA

[30]

GeoServer

[44]

OFBiz

[40]

Openbravo

[34]

Java Pet

Store [47]

Packages 227 614 144 276 198 128

Total classes 1,184 2,121 1,121 1,135 1,987 267

Abstract Classes 59 181 64 100 83 21

Interfaces 104 212 76 90 68 63

Methods 12,274 36,446 9,885 15,544 14,818 1,955

Attributes 3,714 13,253 3,275 6,153 7,232 1,132

Associations 713 158,334 4,826 15,185 21,662 4,307

Generalizations 504 1,225 557 707 1,318 43

Realizations 185 439 134 263 227 29

Total Connections 1,061 166,742 5,624 22,221 23,362 4,385

TABLE XVIII. CROSS LANGUAGE METRICS PARTICIPATED IN J2EE PATTERN‟S DETECTION PROCESS

Cross Language Metrics

CTSR

(Corpus)

Open Source Applications

EJBCA

[30]

GeoServer

[44]

OFBiz

[40]

Openbravo

[34]

Java Pet

Store [47]

Java Files 1705 3,823 1,413 2,139 2,387 467

XML Files 252 3252 405 2,732 2,341 97

HTML Files 300 554 75 46 450 37

JSP Files 394 125 146 140 1 98

SQL Files 25 29 5 11 122 5

All Parsed Files 2358 6168 1,669 4,076 4,746 541

Other Language Files 1173 3,418 3,064 5,813 5,753 206

Total Files 3531 9,586 4,733 9,889 10,499 747

Cross Lang Associations 23730 141638 2,199 2,787 18,862 3,729

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

375 | P a g e

www.ijacsa.thesai.org

TABLE XIX. J2EE PATTERN'S INSTANCES RECOVERED FROM OPEN SOURCE ENTERPRISE APPLICATIONS

J2EE Patterns
CTSR

(Corpus)

Open Source Applications

EJBCA

[30]

GeoServer

[44]

OFBiz

[40]

Openbravo

[34]

Java Pet

Store [47]

Composite View 1 2 13 11 11 1

Front Controller 2 2 1 - - 3

Intercepting Filter 3 4 - 1 2 1

Business delegate 2 - 1 - - 3

Session Façade 4 - - - - 10

Value List handler 2 1 49 41 1 -

Service Locator 9 1 - - - 5

Value Object 10 25 21 4 - -

Data Transfer Object 21 207 49 21 23 3

Data Access Object 14 1 2 - 5 2

Total J2EE Pattern‟s Instances 68 243 136 78 42 28

Threats to Validity:

In this section, threats for the acceptability of subject
system are discussed. In order to deal with external validity, we
need to ensure that the presented approach is generalized and
scalable for the large systems. For this purpose, the proposed
approach is evaluated on two types of system 1st corpus of test
system‟s repository from reliable resources and 2nd analysis of
open source enterprise applications that are already
implemented and their documentation is available. The corpus
of applications contains small, medium and large source code.
The extracted patterns are manually verified from the source
code, the results support our approach.

This research is of unique nature that lay foundation for the
recognition of J2EE Patterns from all tiers of JEE Platform.
The threat foreseen for internal validity is the standardizations
of J2EE pattern‟s definition. For this purpose, we extracted the
properties from core definitions of patterns from sun micro
systems and other reliable resources. We translated these
properties into extendable and customizable feature types. The
J2EE patterns are re-defined on the basis of feature types. The
proposed J2EE design pattern detection tool (JPDT) used these
definitions and successfully recognized J2EE patterns from
source code.

VIII. CONCLUSION AND FUTURE WORK

Java enterprise applications (JEAs) support development of
flexible and lightweight distributed applications. These
applications are composed of multilingual source code
artifacts. J2EE Patterns helps to build effective enterprise
applications. This research involves development of semi
specification and feature types of J2EE Patterns of enterprise
application that leads to the recognition of J2EE Patterns from
open source enterprise applications. At first, properties of J2EE
patterns are extracted from reputable resources of Java
enterprise patterns. These properties are then converted to
definitions in the form of semi specifications and feature types.
A pattern detection criterion is built on the basis of these semi
specifications and feature types. These features are extendable
which can be translated in the form of multiple techniques for
the recognition J2EE Patterns and further analysis of
multilingual applications. Second, process for the recognition
of J2EE Patterns is presented by extracting the Feature Types.
This process is implemented as J2EE Pattern Detection Tool

(JPDT), which contains the definitions of J2EE Patterns. JPDT
enhances the capability of enterprise architect tool and recovers
JEA/ patterns form source code of enterprise applications. This
tool is evaluated on test repository and on open source java
enterprise applications. Multilingual source code analysis by
extraction of multi-language artifacts is another aspect and is
future prospect of this research.

REFERENCES

[1] P. Benedusi, A. Cimitile, and U. De Carlini, "Reverse engineering
processes, design document production, and structure charts," Journal of
Systems and Software, vol. 19, pp. 225-245, 1992.

[2] J. Chikofsky and J. H. Cross, "Reverse engineering and design recovery:
A taxonomy," IEEE software, vol. 7, pp. 13-17, 1990.

[3] G. Rasool and P. Mäder, "A customizable approach to design patterns
recognition based on feature types," Arabian Journal for Science and
Engineering, vol. 39, pp. 8851-8873, 2014.

[4] Z. Mushtaq and G. Rasool, "Multilingual source code analysis: State of
the art and challenges," in 2015 International Conference on Open
Source Systems & Technologies (ICOSST), 2015, pp. 170-175.

[5] Bow-Wow, Pet Architecture Guide Book: World photo Press, 2001.

[6] Alur, D. Malks, J. Crupi, G. Booch, and M. Fowler, Core J2EE Patterns
(Core Design Series): Best Practices and Design Strategies: Sun
Microsystems, Inc., 2003.

[7] N. Shi and R. A. Olsson, "Reverse engineering of design patterns from
java source code," in 21st IEEE/ACM International Conference on
Automated Software Engineering (ASE'06), 2006, pp. 123-134.

[8] J. Crupi and F. Baerveldt, "Implementing Sun Microsystems‟ Core J2EE
Patterns," Compuware White Paper, 2004.

[9] D. Alur, J. Crupi, and D. Malks, "Core J2EE Patterns 2nd," ed: Prentice
Hall, 2003.

[10] W. Crawford and J. Kaplan, J2EE design patterns: " O'Reilly Media,
Inc.", 2003.

[11] Flores, A. Barrón-Cedeno, L. Moreno, and P. Rosso, "Cross-Language
Source Code Re-Use Detection Using Latent Semantic Analysis,"
Journal of Universal Computer Science, vol. 21, pp. 1708-1725, 2015.

[12] K. Cemus, T. Cerny, L. Matl, and M. J. Donahoo, "Aspect, Rich, and
Anemic Domain Models in Enterprise Information Systems," in
International Conference on Current Trends in Theory and Practice of
Informatics, 2016, pp. 445-456.

[13] Stearns, S. Brydon, I. Singh, T. Violleau, V. Ramachandran, and G.
Murray, Custom Edition of Designing Web Services with the J2EE™ 1.
4 Platform, JAX-RPC, SOAP, and XML Technologies: Addison-
Wesley, 2004.

[14] N. Tsantalis, A. Chatzigeorgiou, G. Stephanides, and S. T. Halkidis,
"Design pattern detection using similarity scoring," IEEE transactions on
software engineering, vol. 32, pp. 896-909, 2006.

[15] Deepak, J. Crupi, and D. Malks, "Core J2EE patterns," Rio de Janeiro:
Campus, 2002.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

376 | P a g e

www.ijacsa.thesai.org

[16] R. Johnson and J. Hoeller, Expert one-on-one J2EE development
without EJB: John Wiley & Sons, 2004.

[17] J. Crupi, D. Malks, and D. ALUR, Core J2EE Patterns: Gulf
Professional Publishing, 2001.

[18] Y. Coppel and G. Candea, "Deprogramming Large Software Systems,"
in HotDep, 2008.

[19] Costagliola, A. De Lucia, V. Deufemia, C. Gravino, and M. Risi,
"Design pattern recovery by visual language parsing," in Ninth
European Conference on Software Maintenance and Reengineering,
2005, pp. 102-111.

[20] J. Dong, D. S. Lad, and Y. Zhao, "DP-Miner: Design pattern discovery
using matrix," in 14th Annual IEEE International Conference and
Workshops on the Engineering of Computer-Based Systems (ECBS'07),
2007, pp. 371-380.

[21] O. Kaczor, Y.-G. Guéhéneuc, and S. Hamel, "Efficient identification of
design patterns with bit-vector algorithm," in Conference on Software
Maintenance and Reengineering (CSMR'06), 2006, pp. 10 pp.-184.

[22] M. Zanoni, F. A. Fontana, and F. Stella, "On applying machine learning
techniques for design pattern detection," Journal of Systems and
Software, vol. 103, pp. 102-117, 2015.

[23] J. K. van Dam, "Identifying source code programming languages
through natural language processing," 2016.

[24] Rasool and P. Mäder, "Flexible design pattern detection based on feature
types," in Automated Software Engineering (ASE), 2011 26th
IEEE/ACM International Conference on, 2011, pp. 243-252.

[25] K. Deeptimahanti and M. A. Babar, "An automated tool for generating
UML models from natural language requirements," in Proceedings of
the 2009 IEEE/ACM International Conference on Automated Software
Engineering, 2009, pp. 680-682.

[26] P. Khodabandehloo and H. L. Reed, "Design tool and methodology for
enterprise software applications," ed: Google Patents, 2010.

[27] F. Matthes, S. Buckl, J. Leitel, and C. M. Schweda, Enterprise
architecture management tool survey 2008: Techn. Univ. München,
2008.

[28] G. Sparks, "The business process model," Enterprise Architect, Wien,
pp. 1-9, 2000.

[29] G. Sparks, "Enterprise architect user guide," 2009.

[30] P. S. AB. (2016, 01102016). EJBCA Enterprise Available:
https://www.primekey.se/technologies/products-overview/ejbca-
enterprise/, https://www.ejbca.org/index.html

[31] N. A. Devi and M. Sundarambal, "Secured Web Service Communication
using Attribute based Encryption and Outsource Decryption with
Trusted Certificate Authorities (ABE-TCA)," Asian Journal of Research
in Social Sciences and Humanities, vol. 6, pp. 896-911, 2016.

[32] S.-Y. Tan, W.-C. Yau, and B.-H. Lim, "An implementation of enhanced
public key infrastructure," Multimedia Tools and Applications, vol. 74,

pp. 6481-6495, 2015.

[33] Bruneo, F. Longo, G. Merlino, N. Peditto, C. Romeo, F. Verboso, et al.,
"A Modular Approach to Collaborative Development in an OpenStack
Testbed," in Network Cloud Computing and Applications (NCCA),
2015 IEEE Fourth Symposium on, 2015, pp. 7-14.

[34] S. L. U. Openbravo. (2016, 01102016). Openbravo. Available:
http://www.openbravo.com/product-download/

[35] L. Coppolino, S. D‟Antonio, C. Massei, and L. Romano, "Efficient
Supply Chain Management via Federation-Based Integration of Legacy
ERP Systems," in International Conference on Intelligent Software
Methodologies, Tools, and Techniques, 2015, pp. 378-387.

[36] K. B. C. Saxena, S. J. Deodhar, and M. Ruohonen, "Organizational
Practices for Hybrid Business Models," in Business Model Innovation in
Software Product Industry, ed: Springer, 2017, pp. 95-107.

[37] S. Bajaj and S. Ojha, "Comparative analysis of open source ERP
softwares for small and medium enterprises," in Computing for
Sustainable Global Development (INDIACom), 2016 3rd International
Conference on, 2016, pp. 1047-1050.

[38] M. Bahssas, A. M. AlBar, and M. Hoque, "Enterprise Resource Planning
(ERP) Systems: Design, Trends and Deployment," The International
Technology Management Review, vol. 5, pp. 72-81, 2015.

[39] Johansson and F. Sudzina, "ERP systems and open source: an initial
review and some implications for SMEs," Journal of Enterprise
Information Management, vol. 21, pp. 649-658, 2008.

[40] OFBiz®. (2016, 01102016). Apache OFBiz 16.11.01. Available:
http://ofbiz.apache.org/download.html;

[41] R. Hoffman, Apache OFBiz Cookbook: Packt Publishing Ltd, 2010.

[42] M. Ellison, R. Calinescu, and R. F. Paige, "Towards Platform
Independent Database Modelling in Enterprise Systems," in Federation
of International Conferences on Software Technologies: Applications
and Foundations, 2016, pp. 42-50.

[43] Wong and R. Howell, Apache OFBiz Development: The Beginner's
Tutorial: Packt Publishing Ltd, 2008.

[44] O. S. G. Foundation. (2016, 01102016). GeoServer Available:
http://geoserver.org/download/

[45] Xia, X. Xie, and Y. Xu, "Web GIS server solutions using open-source
software," in Open-source Software for Scientific Computation (OSSC),
2009 IEEE International Workshop on, 2009, pp. 135-138.

[46] L. Sun, D. He, and P. Zhao, "A Research of Publishing Map Technique
Based on Geoserver," Asian Journal of Applied Sciences, vol. 8, pp.
185-195, 2015.

[47] Chen, C. P. Ho, R. Osman, P. G. Harrison, and W. J. Knottenbelt,
"Understanding, modelling, and improving the performance of web
applications in multicore virtualised environments," in Proceedings of
the 5th ACM/SPEC international conference on Performance
engineering, 2014, pp. 197-207.

