
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

389 | P a g e

www.ijacsa.thesai.org

Value based PSO Test Case Prioritization Algorithm

Erum Ashraf

Department of Computer Sciences

Bahria University, Islamabad

Pakistan

Khurrum Mahmood

Department of Computer Sciences,

Bahria University, Islamabad,

Pakistan

Tamim Ahmed Khan

Department of Software Engineering

Bahria University, Islamabad

Pakistan

Shaftab Ahmed

Department of Software Engineering

Bahria University, Islamabad

Pakistan

Abstract—Regression testing is performed to see if any

changes introduced in software will not affect the rest of

functional software parts. It is inefficient to re-execute all test

cases every time the changes are made. In this regard test cases

are prioritized by following some criteria to perform efficient

testing while meeting limited testing resources. In our research

we have proposed value based particle swarm intelligence

algorithm for test case prioritization. The aim of our research is

to detect maximum faults earlier in testing life cycle. We have

introduced the combination of six prioritization factors for

prioritization. These factors are customer priority, Requirement

volatility, implementation complexity, requirement traceability,

execution time and fault impact of requirement. This

combination of factors has not been used before for

prioritization. A controlled experiment has been performed on

three medium size projects and compared results with random

prioritization technique. Results are analyzed with the help of

average percentage of fault detection (APFD) metric. The

obtained results showed our proposed algorithm as more efficient

and robust for earlier rate of fault detection. Results are also

revalidated by proposing our new validation equation and

showed consistent improvement in our proposed algorithm.

Keywords—Test case prioritization (TCP); Particle swarm

optimization (PSO); Average percentage of fault detection (APFD);

Value based software engineering (VBSE)

I. INTRODUCTION

Regression testing is the process of testing software after
any functional or non-functional changes. Regression testing
ensures that the changes have not affected rest of its modules.
The cost and limitation of resources greatly affect regression
testing. There are various techniques to cut down the cost of
regression testing. One popular approach is to select some of
the test cases randomly from the entire testing range but it is
not a wise option when high quality software is required [20].
Another feasible option is test case prioritization technique that
involves the reordering test cases in a way to achieve certain
goal. These goals can be achieving maximum code coverage or
to expose maximum faults in earlier time or reduction of cost.
Test case prioritization implies eliminates the need to run the
entire test case set and only some selective test cases achieve
the goals required.

Test case prioritization is a mechanism by which we can
rearrange test cases with an intent that allows us to do the
prioritization. However, prioritization is NP complete problem
in software testing domain and such kind of problems can be
efficiently solved by population based stochastic optimization
technique (PSO). In 1995 Kennedy and Eberhart propose a
population based stochastic optimization algorithm known as
particle swarm optimization. We can solve a range of
functional optimization problems using PSO and in many
cases, it is favorable to use PSO for its fast convergence ability.
This ability also distinguishes it from many other global
optimization algorithms [5].

We propose a test case prioritization technique using PSO
such that we implement PSO as value based test case
prioritization technique. We propose to achieve our goal by an
earlier fault detection using value based test case prioritization.
We use six factors for value based prioritization that include; 1)
customer priority 2) implementation complexity 3) requirement
volatility 4) requirement traceability 5) fault impact of
requirement and 6) execution time. We use first three out of the
six factors for new test cases while the rest three are concerned
with reusable test cases. Our goal is to set a priority of the test
cases to the new best positions so that to expose maximum
faults earlier in testing life cycle. We also use average
percentage of fault detection (APFD) metric has been used for
evaluating the propose value based test prioritization algorithm
[5].

Our paper is organization as follows. We explain previous
work in Section 2 and devote Section 3 to explain PSO
Algorithm in a brief manner. We describe the proposed
approach for test case prioritization using PSO in Section 4.
We explain algorithm and evaluations in Section 5 and we
discuss our experimental results in Section 6. We finally
present conclusion and future work in Section 7.

II. RELATED WORK

There are many techniques to solve regression testing
problems such as test case selection, test case prioritization or
hybrid approach. Authors propose various strategies for test
case prioritization. These include code coverage, non-code
coverage and many other. Details of these techniques are given
below.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

390 | P a g e

www.ijacsa.thesai.org

A. Code Coverage based Test Case Prioritization

Rothermal et al. [3] investigate coverage based
prioritization by examining a wide range of traditional
prioritization techniques for specific objective function to give
insight into trade off among these techniques for test case
prioritization. They conduct their experiments for early rate of
fault detection and measure efficiency of the approach by
APFD matrix. The authors conclude that additional FEP
prioritization is most suitable than all the other prioritization
techniques that are based on coverage; however the total
increase in APFD is not significant.

Li et al. [2] proposed a technique for prioritization of test
cases for code coverage. They conduct an experiment to
compare greedy, metaheuristics and evolutionary search
algorithms to see the best algorithm for test case prioritization
and explore factors that have significant importance in
prioritization of test cases. They perform experiment on six
programs; size and coverage is primary criterion. Results
indicate that size of program does not but the size of the test
suite directly affects prioritization complexity since it
determines the size of the search space. Authors in [2] propose
coverage based metrics proposed for test suite prioritization
which gives high value of coverage effectiveness to those test
cases which cover test requirements more quickly [2].

B. Non Coverage based Test Case Prioritization

Korel present model based test case prioritization and
concluded that on average some model based tests
prioritization methods might improve the effectiveness of early
fault detection as compared to random prioritization [18]. In
[19] for early rate of fault detection, author proposes an
innovative equation for prioritization in time constraint
environment. The authors validate their results through an
experiment on eight C programs and on one case study and
compared with random technique. They use APFD metric to
measure detected faults and proved it as more effective in test
case prioritization under time constraint.

C. AI Techniques for Test Case Prioritization

Artificial intelligence algorithms are widely used in
software testing approaches [20, 21]. Walcott et.al present an
approach for test case prioritization by using Genetic algorithm
as a regression technique under time constrained which is
based on coverage information (block and method). The
authors compare effectiveness of genetic algorithm using
APFD values with different ordering of test cases. The authors
find it most effective in terms of rate of fault detection [4].

In contrast of this work Zhang et.al use ILP (integer linear
programming) for test case selection and customary techniques
for prioritization. The authors also compare traditional
techniques, genetic based techniques and ILP. Their
experimental results show that, ILP-based techniques are more
effective over time than GA-based techniques [1].

Kaur et al [16] propose hybrid PSO algorithm for the
prioritization of test case for regression testing in order to
obtain maximum fault coverage in minimum execution time.
They use PSO with GA to generate diversity in population and
they also make use of APFD metric to asses‟ effectiveness of

proposed algorithm finally showing its efficacy up to 75.6% for
fault coverage.

III. PARTICLE SWARM OPTIMIZATION

PSO is a population based stochastic optimization
technique proposed by Kennedy and Eberhart [5]. It is used to
investigate the given search space to produce the optimal
solution of declared problem. The search space comprises of
„n‟ particles and the collection of these particles is known as
swarm. PSO searches for solution with the help of some
parameters. Population of particles is initialized randomly and
search for solution is done by updating particle‟s position and
velocity. Each particle has memory to store its position pbest
and best position among whole particles is known as gbest.
Position is updated by adding velocity in previous position.
Velocity is constrained by Vmax; to ensure that particles will
search for optimal solution in defined search space. Velocity
and position are updated using the following two equations (1)
and (2).

 ()
 () ()

 () ()

where:

Vik : velocity of particle i at iteration k

Sik: current position of particle i at iteration k,
w: inertia weight,
c1,c2: constant weighting factors

SPBik: local best of particle i at iteration k

SGBik: global best of particle i at iteration k

Conclusively, in PSO each step is updated and validated in
search of optimal solution. A particle is updated according to
global and local best. We present Pseudo code of general PSO
in Listing 1.

LISTING 1: Pseudo code for general PSO

Step 1

For

 Initialize Population Si where i=1,2,3 …… n

End

Step 2

For Position of Particle Si,

Calculate Fitness Value Fi(k+1)
If Fi(k+1) better than Fi(k)
Set SPBik(Current Position) as the new Personal Best
(Pbest) for the kth iteration
Choose the particle with best Fitness Value as Global Best
(SPGik) for kth iteration
Calculate particle velocity Vik+1 from Eq (1)
Calculate particle position Sik+1 from Eq (2)

End

IV. PROPOSED APPROACH

A. Proposed Factors

We propose an algorithm using the following factors.

Customer Priority: Customer priority is the importance of
requirement to customer. Customer grades the specific

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

391 | P a g e

www.ijacsa.thesai.org

requirement by assigning value in the range from 1 to 10
according to significance of that requirement. The highest
priority of the customer is denoted by10 [8, 10, 22].

Implementation complexity: Developers measure the
implementation complexity of requirements by analyzing every
single requirement in development effort point of view.
Complexity is being rated from 1 to 10 [8, 23].

Requirement volatility: In literature, requirement volatility
is taken as one of most important prioritization factor ranging
from 1-10 [8, 9, 10].The volatility of requirements is keeping
record of number of modifications of requirements from the
time, the requirement was initially introduced.

Requirements traceability: it is the correlation of different
software development artifacts such as software requirement
specification and design document [14, 24]. It is proven that it
should be an important factor to enhance quality of software
[12].

Execution time: test case cost refers to operational time of
test cases [8, 9, 13, 5]. Resource expenses are considered to be
cost for software and execution time is considered to be one of
these costs.

Fault impact of requirement: It is the identification of
requirements that have more malfunctions in earlier version
[9].The efficiency of test case can be improved by focusing on
the functionalities that have greater number of failures [8, 11].

Our goal of prioritization is to increase the probability of
revealing maximum faults earlier in testing process.
Evolutionary algorithms can be used to solve test case
prioritization problem. We have used modified version of PSO
for earlier detection of faults and computed the results on three
medium size projects.

B. Experimental Setup

We propose following steps to perform our experiments for
validating our approach. These steps are given below:

1) Initial population is randomly generated (this is swarm

of test cases in our case).

2) A particle is known as individual test case.

3) Particle‟s position represents the priority of the test

case to be executed.

4) Standard equation of velocity is used to calculate

particle‟s velocity.

5) Stopping criteria is needed to be fulfilled.

C. Proposed Algorithm

We show our proposed algorithm in Algorithm 1. We
present this algorithm as steps. We solve prioritization problem
by using equations of PSO algorithm with some alterations.
The Position value of the test cases has to be integers in order
to represent priority. The proposed algorithm uses fitness
function values and the velocity equation values to calculate
optimal order of the test cases.

Our proposed algorithm starts with generation of particle‟s
population. We initially order their position (priority) sequence
wise and calculated velocity on basis of particle‟s priority and
original PSO technique respectively.

We calculate velocity of particle from its standard equation.
We use rate of velocity to change the current positions of test
case to the new position. We decide which particles have more
fitness function values to execute earlier.

We explore relationship of velocity and fitness function in
these calculations. We assign particles having lowest velocities
more fitness value. We do not use standard equation of position
for particles to reset their position, instead we use the
knowledge of velocity to reset particle‟s position.

In other words, we assign priority on basis of velocity
knowledge. Particle‟s position or its priority has clear cut
importance in our approach. Algorithm suspends its execution
on meeting stopping criteria. Our stopping criterion is
dependent upon maximum number of iterations or full
optimized solution that is when results will be constant.

Algorithm 1: Pseudo code for general PSO

Step I

Initialize No of Particles n = No. of Test cases (i=1,2,…..,n)

Step II

Set Position of Each Particle randomly Si

Step III

For k =1:p (Run a Loop for p Iterations)

 {

Calculate ∑Ci (Value of Factors to be maximized obtained from

position of ith particle)

Calculate ∑Ei (Value of Factors to be minimized obtained from

position of ith particle)

Fi = (∑Ci-∑Ei)/ne (Fitness Fucntion)

where ne = no. of test cases executed

 If Fi(k)>Fi(k-1)

 SPBi = Si(k)

 Else

 SPBi = Si(k-1)

 End

SGBi = Maximum (Fi) where i=1,2, …. N

Calculate Vik of each particle position

Update Positions Sik for each particle

 }

END

Flow Chart

We present an overall diagram of our proposed approach
mechanism in Fig. 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

392 | P a g e

www.ijacsa.thesai.org

Fig. 1. Flow of proposed VBPSO algorithm

V. EVALUATION

We use three medium sized project in order to show the
effectiveness of our proposed VBPSO algorithm. We present
details of these projects in Table 1.

TABLE I. PROJECT DESCRIPTIONS

Attribute

Description
Project 1 Project 2 Project 3

Project nature Web based Web based desktop

No. Of functions 14 9 23

Test Cases length 40 21 47

Difficulty level Medium Medium Medium

Team size 9 6 5

Customer was responsible to provide requirements and the
priority of the each requirement. We involved project managers
to give their expert opinion about ranking of requirements and
to reduce the effect of biasness in rating process by using value
based requirement prioritization tool [7]. We use Microsoft
excel 2007 for requirement-test case traceability. We
implement algorithm in MATLAB 9.0. and we list involved
stakeholders in Table II below.

TABLE II. DATA SET

Factors Values Stakeholders

Customer priority 1- 10 Customers

Implementation complexity 1- 10 Developer

Requirement volatility 1- 10 Business Analyst

Requirement traceability 1- 10 Maintenance Engineer

Execution time 1- 10 sec Developer

Fault impact of requirement 1-5 Test Engineer

We report 20 test cases in random order and we execute
them in that order and subsequently run all test cases and detect

faults. We then compute mean value of all results and
subsequently use APFD metric to compare efficacy of
proposed and random technique.

(4)

Where:

 T is the test suite under test.

 M is the number of faults in the program under test P.

 n is the total number of test cases.

 TFi is the position of the first test in T that reveals fault
i.

We present list of parameters used in our proposed
algorithm in Table III.

TABLE III. VBPSO PARAMETERS

Projects
Population

size

Number of

iterations

Termination

criteria

Project 1 40 30
Constant results or

iterations=30

Project 2 21 30
Constant results or
iterations=30

Project 3 47 30
Constant results or

iterations=30

VI. RESULTS & DISCUSSION

Other than APFD metric, results were also compared by
analyzing percentage of executed test cases in finding of
percentage of faults. This is important because regression
testing often ends without performing all test cases.
Considering the Project 1, we report that we obtain 42 % fault
detection via PSO after executing 40% of test cases; and we
detect 24% faults through random technique. We present our
findings in Fig 2.

Fig. 2. Project 1 Results

We detect 20% of faults through random techniques and
39% through VBPSO in Project 2, as shown in Fig 3.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

393 | P a g e

www.ijacsa.thesai.org

Fig. 3. Project 2 Results

We report this ratio as 45 % and 49 % through random and
proposed algorithm respectively if we execute 40% test cases.
We show our findings graphically in Fig 3. This shows a clear
difference in detection of faults in case we cannot afford to
execute whole test suite. As regression testing endures not only
limited resources to perform but also gets higher expectation of
maximum fault detection in earlier testing life cycle. So it is
desired to perform it in a way to detect faults earlier. Our
proposed algorithm resolves this problem. We can achieve
higher earlier fault detection percentage while executing
limited set of percentage of test cases.

Fig. 4. Project 3 Results

We have also validated our results through APFD metric. In
first project APFD calculation shows that VBPSO detects 78%
faults whereas random ordering produces 67% of faults. In
second project APFD rate through VBPSO was 67% while
random ordering rate was 40%. In third project APFD results
demonstrate that proposed algorithm detects 66% faults while
random ordering produces 55% of faults that refers our
algorithm as more effective.

We can have more refine APFD results if we slightly
modify our algorithm‟s factor weight age in fitness function.
We are accommodating six factors while analyzing earlier fault
detection. But we can still work for it while considering subset
of these factors such as execution time. We have found it very
important to prioritize test cases in their true sense in order to
deploy a quality and successful product. We present, in Table
IV, tabular comparison of VBPSO and random fault detection
for all these projects.

TABLE IV. APFD RESULTS

Approaches P1 P2 P3

Random 67% 40% 55%

VBPSO 78% 67% 66%

Experimental results show that the proposed algorithm was
able to detect more fault than random technique. Furthermore it
is depicted by fault detection rate that, there is still room for
improvement. However, achieving such a high fault detection
rate proves the competiveness of our technique as compared to
other existing approaches.

VII. CONCLUSION & FUTURE WORK

We present a hybrid approach of artificial intelligence with
value based concept to solve prioritization problem in
regression testing. Concept of value has been used to involve
stakeholder‟s participation in process via proposing a set of six
different factors. Our analysis shows the percentage of faults
detected in prioritized test suite with the help of APFD.

Our results show the effectiveness of our proposal by
evaluating three medium sized projects. We prove an overall
effectiveness of our proposal for early fault detection.

REFERENCES

[1] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, Hong Mei “Time
Aware Test-Case Prioritization using Integer Linear
Programming”,ISSTA‟09, July 19–23, 2009, Chicago, Illinois, USA

[2] Z. Li, M. Harman, and R.M.Hierons “Search Algorithms for Regression
Test Case Prioritization”,IEEE Transaction on Software Engineering,
VOL. 33, NO. 4, APRIL 2007

[3] G. Rothermel, R. Untch, C. Chu and M. Harrold, "Test Case
Prioritization: An Empirical Study" International Conference on
Software Maintenance, Oxford, UK, pp. 179 - 188, September 1999

[4] Kristen R. Walcott. Mary Lou Soffa “Time Aware Test Suite
Prioritization”, ISSTA‟06, July 17–20, 2006, Portland, Maine, USA

[5] Khin Haymer Saw Hla, YoungSik Choi, Jong Sou Park “Applying
Particle Swarm Optimization to Prioritizing Test Cases for Embedded
Real Time Software Retesting”, 8th International Conference on
Computer and Information Technology Workshops IEEE 2008

[6] J. C. Munson and S. Elbaum, "Software reliability as a function of user
execution patterns and practice," 32nd Annual Hawaii International
Conference of System Sciences, Maui, HI, pp. 255-285, 1999

[7] B. Boehm, "Value-Based Software Engineering," ACM Software
Engineering Notes, vol. 28, pp. 1-12, March 2003.

[8] R. Krishnamoorthi, S.A. Sahaaya and Arul Mary “Incorporating varying
Requirement Priorities and Costs in Test Case Prioritization for New and
Regression testing”, 2008

[9] X. Zhang, C.Nie, B. Xu and B.Qu “Test Case Prioritization based on
Varying Testing Requirement Priorities and Test Case Costs”, 2007

[10] H. Srikanth, L. Williams and J. Osborne “System Test Case
Prioritization of New and Regression Test Cases”, 2005

[11] T. Ostrand, E. Weyuker and R. Bell, "Where the Bugs Are," Proceedings
of the ACM SIGSOFT International Symposium on Software Testing
and Analysis, Boston, MA, pp. 86-96, July 2004

[12] A. Ahmed, “Software Testing as a Service” Auerbach Publications, New
York: 2009

[13] A. M. Smith, G. M. Kapfhammer “An Empirical Study of Incorporating
Cost into Test Suite Reduction and Prioritization”, 2009

[14] R. Krishnamoorthi and S.A. Mary “Factor oriented requirement
coverage based system test case prioritization of new and regression test
cases”,2009

[15] "value." Merriam-Webster Online Dictionary. 2008. Merriam-Webster
Online. 23 October 2008, http://www.merriam-
webster.com/dictionary/value

http://www.merriam-webster.com/dictionary/value
http://www.merriam-webster.com/dictionary/value

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 1, 2017

394 | P a g e

www.ijacsa.thesai.org

[16] A.Kaur and B.bhatt “Hybrid Particle Swarm Optimization for
Regression Testing”International Journal on Computer Science and
Engineering (IJCSE) Vol. 3 No. 5 May 2011

[17] B. Boehm, “Value-Based Software Engineering”, ACM SIGSOFT,
March 2003.

[18] B. Korel “Application of System Models in Regression Test Suite
Prioritization” 2008

[19] Y. Fazlalizadeh, A. Khalilian, M. AbdollahiAzgomi and S. Parsa
“Prioritizing Test Cases for Resource Constraint Environments Using
Historical Test Case Performance Data” IEEE 2009

[20] Kumar, Sushant, PrabhatRanjan, and R. Rajesh. "Modified ACO to
maintain diversity in regression test optimization." 2016 3rd
International Conference on Recent Advances in Information
Technology (RAIT).IEEE, 2016.

[21] Solanki, Kamna, et al. "Test Case Prioritization: An Approach Based on
Modified Ant Colony Optimization." Emerging Research in Computing,
Information, Communication and Applications. Springer Singapore,
2016. 213-223.

[22] Nayak, Soumen, Chiranjeev Kumar, and SachinTripathi. "Effectiveness
of prioritization of test cases based on Faults." 2016 3rd International
Conference on Recent Advances in Information Technology
(RAIT).IEEE, 2016.

[23] Muthusamy, Thillaikarasi. "A Test Case Prioritization Method with
Weight Factors in Regression Testing Based on Measurement
Metrics." International Journal 3.12 (2013).

[24] Thillaikarasi Muthusamy and K. Seetharaman, “Efficiency of Test Case
Prioritization Technique Based on Practical Priority
Factors”. International Journal of Soft Computing, 10 (2015) 183-188.

