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Abstract—This article describes a genetic algorithm for the 

optimization of the Trellis Coded Modulation (TCM) schemes 

with a view to achieve a higher performance in the multipath 

fading channel. The use of genetic algorithms is motivated by the 

fact that they are capable of performing global searches to 

retrieve an approximate solution to an optimization problem and 

if the solution is unknown to provide one within a reasonable 

time lapse. The TCM schemes are indeed optimized by the 

Rouane and Costello algorithm but the latter has as major 

disadvantage high requirements in both computation time and 

memory storage. This is further exacerbated by an increase in 

the encoder rate, the number of memory piles and the depth of 

the trellis. We describe a genetic algorithm which is especially 

well suited to combinatorial optimization, in particular to the 

optimization of NP-complete problems for which the 

computation time grows with the complexity of the problem, in a 

non-polynomial way. Furthermore this opens up the possibility of 

using the method for the generation of codes for channel 

characteristics for which no optimization codes are yet known.  

Simulation results are presented, that show the evolutionary 

programming algorithm on several generations of populations 

which only exhibit a medium probability of exchanging genetic 

information. 

Keywords—Trellis Coded Modulation; free distance; genetic 

algorithm 

I. INTRODUCTION 

Multilevel modulation of convolutionally encoded symbols 
was a technique known before the introduction of TCM. The 
innovative aspect of TCM is the idea that convolutional 
encoding and modulation should be treated as a unique 
operation and not as separate entities [1]. 

As a result, instead of first demodulating and then decoding 
the received signal, the demodulation and decoding are 
combined, by the receiver, in a single process. Consequently, 
the parameter governing the performance of the transmission 
system is no longer the free Hamming distance of the 
convolutional code, but becomes the free Euclidean distance 
between transmitted signal sequences, over the additive white 
Gaussian noise channel. Thus the optimization of the TCM 
design will be based on Euclidean distances rather than on 
Hamming distances, so that the choice of the code and of the 
signal constellation will not be performed separately. To this 
end, much research has been done to optimize TCM encoder 
schemes by maximizing the free distance as is the case in 

Rouane and Costello‟s work [2] which defines an algorithm 
aiming to maximize the free distance which computes the 
spectrum of linear, regular and quasi-regular trellis codes. 

This optimization has not only affected the design of TCM 
schemes but has also affected the points of constellations 

where Matthew C Valenti [3] had described a genetic 
algorithm for solving the symbol labelling problem and 
extending the algorithm to optimize their location in the signal 
space. Yang [4] describes a search method, based on genetic 
algorithms, to solve the problem of the signal constellations 
mapping which minimizes the BER of the system. In [5] 
Confessore describes a genetic algorithm to design satellite 
constellations for regional coverage. The performance was 
tested by evaluating optimal satellite configurations both for 
global coverage and for regional coverage and an extensive 
series of computational tests was performed to validate the 
meta-heuristic approach proposed for regional coverage. Tania 
[6] made use of a genetic algorithm to maximize the percent 
coverage and minimize the revisit time for a small satellite 
constellation with limited coverage. Anit Kumar [7] studied the 
encoding in genetic algorithms which is essentially dependent 
on the type of problem and examined different coding schemes 
according to the problems in which they are used. 

In fact, genetic algorithms are used by large companies to 
optimize schedules and design products which can range from 
large aircrafts to tiny computer chips or to medicines [8]. They 
thus make use of the power and efficacy of genetic algorithms 
which are able to find solutions to problems that other 
optimization methods cannot handle because of a lack of 
continuity, derivatives, linearity, or other features. Our work 
aims to optimize the TCM scheme for which we propose a 
genetic algorithm to design and optimize the placement of 
branches which are used for the systematic and parity bits and 
the connectivity of the memories between them. By letting the 
design evolve over several generations, new encoder formats 
are found with lower binary error levels than had previously 
been obtained by applying one of the two modulation 
techniques QAM or PSK depending on the choice of encoder 
rate. 

The remainder of the paper is organized as follows: 
Section II provides a model of the system under consideration. 
Section III provides the simulation results with a comparison of 
the initial and second population; the best code generated by 
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the genetic algorithm as compared to the Ungerboeck code in 
the cases of three, four and five memories. Section IV 
concludes the paper. 

II. SYSTEM MODEL 

Genetic algorithms are a type of optimization algorithm 
used to find the optimal solution(s) to a given computational 
problem that maximizes or minimizes a particular function. In 
this article, our goal is to maximize the free distance using a 
genetic algorithm. Before giving the fitness function, we will 
first provide a definition of free distance. 

A. Definition of Free Distance (d free) 

 
Fig. 1. Two pairs of paths diverging at time n = 0 and reaching the same 

states at the same time. 

Free distance represents the shortest distance between two 
divergent paths starting from the same point (state) and 
returning to that point as quickly as possible as shown in Fig.1. 
This distance represents the distance between two nearest paths 
without error. 

B. Design of the TCM Encoder 

The generic TCM encoder, proposed by Ungerboeck [1], is 
presented in Fig. 2. It allows the generation from m input bits 
(within the input symbol   ), an output that contains the m 
systematic bits and a parity bit produced using a combination 
of the m input bits and the last state of the encoder memory of 

size v that yields a coding rate R = 
 

   
. The design of a TCM 

encoder consists in the determination of the parameters       i   

{        }  and j   {       } , which can take values 
from{   }. The TCM encoder, presented in (2), imposes the 
following assumption:                             
{      }. 

 
Fig. 2. Generic TCM encoder [1]. 

The TCM encoder can be represented, using the parameters 
     by polynomials       of the variable D as 

follows:       ∑    
 
      , i   {      }, or by the code 

generator (           ) written in octal [9]. 

Let G be a       matrix which describes how the state 
variables at time n+l are related to the state variables at time n, 
and let T be a       matrix which describes how the symbols 
at time n+l depend on the input symbol at time n. Using these 
relationships, the future state (    ) of the encoder in Fig. 2 can 
be constructed as follows: 

                          (1) 

Where,    is a       vector describing the current input, 
and    is a       vector describing the current state. 

Equation (1) can be expressed as a polynomial using D-
transform as in [10]. 

                           (2) 

 Example on TCM encoder. 

 

Fig. 3. Example of a 16-state TCM encoder [1]. 

Consider the 16-state rate 2/3 TCM encoder shown in 
Fig. 3 where “⨁” represents the operation of XOR and “D” 
represents the memory or the shift register of the TCM 
encoder. 

The TCM encoder in Fig. 3 has three polynomials 
expressed as: 

              

           

               

and, the code generator is (h0 =        =    , h1 = 
       =    , h2 =        =    ), or in shorthand (23, 04, 
16). 

The matrix representation of this encoder configuration is 
given by 

G = 

    
    
    
    

    and   T = 

  
  
  
  

  and E =    

C. TCM Encoder Representation using a Genetic Algorithm 

Fig. 4 represents the TCM encoder with rate 2/3 comprising 
three branches, two of which represent the systematic bits and 



IJACSA)  International Journal of Advanced Computer Science and Applications 

Vol. 8, No. 10, 2017. 

 

159 | P a g e  

www.ijacsa.thesai.org 

one represents the parity bit. “⨁” represents the operation of 
XOR and “D” represents the TCM encoder memory. 

 

Fig. 4. Example of an 8-state TCM encoder [1]. 

The TCM encoder in Fig. 4 has three polynomials  
expressed as: h0 (D) = D

3
+1; h1 (D) =D; h2 (D) = D

2
, and the 

generator code is (h0 = (1001)2 = (11)8, h1 = (0010)2 = (02)8,  
h2 = (0100)2 = (04)8. 

The matrix representation of this encoder configuration is 
as follows: 

G = 
   
   
   

     ,    T=  
  
  
  

  and the output of the encoder 

E = [   . 

D. Binary Coding of the TCM Chromosome 

The term chromosome refers to a numerical value or values 
that represent a candidate solution to the problem that the 
genetic algorithm is trying to solve [11]. Each candidate 
solution is encoded as an array of parameter values, where the 
performance of a genetic algorithm depends highly on the 
method used to encode this candidate solution into 
chromosomes and on what the fitness function is actually 
measuring [12]. 

In our work we represent the TCM encoder as an array with 
binary values which represent the three variables matrix G, T, 
E Where       G = [001100010]2 = [98]10, T = [001010]2 = 
[10]10, E = [0 0]2 = 0. 

TABLE I.  CHROMOSOME OF THE TCM ENCODER 

1 2 3 4 5 6 7 8 9 
1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 

 

 

 

 

 The size of the chromosome in Table 1 is equal to 
17 bits in the case of three (3) memories, 26 bits 
in the case of four (4) memories and 37 bits in the 
case of five (5) memories. 

 Some data is handed down by the parents, from 
one generation to the next. These are the 
hereditary genes. In our case to keep the same 
characteristics as for a recursive convolutional 
encoder the following cell indexes remain 
unchanged (Table 2) and are inherited by all the 
new generations of the TCM chromosome. 

TABLE II.  CELLS INHERITED FROM THE FATHER 

3 4 5 7 8 

1 1 0 0 1 

In this paper, we work on recursive systematic code where 
matrix G represents the connectivity of the memories between 
them. In matrix G, value 1 (first row, last column) is set in 
position G [1, m], which makes the encoder recursive. Matrix 
G can be represented by 4 possible cases, as follows: 

G = 
   
   
   

   or   = 
   
   
   

   or   = 
   
   
   

  or  =
   
   
   

 

In the case of matrix “T”, as shown in Fig. 5, there are six 
(6) possible connexions. The number of possible cases for 
matrix “T” is equal to 2

(Ne*m)
 where “Ne” represents the 

number of bit per symbol and “m” represents the number of 
memories. 

 
Fig. 5. Branches of systematic bits with six (06) possible connexions. 

Finally, vector E represents the output of the TCM encoder, 
where the output of the encoder takes four candidates as 
follows: E = [0 0] or [0 1] or [1 0] or [1 1]. 

E. Reproduction of the TCM Encoder Operations using the 

Genetic Algorithm 

Genetic algorithms can be applied to any process control 
application for the optimization of different parameters. 
Genetic algorithms use various operators viz. crossover, 
mutation for the proper selection of an optimized value. The 
selection of the appropriate crossover and mutation technique 
will depend on the encoding method and the problem 
requirement [13]. 

 Crossover: Applies to two different individuals where 
the result is: 

 Chromosome formed from the genes of its two 
parents. 

 Two children are “produced” for the next 
generation. 

 The decrement percentage is fixed. 

G = 

98 

T = 

10 

E= 

0 
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A parent 1: 

0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 

A parent 2: 

0 0 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 

Child 1: 

0 0 1 1 0 0 1 1 0 0 0 1 0 1 1 0 0 

Child 2: 

0 0 1 1 0 1 0 1 0 0 0 1 0 1 0 0 0 

 Mutation: Applies to a single individual by modifying 
one or more genes of the selected parent(s), where the 
result is: 

 A single new child is produced. 

 A mutation percentage is fixed. 

A parent 1: 

0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 0 0 

Child 1: 

0 0 1 1 0 1 0 1 1 0 1 1 0 1 0 0 0 

 Choose the selection method with the following three 
main objectives: 

 Choice of individuals which apply the 
reproduction operations for the creation of future 
generations (creation of a mating-pool). 

 “Selection” of the best individuals. 

 Possibility of exploring the different parts of the 
research setting. 

F. Flowchart of the Genetic Algorithm for the TCM Scheme 

Optimization 

Genetic algorithms begin with a set of solutions represented 
by chromosomes, called a population. Solutions from one 
population are taken and used to form a new population, which 
is motivated by the possibility that the new population will be 
better than the old one. Furthermore, solutions are selected 
according to their fitness to form new solutions, i.e. offsprings. 
The above process is repeated until some given condition is 
satisfied. The basic genetic algorithm is outlined as below: 

 

Initialization of population 

 
 

Evaluation of 

individuals 

Selection (intermediate 

generation) 

Reproduction (crossover and mutation) (new current 

generation) 

Evaluation of individuals 

d free = 

Max 

No Yes 

Selection of the best 

generation 

Evaluation of 

individuals 

d free > = Max 

No 

-Select the chromosome which correspond to 

Min of BER 

 

Result: best so far 

chromosome 

-Compute the BER of each chromosome 

(encoder) 

 

Yes 

Reproduction (crossover and mutation) (new current 

generation) 
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III. SIMULATION RESULTS 

In this work, the genetic algorithm used to optimize the 
TCM encoder, based on maximizing the free distance of quasi-
regular trellis code with three variables (G, T, E) in the interval 
[0, 5] where  the fitness function is: 

Max [F = MyGa (fitness, G, T, E)] 

The algorithm is initialized with a population of 15 
chromosomes. The encoder functions are indexed in increasing 
order so that the encoder is the best when its fitness function is 
equal to the maximum value and when the BER of the encoder 
is equal to the minimum value. Whenever the population 
changes, it is reindexed. 

The genetic algorithm was run to optimize the encoder with 
three variables M = {G, T, E}, the population N = 15; the 
mutation rate Γ = 0.03, and the culling period Tc = M. The 
number of mutants δ per child was variable. 

Initially, δ = 0. If after Tc generations a new best encoder 
has not been identified, then δ is incremented up to a maximum 
of 30. On the other hand, if a new encoder has been identified 
within Tc generations, then δ is decremented. 

The final value of d free (f(x)) is shown in Tables 3 and 4, 
the optimal generation which identified the best encoder is 
listed in Table 6. 

Table 5 indicates the d free values obtained by Ungerboeck 
and with the genetic algorithm, indicating the number of 
generations required by the genetic algorithm to converge. As 
can be seen, the genetic algorithm with three memories has 
found the same optimal value for d free as was found by 
Ungerboeck, however with 4 and 5 memories the optimal 
values obtained were different but had the same performances 
as shown in Fig. 11. The best encoder found by the genetic 
algorithm for 8 states, 16 states and 32 states and the maximum 
value of d free after going through different generations are 
shown in Table 6. Finally, Table 7 shows the variation of 
values from average to best fitness values. 

TABLE III.  INITIAL POPULATION 

CH 

Nm 
Initial Population 

X 

Value 

Fitness 

Value f(x) 

Selection 

Pro 

1 00110001001001000 25160 2.590 0,0637 

2 00110001001001100 25164 2.590 0,0637 

3 00110001001011000 25176 2.590 0,0637 

4 00110001001100000 25184 2.590 0,0637 

5 00110001001100100 25188 2.590 0,0637 

6 00110001001110000 25200 2.590 0,0637 

7 00110001001101000 25192 2.590 0,0637 

8 00110001001101100 25196 2.590 0,0637 

9 00110001001111000 25208 2.590 0,0637 

10 00110001010010100 25236 2.590 0,0637 

11 00110001010001100 25228 2.590 0,0637 

12 00110001010011000 25240 2.590 0,0637 

13 00110001010000100 25220 3.180 0,0782 

14 00110001010010000 25232 3.180 0,0782 

15 00110001011000100 25284 3.180 0,0782 

Sum 40.62 

Average 2.708 

Max 3.18 

The chromosomes that will reproduce are selected based on 
their fitness values, using the following probability: 

P (chromosome I reproduces) =  
     

∑        
   

       (3) 

 

Fig. 6. Comparison between 15 chromosomes of the initial population. 

 The simulation illustrated in Fig. 6 shows the 
comparison between 15 chromosomes of the initial 
population where the best chromosome corresponds to 
[00110001011000100]   with a d free max value equal 
to 3.18 and the minimum value for BER (Fig. 7). 

 

 
Fig. 7. Presentation of the initial population as a wheel of 15 chromosomes. 
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TABLE IV.  REPRODUCTION AND  SECOND GENERATION 

CH 

Nb 
New Population 

X 

Value 

Fitness 

Value f(x) 

Selection 

Probability 

16 00110001011001000 25288 2.590 0,0503499 

17 00110001001100100 25188 2.590 0,0503499 

18 00110001010110000 25264 2.590 0,0503499 

19 00110001010110100 25268 2.590 0,0503499 

20 00110001011100000 25312 2.590 0,0503499 

21 00110001011100100 25316 2.590 0,0503499 

22 00110001011010000 25296 3.180 0,0618195 

23 00110001010011100 25244 3.180 0,0618195 

24 00110001011011000 25304 3.180 0,0618195 

25 00110001000101100 25132 4.00 0,0777604 

26 00110001000111000 25144 4.00 0,0777604 

27 00110001000011000 25112 4.590 0,0892301 

28 00110001000011100 25116 4.590 0,0892301 

29 00110001000100100 25124 4.590 0,0892301 

30 001100010001001100 25252 4.590 0,0892301 

Sum 51,44 

Average 3,429333333 

Max 4.59 

 

Fig. 8. Comparison between 15 chromosomes of the second generation. 

 Now the second generation is tested by the fitness 
function, and the cycle is repeated. The simulation 
illustrated in Fig. 8 shows a comparison between 15 
chromosomes of the second generation where the best 
chromosome corresponds to [00110001000101000] 
and where the standard representation is: 

G = [0 0 1; 1 0 0; 0 1 0], T =[0 0;0 1;1 0]; E = [0 0]  with a 
d free max value equal to 4.59 and the minimum value for BER 
(Fig. 9). 

 Fig. 10 shows the first run of a genetic algorithm 
maximizing the free distance. The red curve is the 
highest fitness which corresponds to the second 
generation and the blue curve corresponds to the first 
generation where average fitness is equal to 3.18. The 
best solution is reached which corresponds to the 
chromosome [00110001000101000] with a d free max 
value equal to 4.59 and the minimum value for BER. 

 

Fig. 9. Presentation of the second population as a wheel of 15 chromosomes. 

 

Fig. 10. Comparison between the first and second generations. 

TABLE V.  VALUE OF D FREE OBTAINED BY UNGERBOECK
1
 [1] AND THE 

PROPOSED GENETIC ALGORITHM
2
 ALSO LISTED IS THE NUMBER OF 

GENERATIONS REQUIRED FOR THE GA TO CONVERGE 

Number of 
memories 

Modulation 
D free 
from 
(1) 

D free 
from (2) 

Generations 

3 PSK 4.586 4.59 20 

4 PSK 5.172 5.18 233 

5 PSK 5.758 5.77 977 

In Fig. 11, the simulation results show that the codes 
generated by Ungerboeck have the same performance as those 
generated by genetic algorithm. This is the case after several 
genetic algorithm code generation iterations conducted until 
the fitness function value of the chromosome was stabilized 
and remained stable over many generations at a point where 
this value converged to the best solution. 
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TABLE VI.  THE BEST CODE GENERATED BY THE GENETIC ALGORITHM 

Number 
of 
memories 

 

h0     h1 h2 Chromosome 

3 (11)8 (02)8 (04)8 
  001100010    000110    00 

4 23 16 10 
(0001100101000010 00010111 00)2 
= (6621276)10 

5 45 01 16 
000011000001001 0010000010 
0110101000 00 =  (6480733856)10 

TABLE VII.  VARIATION OF VALUES FROM AVERAGE TO BEST FITNESS 

VALUES 

Number 

of 

memorie

s 
Fitness Value f(x) 

Three 

(03) 

memories 

2,5

9 

3.1

8 
4 

4,5

9 

 

Four (04) 

memories 

2,5

9 

3,1

8 

3,7

7 
4 

4,3

6 

4,5

9 

5,1

8 

 

Five (05) 

memories 

2,5

9 

3,1

8 

3,7

7 
4 

4,3

6 

4,5

9 

4,9

5 

5,1

8 

5.7

7 

 

Fig. 11. Comparison between the Ungerboeck codes and those generated by 

the genetic algorithm in the case of 16 and 32 states. 

IV. CONCLUSION 

This paper shows improvements which have been obtained 
by the use of a genetic algorithm for the optimization of TCM 
schemes, as opposed to other optimization algorithms for this 
encoder. There are other important details such as the crossover 
and mutation probabilities, the population size and the iteration 
number. By applying an appropriate genetic algorithm, a new 
TCM encoder scheme could be evolved in a multipath channel. 
These values of the TCM encoder can be adjusted after 
assessing the algorithm‟s performance on a few trial runs. 
Future research attempts to combine genetic algorithms with 
other optimization algorithms as well as other branches of 
evolutionary computation, such as neural networks. 
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