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Abstract—Weak probabilistic noninterference is a security 

property for enforcing confidentiality in multi-threaded 

programs. It aims to guarantee secure flow of information in the 

program and ensure that sensitive information does not leak to 

attackers. In this paper, the problem of verifying weak 

probabilistic noninterference by leveraging formal methods, in 

particular algorithmic verification, is discussed. Behavior of 

multi-threaded programs is modeled using probabilistic Kripke 

structures and formalize weak probabilistic noninterference in 

terms of these structures. Then, a verification algorithm is 

proposed to check weak probabilistic noninterference. The 

algorithm uses an abstraction technique to compute quotient 

space of the program with respect to an equivalence relation 

called weak probabilistic bisimulation and does a simple check to 

decide whether the security property is satisfied or not. The 

progress made is demonstrated by a real-world case study. It is 

expected that the proposed approach constitutes a significant 

step towards more widely applicable secure information flow 

analysis. 
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I. INTRODUCTION 

A. Motivation 

In information security, a confidentiality policy prevents the 
unauthorized disclosure of information. Confidentiality 
policies are defined in terms of confidentiality mechanisms, 
which are approaches to enforce the policies [1]. Cryptography 
and access control are examples of confidentiality mechanisms. 
But they do not restrict the flow of information inside a 
program. For example, when an android application grants 
permission to access contacts, there is no cryptography or 
access control mechanism to verify legal use of the contacts by 
the application. This is where secure information flow comes 
to the rescue. 

Secure information flow controls the way information 
flows throughout a program. Information flow properties are 
designed to prevent the information from flowing to an 
unauthorized user, i.e., attacker or low-observer [2]. Typically, 
it is supposed that there are two security levels, high (H) and 
low (L), corresponding to higher and lower confidentiality for 
program variables respectively. An information flow property 

is defined in such a way that it prevents data in H from flowing 
to L. More complex hierarchies of security levels can be 
defined via a security structure [3]. Information flow properties 
are of paramount significance for guaranteeing confidentiality 
of data. Because of this, it is desirable to establish an automatic 
and efficient verification approach for secure information flow. 

B. Background 

In most of researches done on secure information flow, a 
security property specifying the confidentiality policy is 
formally defined and then a verification method is proposed to 
check the property. Noninterference [4] is a long-established 
information flow property, stipulating that high data may not 
interfere with low data. The absence of interference requires 
indistinguishability of program behavior, as secret inputs are 
varied. 

Probabilistic noninterference is a widely-used security 
property for multi-threaded programs, proposed by Volpano 
and Smith [5], and extended by Sabelfeld and Sands [6]. It is a 
timing- and probabilistic-sensitive property, defined over a 
simple imperative language with dynamic thread creation. 
Sabelfeld and Sands define a timing-sensitive partial 
probabilistic bisimulation to characterize indistinguishability of 
the executions of the program. The intuition is that low-
equivalent states must produce executions that run in lock-step, 
affect the shared memory in the same way, and the probability 
of stepping to the states from the same equivalence class be the 
same [6]. 

Smith [7] shows that probabilistic bisimulation is too strict 
regarding time. To address this problem, Smith defines 
probabilistic noninterference in terms of weak probabilistic 
bisimulation, allowing probabilistic systems to be regarded as 
equivalent when they do not run at the same time. The resultant 
property is called weak probabilistic noninterference, which 
requires low-equivalent states to produce executions that visit 
the same sequence of equivalence classes, but some executions 
may remain in a class longer that the other executions. 

Verifying secure information flow is mostly done via 
information flow type systems. A type system is a formal 
system of type inference rules for reasoning about properties of 
programming languages [8]. In information flow type systems, 
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the property of interest is a property of secure information 
flow, e.g., probabilistic noninterference. Many information 
flow type systems have been proposed to enforce probabilistic 
noninterference. Sabelfeld and Sands [6] define a type system 
to verify probabilistic noninterference. Smith [9] proposes a 
new type system to enforce probabilistic noninterference for 
multi-threaded programs running under a uniform probabilistic 
scheduler. In [7], Smith applies weak probabilistic bisimulation 
to prove that the type system proposed by him in [9] guarantees 
the probabilistic noninterference. 

Type systems are automated and compositional, but they 
are not extensible, as each new feature added to the 
programming language, or variation of the information flow 
property requires a redefinition of the type system and its 
soundness proof [10]. Consequently, algorithmic verification 
has been favored recently, which is the application of rigorous, 
mathematically sound, and fully automatic techniques to the 
analysis of systems. These techniques are more flexible than 
type systems, and give a precise and efficient mechanism to 
verify a variety of security properties, without the need to 
prove soundness repeatedly [11]. 

Algorithmic verification techniques have been mostly 
developed for trace properties, which describe single 
executions of programs. But, most security properties, 
including weak probabilistic noninterference, are 2-safety 
properties. 2-safety properties predicate over two executions of 
a program and consequently, verification requires establishing 
relationships between two different executions [12]. For 
example, weak probabilistic noninterference is not a property 
of individual executions and hence not a trace property, 
because whether an execution is allowed by the property 
depends on whether another execution is also allowed. 2-safety 
properties are an important subset of relational properties, 
which describe multiple executions of one or more programs 
[13]. As most classical verification techniques are not adequate 
to reason about relational properties, recently, many new 
techniques have been developed for secure information flow 
[12], [14]-[19], but none for weak probabilistic 
noninterference. 

 

Fig. 1. Components of the proposed approach. 

C. Foreground 

In this paper, an algorithm is developed to verify weak 
probabilistic noninterference for multi-threaded programs 
running under an arbitrary scheduler. The program to be 
verified is modeled by a probabilistic state transition system, 
called probabilistic Kripke structure. Weak probabilistic 
noninterference is formally defined in terms of semantics of the 
probabilistic Kripke structure. In the proposed analysis, a 
program satisfies weak probabilistic noninterference, if and 
only if all executions with low-equivalent initial states visit the 
same sequence of equivalent classes with respect to weak 
probabilistic bisimulation. The verification algorithm computes 
the quotient space, i.e., the set of all equivalence classes of the 
probabilistic Kripke structure and does a simple check to 
decide the satisfaction of the security property. The quotient 
space is an abstraction of the concrete model of a program and 
allows obtaining enormous state-space reductions, possibly 
avoiding sate explosion problem. It is shown that the proposed 
verification algorithm runs in polynomial time. A case study is 
provided to show the feasibility of the verification algorithm. 
Fig. 1 gives a clear picture of the proposed approach. 

D. Structure of the Paper 

The paper starts by an informal overview of the approach in 
Section II. The program model assumed throughout the paper 
is presented in Section III. Weak probabilistic noninterference 
is defined in Section IV, using weak probabilistic bisimulation. 
The verification algorithm, time complexity, and application of 
the algorithm to a case study are addressed in Section V. 
Discussing related work and comparisons are done in 
Section VI. Finally, Section VII concludes the paper and 
discusses some future work. 

II. OVERVIEW OF APPROACH 

In this section, a tour of the proposed work is given. To 
build intuition for the proposed approach, the key idea is 
illustrated using an example. 

For clarity, some informal definitions are discussed. 
Suppose an attacker has full knowledge of source code of a 
multi-threaded program, can choose a scheduler for its 
execution, and observe the program behavior under the chosen 
scheduler. By observing behavior, we mean the attacker can 
see values of public variables during the program execution. 
For example, she can print public values. If the attacker can 
infer information about secret (high) values of the program by 
observing public (low) values, the program is said to have a 
leak (or channel). Depending on the ability of the attacker, 
programs may have different leaks; e.g., explicit, implicit, or 
probabilistic leaks. Explicit leaks occur when a high value is 

assigned to a low variable; e.g., l:=h, assuming l is a low 

variable and h is a high variable. Implicit flows happen 

because of the control structure of a program; e.g., if h=1 

then l:=1 else l:=0. Probabilistic leaks occur as a 
result of probabilistic behavior of the program. An example of 
this leak will be given in the following. 

Secure information flow to the rescue. Secure 
information flow analysis aims to detect and consequently 
avoid information leaks in a program. Usually, it involves three 
main steps: 1) The program behavior is defined using a 
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program model; 2) The absence of leaks is defined using a 
security property; 3) A verification technique is developed to 
check the satisfaction ability of the property in the given 
program. In this paper, probabilistic Kripke structure 
(definition 1) is used to model the program behavior. Weak 
probabilistic noninterference (definition 8) of Smith [7] is 
reformulated in terms of the program model, and finally an 
algorithmic verification technique (Algorithm 1) is developed 
to check the property. 

A program satisfies weak probabilistic noninterference, if 
each pair of program executions with low-equivalent initial 
values are indistinguishable. Smith defines indistinguishability 

via weak probabilistic bisimulation 
p  (definition 6), an 

equivalence relation relating executions that change low values 
in the same order, with the same probability. Thus, an attacker 
observing pairs of weak probabilistic bisimilar executions with 
low-equivalent initial values (and probably different initial 
high values), will not be able to distinguish these executions 
and consequently infer secret information. 

For further clarity, consider the following example 
program: 

l:=0; l:=h mod 2; (l:=h || (l:=0 || l:=1)) 

Where, || is the parallel operator and h can have values 0 

or 1. Suppose a uniform scheduler S , where each statement of 

|| is chosen with probability ½ . Then, final value of l will 

reveal h with probability of ¾ . This is a probabilistic leak. 

Fully probabilistic Kripke structure of the program SK  

induced by the uniform scheduler is shown in Fig. 2. In this 
figure, nodes and edges represent states and transitions 
between states of the program, respectively. Edge labels show 
transition probabilities. Probability of transitions without a 

label is 1. Each state label shows the value of l in the 
corresponding state. The set of states, initial states, and 

executions are 0 1 24{ , , , }S s s s  , 0{ }sI , and 

0 0 1 2 3 4 1 0 1 2 5 6 7 0 13 22 23 24( ) { , , , }Execs s s s s s s s s s s s s s s s        SK , 

respectively. 

Verification. According to weak probabilistic 
noninterference, executions with low-equivalent initial values 
should be weak probabilistic bisimilar. A key idea of the 
proposed technique is to break down the executions of the 
program into various groups, depending on low-equivalency of 

initial states, and in each group check 
p  between the 

executions. To do this, the initial states are partitioned, based 

on the low-equivalence relation, into 0 , , mI B I B
 so that 

p  

can be checked between every 
( )iExecs  I B

. 

 

Fig. 2. Model of the example program. 

 

Fig. 3. Witness execution for the example program. 

Another key idea is that a witness execution iw  is chosen 

for each group of executions ( )iExecs I B  and check 
p  

between iw  and every ( )iExecs  I B . According to lemma 1 

(Section Ⅴ), iw  and   have relation 
p  if and only if their 

initial states, i.e., [0]iw  and [0]  have relation 
p . This 

means the set of equivalence classes (quotient space) of 

combination of ( )iExecs I B  and iw  with respect to 
p  can be 

computed. Then, [0]iw  and every [0]  should belong to the 

same equivalence class. If not, then the program does not 
satisfy weak probabilistic noninterference and is not secure. 

Back to the example, the set of initial states are partitioned. 
As there is only 1 initial state, just 1 block is obtained: 

00 { }sI B . The execution 
0 1 2 3 4s s s s s  is chosen as the witness 

and the state names are renamed, so that they are not confused 

with the states of SK . Thus, the witness execution is 
' ' ' ' '

0 0 1 2 3 4w s s s s s   (Fig. 3). The quotient space of the 

combination of SK  and 0w  is computed. The quotient space 

has 12 blocks: 0{ }s , 1{ }s , 13{ }s , 2{ }s , 7{ }s ,  5 8 10 17{ , , , }s s s s , 

14{ }s , '

3 3 15 19 23{ , , , , }s s s s s , 22{ }s , 6 9 11 12 18{ , , , , }s s s s s , , 
'

4 4 16 20 21 24{ , , , , , }s s s s s s , ' ' '

0 1 2{ , , ,}s s s . As 0s  and '

0s  do not 

belong to the same equivalence class, the verification algorithm 
returns insecure. This is what was expected. 
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III. PROGRAM MODEL 

In this section, the program model assumed throughout the 
paper is introduced. Furthermore, some basic concepts 
concerning probability distributions, partitions, and 
equivalences are recalled. 

A probability distribution   over a set X  is a function 

: [0,1]X  , such that ( ) 1
x X

x


 . The set of all probability 

distributions over X  is denoted by ( )XD . The support of a 

probability distribution ( )X D  is the set of all elements 

with a positive probability, i.e., ( ) { | ( ) 0}supp x X x    . 

A partition of a finite set S  of states is a set 

1 2{ , , , }nB B B
 such that iB   , 

i iB S , and iB
 are 

pairwise disjoint. iB
 are called blocks. An equivalence relation 

R  on S  partitions S  into the set of equivalence classes. The 

equivalence class of s S  w.r.t. R , denoted 
[ ]Rs

, is defined 

as 
[ ] { | ( , ) }Rs s s s R  

. The set of equivalence classes of S  

w.r.t. R  is called quotient space, denoted /S R . 

Probabilistic Kripke structures are used to model 
operational semantics of probabilistic programs. Probabilistic 
Kripke structures are state transition systems that permit both 
probabilistic and nondeterministic choices. A state of a 
probabilistic Kripke structure indicates the current value of all 
low variables (shared memory of the multi-threaded program) 
together with the current value of the program counter that 
indicates the next program statement to be executed. 

Definition 1 (Probabilistic Kripke Structure (PKS)): A 

probabilistic Kripke structure is a tuple ( , , , , )S AP La K  

where, 

 S  is a set of states, 

 ( )S S D  is a transition relation, 

   is an initial distribution such that ( ) 1
s S

s


 , 

 AP  is a set of atomic propositions, 

 : 2APLa S   is a labeling function. 

Here, atomic propositions are possible values of the low 

variables. K  is called finite if S  and AP  are finite. The set 

I  containing states s  with ( ) 0s   is considered as the set 

of initial states. The set of successor distributions of a state s  

is defined as ( ) { ( ) | }DPost s S s   D . The set of 

successor states of a state s  is defined as 

( )( ) ( )
DPost sPost s supp  . A state s  is called terminal if 

( )Post s   . 

Executions in a PKS K  are alternating sequences of states 

that may arise by resolving both nondeterministic and 

probabilistic choices in K . More precisely, a finite execution 

fragment ̂  of K  is a finite state sequence 0 1 ns s s  such that 

1( )i is Post s   for all 0 i n  . An infinite execution fragment 

  is an infinite state sequence 0 1 2s s s   such that 

1( )i is Post s   for all 0 i . An execution fragment is called 

initial if it starts in an initial state, i.e., if 0( ) 0s  . An 

execution of K  is either an initial finite execution fragment 

that ends in a terminal state, or an initial infinite execution 
fragment. 

Let 0 1 2s s s    be an execution and let 0[0] s  . 

( )Execs s  denotes the set of executions starting in s  and 

( )Execs K  the set of executions of the initial states of K : 

( ) ( )sExecs Execs s IK . Let 
 I I ; Then, 

( ) ( )
s

Execs Execs s






I
I . 

A PKS with no non-determinism is called a fully 
probabilistic Kripke structure. 

Definition 2 (Fully Probabilistic Kripke Structure 
(FPKS)): A PKS is called fully probabilistic if for each state 
there is at most one outgoing transition, i.e., :s S s     

and s    implies    . 

FPKSs are state transition systems with probability 
distributions for transitions of each state. That is, the next state 
is chosen probabilistically, not non-deterministically. In the 
definition of FPKS, for convenience the transition relation   

is replaced with a transition probability function 
: [0,1]S S P . The function P  determines for each state s  

the probability ( , )s sP  of a single transition from s  to s  . The 

probability ( , )s TP  is defined as the probability of moving 

from s  to some state t T  in a single step, i.e., 

( , ) ( , )
t T

s T s t


P P . 

Reasoning about probabilities of sets of executions of a 
PKS relies on the resolution of the possible non-determinism in 
the PKS. This resolution is performed by a scheduler. A 
scheduler takes a finite execution (history of computation) as 
input and chooses the next transition to execute. Let 

1 2{ | 0 and each }k iS s s s k s S     . Formally, 

Definition 3 (Scheduler): Let 
( , , , , )S AP La K

 be a 

PKS. A scheduler for K  is a function 
: ( )S S U D

, such 

that for all 0 1 ns s s S   
, 

( ) ( )D nPost s U
. 

A finite-memory scheduler denotes a scheduler that can be 
described by a deterministic finite automaton (DFA). Formally, 

Definition 4 (Finite-memory scheduler): Let K  be a 

PKS with state space S . A finite-memory scheduler S  for K  

is a tuple ( , , , )Q de st S  where, 

 Q  is a finite set of modes, 

 : Q S Q    is a transition function, 
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 : ( )de Q S S  D  is a decision function that selects the 

next transition ( , )de q s  for any mode q Q  and state 

s  of K , 

 :st S Q  is a function that selects a starting mode for 

state s  of K . 

The behavior of a PKS ( , , , , )S AP La K  under a 

finite-memory scheduler ( , , , )Q de st S  is as follows. At the 

beginning, an initial state 0s  is randomly chosen such that 

0( ) 0s   and the DFA S  is initialized to the mode 

0 0( )q st s Q  . Assuming that K  is in state s  and the 

current mode of S  is q , the next transition is given by the 

decision function, i.e., ( , ) ( )Dde q s Post s  . Subsequently, 

the PKS randomly moves to the next state according to the 

distribution  , while S  changes mode to ( , )q s . 

As all nondeterministic choices in a PKS K are resolved by 

a finite-memory scheduler S , a fully probabilistic Kripke 

structure KS  is induced. The states in KS  are pair ,s q   

where s  is a state in K  and q  a mode of S . Formally, 

Definition 5: Let 0( , , , , , )S s Var La La 
h l

K  be a PKS 

and ( , , , )Q de st S  be a finite-memory scheduler on K . 

The FPKS of K induced by S  is given by 

0( , , , , , )S Q s Var La La   P
h l

KS  

Where, 
( , ) ( )La s q La s   

h h , 
( , ) ( )La s q La s   

l l , and 

( ) if ( ), ( , ),

( , , , ) and ( , ) ( )

0 otherwise.

s s Post s q q s

s q s q de q s Post s





  

 

   


      



P D
 

If K is a finite PKS, then 
KS is finite too [20]. If 

KS  has a 

terminal state ns
, a transition 

( , ) 1n ns s P
 is included, 

ensuring that 
KS  has no terminal state. Therefore, all 

executions of 
KS  are infinite. It is assumed that the state space 

of the model of the multi-threaded program and the shared 
memory used by the threads are finite. 

A combination operator   is defined to combine two 

FPKSs in a single FPKS. Let ( , , , , )i i i i iS AP La PK , 1,2i   

be two FPKSs. The combination of 1K  and 2K  is defined as 

1 2 1 2 1 2 1 2( , , , , )S S AP La   P Pâ â âK K  where â  stands 

for disjoint union and ( ) ( )iLa s La s  if is S . 

IV. SPECIFYING WEAK PROBABILISTIC NON-INTERFERENCE 

A multi-threaded program is secure when a variation of the 
values of the high variables does not influence the low-
observable behavior of the program [6]. Thus, low-observable 
behavior of the program should be indistinguishable as high 

variables are varied. Variation of the values of high variables is 

represented by low-equivalence relation. Two states 1s  and 2s  

are low-equivalent, denoted 1 2Ls s , if 1 2( ) ( )La s La s . 

Smith [7] uses the notion of weak probabilistic bisimulation to 
represent the indistinguishability of low-observable behavior of 
the program. 

Weak probabilistic bisimulation abstracts from steps that 
remain inside the equivalence classes, i.e., it does not care 
which state within the equivalence class the system is in [21]. 

Let ( , , , , )S AP La PK  be an FPKS and R S S   be an 

equivalence relation. State s  is silent with respect to R , if 

( ,[ ] ) 1Rs s P , i.e., s  does not have a successor state outside 

[ ]Rs . Any state that is not silent with respect to R , may leave 

its equivalence class by a single transition with positive 

probability. Let R

silentS  denote the set of silent states with respect 

to R . For any state R

silents S  and /C S R  with [ ]RC s  

 

( , )
( , )

1 ( ,[ ] )
c

R

s C
s C

s s




P
P

P
 

denotes the conditional probability for non-silent state s  to 

reach block C  under the condition that being in s  the system 

does not make a move inside [ ]Rs . 

Definition 6 (Weak probabilistic bisimulation) [21], 

[22]: Let ( , , , , )S AP La PK  be an FPKS. A weak 

probabilistic bisimulation for K  is an equivalence relation R  

on S  such that for all 1 2s R s : 

 1 2Ls s
. 

 If 
( ,[ ] ) 1i i Rs s P

 for 1,2i   then for each equivalence 

class /C S R , 1 2[ ] [ ]R RC s s  : 

 1 2( , ) ( , ).c cs C s CP P
 

 1s
 can reach a state outside 1[ ]Rs

, iff 2s
 can reach a 

state outside 2[ ]Rs
. 

States 1s  and 2s  are weak probabilistic bisimilar, denoted 

as 
1 2ps s , if there exists  weak probabilistic bisimulation R  

for K  such that 1 2s Rs . 

Condition (1) asserts that states 1s  and 2s  are low-

equivalent, and condition (2) ensures that their conditional 
probability to move to another equivalence class is the same. 
According to condition (3) for any equivalence class C , either 

for all s C : R

silents S  or for all s C  there is an execution 

fragment 0 1
ˆ

ns s s    starting in 0s s  with 0n  , is C  

for 1, , 1i n    and ns C . 

Weak probabilistic bisimulation for pairs of executions is 
defined as follows: 
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Definition 7 (Weak probabilistic bisimilar executions): 

For infinite execution fragments 
0, 1, 2,i i i is s s   , 1,2i   in 

K , 1  is  weak probabilistic bisimilar to 2 , denoted 

1 2p   if and only if there exists an infinite sequence of 

indices 0 1 20 j j j     and 0 1 20 k k k     with: 

,1 ,2j p ks s  for all 1r rj j j   and 1r rk k k   with 

1,2,r    

In other words, two executions are weak probabilistic 
bisimilar, if they run through the same sequence of equivalence 

classes under 
p . 

Smith [7] states that if a secure program is run starting from 
two low-equivalent states, then two executions must pass 
through the same sequence of equivalence classes. This is 
captured formally by the definition of weak probabilistic 
noninterference. 

Definition 8 (Weak probabilistic noninterference): 

Given a finite-memory scheduler S , a multi-threaded program 
MT  satisfies weak probabilistic noninterference, iff  

, ( ). [0] [0]L pExecs           KS  

Where, KS  denotes an FPKS, modeling the executions of 

the program MT  under the scheduler S , L  is low-

equivalence relation between states, and 
p  is weak 

probabilistic bisimulation relation. 

The intuition is that low-equivalent executions must visit 

the same sequence of equivalence classes of 
p , but some 

executions may run slowly than the others. 

V. VERIFICATION 

In this section an algorithm is developed to verify weak 
probabilistic noninterference. In what follows, a finite fully 

probabilistic Kripke structure ( , , , , )S AP La PKS  is fixed 

which models the executions of a multi-threaded program MT  

under a scheduler S . Let I  denote the set of initial states of 

KS , i.e., set of states s  with ( ) 0s  . 

A. The Algorithm 

Weak probabilistic noninterference requires that all 
executions of the program with low-equivalent initial states 
must be weak probabilistic bisimilar. To verify this, the set of 

initial states I  of KS  is partitioned into initial state blocks 

0 , , mI B I B . Each initial state block contains all low-

equivalent initial states. Then, an arbitrary witness execution 

( )i iw Execs I B  is chosen for each iI B  ( {0,1, , }i m  ) and 

FPKS 
iwK  is created from iw . KS  and all 

iwK  are combined to 

form FPKS ( , , , , )S AP La     PK :  

0 mw w

   K K K KS . Now, KS  satisfies weak 

probabilistic noninterference if and only if [0]iw  and all states 

of iI B  belong to the same equivalence class in the quotient 

space / p

 K , i.e., [ [0] ]
pi iw I B , where [ [0] ]

piw 
 denotes 

the equivalence class of [0]iw  w.r.t. 
p . 

The main steps of the verification algorithm are sketched in 
Algorithm 1. The algorithm takes a finite FPKS as input and 
returns secure if the FPKS satisfies weak probabilistic 
noninterference, and insecure if it does not. In the sequel, some 
steps of the algorithm are explained in more detail. 

Taking a witness execution: As pointed out earlier, all 
executions of the input FPKS are infinite and hence form a 
cycle. To take a witness execution, a cycle detection algorithm 
based on depth-first search, called colored DFS, is used. The 
algorithm initially marks all states white. It then proceeds by 
moving to successor states and coloring them, and terminates 
when a colored state (i.e. a state that was encountered before) 
is visited. The sequence of states remains in the stack of the 
depth-first search form the witness execution. 

Algorithm 1. Verification of Weak Probabilistic Non-interference 

Input: finite FPKS KS  

Output: secure, if the program satisfies weak probabilistic 
noninterference; 
              insecure, otherwise; 
 

Partition I  into 0 , , mI B I B ; 

Take a witness execution ( )i iw Execs I B ( {0,1,..., }i m ); 

Build FPKS 
iwK  for each iw ; 

Build FPKS 
0 mw w

   K K K KS ; 

Compute the quotient space / p

 K ; 

for each iI B  and the corresponding witness iw  do 

if [ [0] ]
pi iw I B  then 

  return insecure; 
end if 

end for 
return secure;  

Computing the quotient space w.r.t. 
p : Equivalence 

classes w.r.t. 
p  are computed using an approach similar to 

that of Baier and Hermanns [21]. The general idea of the 
computation algorithm is to use an iterative partition 
refinement technique. It starts from a trivial initial partition, 
where each block of the partition contains all low-equivalent 
states (condition (1) of the definition 6). It then successively 
refines the given partition by splitting any block of the partition 
into sub-blocks, eventually resulting in the set of weak 
probabilistic bisimulation equivalence classes. A general 
schema of the iterative refinement is depicted in Fig. 4. 

The main idea for splitting each block B  of the partition is 

to isolate non-silent states ,s s B   with equivalent conditional 

probability to some other block C , i.e. ( , ) ( , )c cs C s CP P , in 

order to ensure condition (2) of the definition 6. By condition 
(3) of the definition, each such non-silent isolated subblock 
A B  has to be enriched with those silent states of B , which 

produce execution fragments that remain inside B  and end up 
in A . Fig. 5 shows how B  is refined into two subblocks. 
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Fig. 4. Successive partition refinement to compute the quotient space. 

 

Fig. 5. Refinement of the block B into A and B\A. 

B. Correctness of the Algorithm 

Before diving into proving correctness of the proposed 
algorithm, a lemma is presented, which will be used in the 

correctness proof. This lemma asserts that 
p  can be lifted 

from states to executions and vice versa. 

Lemma 1. Weak probabilistic bisimilar states have weak 
probabilistic bisimilar executions and vice versa: 

1 2 1 1 2 2 1 2iff ( ), ( ).p ps s Execs s Execs s       
 

Proof: “if”: Let 
1 0,1 1,1 2,1 1( )s s s Execs s    starting in 

1 0,1s s  and 
2 0,2 1,2 2,2 2( )s s s Execs s    starting in 

2 0,2s s

. By definition 7, if two executions are weak probabilistic 
bisimilar, then their initial states are weak probabilistic 

bisimilar too. Thus, 
1 2ps s . 

 “only if”: Let 
1 2ps s  and 

1 0,1 1,1 2,1 1( )s s s Execs s   . 

Successively, a weak probabilistic bisimilar execution 2  

starting in 2s  is defined by lifting the transitions from 
,1is  to 

1,1is 
 with 

,1 1,1i p is s   to finite execution fragments 

,2 ,1 , 1,2ii i i n is u u s   (Fig. 6) such that: 

,1 ,2 1,1 1,2 ,2 ,1 ,, , and ... .
ii p i i p i i p i p p i ns s s s s u u       

The proof is by induction on i . The base case 0i   is 

straightforward and omitted. Assume 0i   and that the 

execution fragment 

 0 1
2 0,2 0,1 0, 1,2 1,1 1, 2,2 ,2... ... ...n n is u u s u u s s   

is already constructed. Distinguish two cases: 

1) ,1 1,1i p is s 
. Since ,1 ,2i p is s

 and ,1 1,1( , ) 0i is s  P
, 

there exists a finite execution fragment 2 ,2 ,1 , 1,2
ˆ

ii i i n is u u s 

   

such that:
1,1 1,2i p is s   and ,2 ,1 , ii p i p p i ns u u  

.Concatenating the execution fragment 2̂  with the execution 

fragment 
2̂
  yields an execution fragment that fulfills the 

desired conditions. 

 

Fig. 6. Construction of a weak probabilistic bisimilar execution. 

 

Fig. 7. Relation between the witness execution iw  and other executions of 

iI B
.
 

2) 
,1 1,1i p is s  . Distinguish between 

,1is  can reach outside 

,1[ ]
pis   and cannot reach outside ,1[ ]

pis  : 

a) 
,1is  can reach outside ,1[ ]

pis  , i.e., there exists an 

index 1j i   with 
,1 ,1i p js s . Without loss of generality, 

assume that j  is minimal, i.e., 
,1 1,1 1,1i p i p p js s s     

1,1 ,1j p js s  .As 
,2 1,1i p js s   and 

1,1 ,1( , ) 0j js s P , there exists 

a finite execution fragment 2 ,2 ,1 , 1,2
ˆ

ii i i n is u u s 

   such that 

,1 1,2j p is s   and ,2 ,1 , ii p i p p i ns u u   . Concatenation of 

the execution fragment 2̂  with the execution fragment 
2̂
  

yields an execution fragment that fulfills the desired 

conditions. 

b) ,1is
 cannot reach outside ,1[ ]

pis  , i.e., ,1 ,1i p js s
 for 

all j i . As ,1 ,2i p is s
, and ,1is

 cannot reach outside ,1[ ]
pis  , 

,2is
 cannot reach outside ,2[ ]

pis   (see condition (3) of 

definition 6), i.e., there is an execution ,2 1,2 2,2i i is s s  
 with  

,2 1,2 2,2i p i p i ps s s     . Concatenating the execution 
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fragment 2̂  with the execution fragment 
,2 1,2 2,2i i is s s    

yields an execution that fulfills the desired conditions. 

Consequently, the resulting execution 2  is weak probabilistic 

bisimilar to 1 . 

The following theorem proves correctness of the 
Algorithm 1. 

Theorem 1. Algorithm 1 returns secure if and only if the 

input FPKS KS  satisfies weak probabilistic non-interference. 

Proof: The algorithm starts by partitioning I  into low-

equivalent sets of states 0 , , mI B I B . Then, a witness 

execution ( )i iw Execs I B  is chosen and Kripke structures 

0
, ,

mw wK K , and 
K  are created. Now, the problem of KS  

satisfying weak probabilistic noninterference is reduced to 

checking weak probabilistic bisimilarity between iw  and each 

( )iExecs  I B . For example, in Fig. 7, the relation 
p  

should be established between the witness execution iw  and all 

executions in ( )iExecs I B , i.e., iw , iv , ix , iy . 

According to lemma 1, iw  and   are weak probabilistic 

bisimilar if and only if their initial states, i.e., [0]iw  and [0]  

are weak probabilistic bisimilar: 

 
iff [0] [0]i p i pw w    

Given that 
p  was defined as an equivalence relation, 

[0] [0]i pw   if and only if [0]iw  and [0]  belong to the 

same equivalence class in the quotient space / p

 K . Thus, 

each [0] , i.e., all states of iI B , should belong to [ [0] ]
piw  . 

In other words, for each initial state block iI B  and the 

corresponding witness execution iw , it should be 

[ [0] ]
pi iw I B . 

C. Complexity of the Algorithm 

For computing the initial state blocks, HashMap class of 
Java was used. The worst case complexity of inserting a key-

value pair to the hash map is  | |O AP . Hence, the time 

complexity of computing the initial state blocks is 

 | | . | |O API . 

Let t  be the number of transitions of KS . A witness 

execution can be extracted in time ( | |)O t S . Thus, the time 

complexity of extracting all witness executions is 

(| | .( | |))O t SI . 

The quotient space / p

 K  can be constructed in time 

 3| ' |O S [21]. Assuming | |S t and considering the fact that 

| ' |
| |

2

S
S , verification of weak probabilistic noninterference 

can be implemented in time 3(| | | | .( | |))O S t AP I . 

D. Case Study 

The algorithm proposed in this paper has been implemented 
as part of SCT (Security Certifying Tool), which has been 
developed in JAVA to verify secure information flow for 
multi-threaded programs. SCT gets a probabilistic Kripke 
structure as model of the program and checks whether the 
program satisfies weak probabilistic noninterference. To our 
knowledge, no other algorithmic verification technique for 
weak probabilistic noninterference has been published, so it is 
not possible to compare the implementation to other 
algorithms. 

As a case study, consider the problem of dining 
cryptographers. The problem is borrowed from [11] to show 
how an attacker can deduce secret information through 
probabilistic leaks. David Chaum first proposed this problem in 
1988 as an example of anonymity and identity hiding [23]. In 
this problem, three cryptographers are sitting at a round table to 
have dinner at their favorite restaurant. The waiter informs 
them that the meal has been arranged to be paid by one of the 
cryptographers or their master. The cryptographers respect 
each other‟s right to stay anonymous, but would like to know 
whether the master is paying or not. So, they decide to take part 
in the following two-stage protocol: 

 Stage 1: Each cryptographer tosses an unbiased coin 
and only informs the cryptographer on the right of the 
outcome. The situation is illustrated in Fig. 8. In this 
figure, c1, c2, and c3 are identities of cryptographer 1, 
cryptographer 2, and cryptographer 3 respectively. 

 Stage 2: Each cryptographer publicly announces 
whether the two coins that she can see are the same 
(„agree‟) or different („disagree‟). However, if she 
actually paid for the dinner, then she lies, i.e., she 
announces „disagree‟ when the coins are the same, and 
„agree‟ when they are different. 

 
Fig. 8. Dining cryptographers. c1 can observe c2‟s coin, and  c2 can observe 

c3‟s coin. 

An even number of „agree‟s implies that none of the 
cryptographers paid (the master paid), while an odd number 
implies that one of the cryptographers paid. David Chaum 
names this protocol as Dining Cryptographers network or DC-
net. DC-net is secure, since it does not leak the identity of the 
paying cryptographer (in case one of the cryptographers made 
arrangement to pay for the meal). Following Ngo [11], to make 
this protocol leak information, a slight change is done: coins 
are biased, i.e., with probability 0.6 it comes up heads, and 
with probability 0.4 it comes up tails. 
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To model the case study, PRISM has been used. PRISM is 
a tool for formal modeling and analysis of probabilistic 
systems [24]. PRISM describes models using the PRISM 
language, a simple, state-based language with a guarded 
command notation. The program is implemented in PRISM 
and its model is built. Then, export the explicit-state model, 
containing the set of reachable states and their labels, along 
with the transition matrix. Then, the model is given to SCT to 
compute the quotient space and check the security property. 
SCT was run on a PC with a Core i3 2.53 GHz CPU and 6 GB 
RAM. 

Without lack of generality, suppose one of the 
cryptographers has made arrangement for the meal, and the 
other one is the attacker, i.e., the one who tries to find out the 

payer‟s identity. The FPKS KS  of the model built by PRISM 

has 285 states and 582 transitions. KS  has just 3 initial states. 

All initial states have the same label value of  0  (label values 

are explained in the next paragraph). Thus, a witness execution 

0w  is extracted from KS  and 
0w

  K K KS  is built. 
K  has 

292 states and 589 transitions. The quotient space / p

 K  is 

computed in 1.672 seconds and has 13 equivalence classes. As 

expected, the initial states and [0]iw  do not belong to same 

equivalence class and hence SCT correctly recognizes the 
model as insecure. 

To see how an attacker can infer the identity of the payer, 
consider an example scenario where cryptographer 2 is the 
attacker and aims to find out which one of the cryptographers 1 
or 3 is the payer. Suppose cryptographer 2 and cryptographer 3 
both toss tail. Cryptographer 2 can observe the coin of 
cryptographer 3, and thus announces „agree‟. Assume 
cryptographer 2 observes that cryptographer 1 announces 
„agree‟ and cryptographer 3 announces „disagree‟ for the 
values of the coins. Two situations corresponding to this case 
are shown in Fig. 9 and executions of these situations are 
outlined in Fig. 10. In Fig. 10, each state is represented as 10-
tuples listing the current values of the variables (pay, agree1, 
agree2, agree3, coin1, s1, coin2, s2, coin3, s3) and labeled 
with the current value of parity: 0 for even number of „agree‟s, 
and 1 for odd number of „agree‟s. The variable pay contains 
the number of the cryptographer who is actually the payer. 
Variables agree1, agree2, and agree3 contain the 
announcements of cryptographer 1, 2, and 3, respectively: 0 for 
„disagree‟, and 1 for „agree‟. Variables coin1, coin2, and coin3 
contain the coin values for cryptographer 1, 2, and 3, 
respectively: 1 for head, and 2 for tail. Finally, variables s1, s2, 
and s3 contain the status values for the three cryptographers: 0 
for „not done‟, and 1 for „done‟. 

 
Fig. 9. Two situations corresponding to the case where c2 and c3 both toss 

tail. 

 
Fig. 10. Two executions corresponding to the situations 1 and 2. 

Execution 1  occurs when cryptographer 1 is the payer and 

tosses head. Therefore, cryptographer 1 announces „agree‟ and 

cryptographer 3 announces „disagree‟. Execution 2  occurs 

when cryptographer 3 is the payer and tosses tail. Thus, 
cryptographer 3 announces „disagree‟ and cryptographer 1 

announces „agree‟. As seen in Fig. 10, the probability of 1  

(i.e. cryptographer 1 tossing head) is more than the probability 

of 2  (i.e. cryptographer 1 tossing tail) and hence the attacker 

can deduce that cryptographer 1 is more likely to be the payer. 
This is a probabilistic leak. 
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VI. RELATED WORK 

In the following, some related approaches from the 
literature are discussed and the proposed approach is compared 
with them. 

Barthe et al. [10] propose the idea of self-composition for 
logical characterization of information flow properties. Self-
composition reduces the problem of verifying information flow 
property for a program P to a safety property for a program 
derived from P, by composing P with a renaming of itself. 
Then, standard model checking and algorithmic verification 
techniques can be used to verify secure information flow. 
Terauchi and Aiken [14] introduce 2-safety properties, which 
can be refuted by observing two executions. They show that 
termination insensitive secure information flow problem is a 2-
safety problem. They further generalize the idea of self-
composition and show that it can be used to verify 2-safety 
properties. Huisman et al. [15] use the idea of self-composition 
to characterize secure information flow in CTL* and modal µ-
calculus temporal logics. They specify secure information flow 
using observational determinism, an information flow property 
proposed by Zdancevic and Myers [25] for concurrent 
programs. Van der Meyden and Zhang [16] employ a self-
composition-like method to reason about noninterference 
properties and develop algorithmic verification techniques for 
these properties. They characterize the computational 
complexity of the developed verification techniques and 
discuss some possible heuristics for optimizing the verification. 
Verification methods that use the idea of self-composition 
suffer from the state-space explosion problem, i.e., space 
needed to store the states and transitions of the program exceed 
the available memory. This occurs because in self-composition 
a program model is composed with a copy of itself. In the 
proposed algorithm, the program model is composed with only 
a small part of the model (witness execution). Furthermore, 
security analysis is done on the abstract model (quotient space), 
not on the concrete model. 

Ngo et al. [26] propose scheduler-specific probabilistic 
observational determinism as a property to specify secure 
information flow for probabilistic multi-threaded programs. 
They define the property based on two conditions. First 
condition requires that all traces of each public variable starting 
in the same initial state are stuttering equivalent. A trace of an 
execution is a mapping of states of the execution to the 
corresponding state labels. Two traces are stuttering equivalent 
if they become the same after removing repeating adjacent 
labels. Second condition requires that for all traces of an initial 

state is , there exists a trace of an initial state '

is  low-equivalent 

to is , that is stuttering equivalent to each one of the traces of 

is  and the probabilities of the traces are the same. Condition 2 

of this property is closest in semantics to our definition of weak 
probabilistic noninterference. Of course, weak probabilistic 
noninterference requires weak probabilistic bisimulation 
between executions, which is different from stuttering 
equivalence. To verify condition 2 of their property, Ngo et al 

build two FPKSs for each pair of initial states is  and '

is . Then, 

they transform the FPKSs to stuttering-free ones and check 

equivalence of the probabilistic languages arising from 
executions of the two FPKSs using an off-the-shelf algorithm. 

The time complexity of the algorithm is  3O n  for each pair 

of initial states is  and '

is , where n  is the number of states of 

each FPKS. The deficiency of this verification algorithm is that 
it builds two copies of the program for each pair of initial 
states. It is clear that if the input program has enormous state 
space, then the algorithm would suffer from the state explosion 
problem. 

A trending field in security verification is proof-based 
verification, in which mathematical logic is used to describe 
the program, specify the property of interest, and prove 
satisfiability of the property. Hoare logic [27] is one of the 
most widely-used logics for proof-based verification of 
software. Variants of Hoare logic have been proposed for 
verifying relational, and in particular, k-safety properties [28-
30]. An advantage of these techniques is that they avoid the 
state-space explosion problem, because they do not check the 
whole state space of the program. Consequently, they are 
suitable for verifying programs with huge, and even infinite, 
state space. A disadvantage with these techniques is that they 
are semi-automatic. Although many of the proof steps are done 
mechanically, some steps need expert user intervention. This 
contrasts with algorithmic verification, which is fully 
automatic. 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper, the problem of verifying weak probabilistic 
noninterference was discussed. Weak probabilistic 
noninterference is a notion of confidentiality for multi-threaded 
programs. The behavior of multi-threaded programs running 
under the control of a scheduler was modeled by probabilistic 
Kripke structures. Weak probabilistic noninterference was 
formalized in terms of executions of the probabilistic Kripke 
structure. Then, a verification algorithm was proposed to check 
the property. 

As future work, we plan to use the proposed algorithm to 
verify other information flow properties. We believe the 
applicability of the algorithm can be extended and it can be 
used to verify many security properties, such as strong security 
[6] and probabilistic noninterference [6]. In an earlier paper 
[31], we used a similar algorithm to verify observational 
determinism. 

A disadvantage of the proposed verification algorithm is 
that it works on explicit model of the program, which may be 
too huge for real-world programs. This harms scalability of the 
approach. To solve this problem, one can change the algorithm 
in such a way that it works on abstract models of the program, 
such as binary decision diagrams. 

We also aim to modify the algorithm to support 
compositional verification, thereby reducing conceptual 
complexity and making the analysis scale. 
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