
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

196 | P a g e

www.ijacsa.thesai.org

Verifying Weak Probabilistic Noninterference

Ali A. Noroozi

Department of Computer Science

University of Tabriz

Tabriz, Iran

Jaber Karimpour

Department of Computer Science

University of Tabriz

Tabriz, Iran

Ayaz Isazadeh

Department of Computer Science

University of Tabriz

Tabriz, Iran

Shahriar Lotfi

Department of Computer Science

University of Tabriz

Tabriz, Iran

Abstract—Weak probabilistic noninterference is a security

property for enforcing confidentiality in multi-threaded

programs. It aims to guarantee secure flow of information in the

program and ensure that sensitive information does not leak to

attackers. In this paper, the problem of verifying weak

probabilistic noninterference by leveraging formal methods, in

particular algorithmic verification, is discussed. Behavior of

multi-threaded programs is modeled using probabilistic Kripke

structures and formalize weak probabilistic noninterference in

terms of these structures. Then, a verification algorithm is

proposed to check weak probabilistic noninterference. The

algorithm uses an abstraction technique to compute quotient

space of the program with respect to an equivalence relation

called weak probabilistic bisimulation and does a simple check to

decide whether the security property is satisfied or not. The

progress made is demonstrated by a real-world case study. It is

expected that the proposed approach constitutes a significant

step towards more widely applicable secure information flow

analysis.

Keywords—Confidentiality; secure information flow;

noninterference; algorithmic verification; bisimulation

I. INTRODUCTION

A. Motivation

In information security, a confidentiality policy prevents the
unauthorized disclosure of information. Confidentiality
policies are defined in terms of confidentiality mechanisms,
which are approaches to enforce the policies [1]. Cryptography
and access control are examples of confidentiality mechanisms.
But they do not restrict the flow of information inside a
program. For example, when an android application grants
permission to access contacts, there is no cryptography or
access control mechanism to verify legal use of the contacts by
the application. This is where secure information flow comes
to the rescue.

Secure information flow controls the way information
flows throughout a program. Information flow properties are
designed to prevent the information from flowing to an
unauthorized user, i.e., attacker or low-observer [2]. Typically,
it is supposed that there are two security levels, high (H) and
low (L), corresponding to higher and lower confidentiality for
program variables respectively. An information flow property

is defined in such a way that it prevents data in H from flowing
to L. More complex hierarchies of security levels can be
defined via a security structure [3]. Information flow properties
are of paramount significance for guaranteeing confidentiality
of data. Because of this, it is desirable to establish an automatic
and efficient verification approach for secure information flow.

B. Background

In most of researches done on secure information flow, a
security property specifying the confidentiality policy is
formally defined and then a verification method is proposed to
check the property. Noninterference [4] is a long-established
information flow property, stipulating that high data may not
interfere with low data. The absence of interference requires
indistinguishability of program behavior, as secret inputs are
varied.

Probabilistic noninterference is a widely-used security
property for multi-threaded programs, proposed by Volpano
and Smith [5], and extended by Sabelfeld and Sands [6]. It is a
timing- and probabilistic-sensitive property, defined over a
simple imperative language with dynamic thread creation.
Sabelfeld and Sands define a timing-sensitive partial
probabilistic bisimulation to characterize indistinguishability of
the executions of the program. The intuition is that low-
equivalent states must produce executions that run in lock-step,
affect the shared memory in the same way, and the probability
of stepping to the states from the same equivalence class be the
same [6].

Smith [7] shows that probabilistic bisimulation is too strict
regarding time. To address this problem, Smith defines
probabilistic noninterference in terms of weak probabilistic
bisimulation, allowing probabilistic systems to be regarded as
equivalent when they do not run at the same time. The resultant
property is called weak probabilistic noninterference, which
requires low-equivalent states to produce executions that visit
the same sequence of equivalence classes, but some executions
may remain in a class longer that the other executions.

Verifying secure information flow is mostly done via
information flow type systems. A type system is a formal
system of type inference rules for reasoning about properties of
programming languages [8]. In information flow type systems,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

197 | P a g e

www.ijacsa.thesai.org

the property of interest is a property of secure information
flow, e.g., probabilistic noninterference. Many information
flow type systems have been proposed to enforce probabilistic
noninterference. Sabelfeld and Sands [6] define a type system
to verify probabilistic noninterference. Smith [9] proposes a
new type system to enforce probabilistic noninterference for
multi-threaded programs running under a uniform probabilistic
scheduler. In [7], Smith applies weak probabilistic bisimulation
to prove that the type system proposed by him in [9] guarantees
the probabilistic noninterference.

Type systems are automated and compositional, but they
are not extensible, as each new feature added to the
programming language, or variation of the information flow
property requires a redefinition of the type system and its
soundness proof [10]. Consequently, algorithmic verification
has been favored recently, which is the application of rigorous,
mathematically sound, and fully automatic techniques to the
analysis of systems. These techniques are more flexible than
type systems, and give a precise and efficient mechanism to
verify a variety of security properties, without the need to
prove soundness repeatedly [11].

Algorithmic verification techniques have been mostly
developed for trace properties, which describe single
executions of programs. But, most security properties,
including weak probabilistic noninterference, are 2-safety
properties. 2-safety properties predicate over two executions of
a program and consequently, verification requires establishing
relationships between two different executions [12]. For
example, weak probabilistic noninterference is not a property
of individual executions and hence not a trace property,
because whether an execution is allowed by the property
depends on whether another execution is also allowed. 2-safety
properties are an important subset of relational properties,
which describe multiple executions of one or more programs
[13]. As most classical verification techniques are not adequate
to reason about relational properties, recently, many new
techniques have been developed for secure information flow
[12], [14]-[19], but none for weak probabilistic
noninterference.

Fig. 1. Components of the proposed approach.

C. Foreground

In this paper, an algorithm is developed to verify weak
probabilistic noninterference for multi-threaded programs
running under an arbitrary scheduler. The program to be
verified is modeled by a probabilistic state transition system,
called probabilistic Kripke structure. Weak probabilistic
noninterference is formally defined in terms of semantics of the
probabilistic Kripke structure. In the proposed analysis, a
program satisfies weak probabilistic noninterference, if and
only if all executions with low-equivalent initial states visit the
same sequence of equivalent classes with respect to weak
probabilistic bisimulation. The verification algorithm computes
the quotient space, i.e., the set of all equivalence classes of the
probabilistic Kripke structure and does a simple check to
decide the satisfaction of the security property. The quotient
space is an abstraction of the concrete model of a program and
allows obtaining enormous state-space reductions, possibly
avoiding sate explosion problem. It is shown that the proposed
verification algorithm runs in polynomial time. A case study is
provided to show the feasibility of the verification algorithm.
Fig. 1 gives a clear picture of the proposed approach.

D. Structure of the Paper

The paper starts by an informal overview of the approach in
Section II. The program model assumed throughout the paper
is presented in Section III. Weak probabilistic noninterference
is defined in Section IV, using weak probabilistic bisimulation.
The verification algorithm, time complexity, and application of
the algorithm to a case study are addressed in Section V.
Discussing related work and comparisons are done in
Section VI. Finally, Section VII concludes the paper and
discusses some future work.

II. OVERVIEW OF APPROACH

In this section, a tour of the proposed work is given. To
build intuition for the proposed approach, the key idea is
illustrated using an example.

For clarity, some informal definitions are discussed.
Suppose an attacker has full knowledge of source code of a
multi-threaded program, can choose a scheduler for its
execution, and observe the program behavior under the chosen
scheduler. By observing behavior, we mean the attacker can
see values of public variables during the program execution.
For example, she can print public values. If the attacker can
infer information about secret (high) values of the program by
observing public (low) values, the program is said to have a
leak (or channel). Depending on the ability of the attacker,
programs may have different leaks; e.g., explicit, implicit, or
probabilistic leaks. Explicit leaks occur when a high value is

assigned to a low variable; e.g., l:=h, assuming l is a low

variable and h is a high variable. Implicit flows happen

because of the control structure of a program; e.g., if h=1

then l:=1 else l:=0. Probabilistic leaks occur as a
result of probabilistic behavior of the program. An example of
this leak will be given in the following.

Secure information flow to the rescue. Secure
information flow analysis aims to detect and consequently
avoid information leaks in a program. Usually, it involves three
main steps: 1) The program behavior is defined using a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

198 | P a g e

www.ijacsa.thesai.org

program model; 2) The absence of leaks is defined using a
security property; 3) A verification technique is developed to
check the satisfaction ability of the property in the given
program. In this paper, probabilistic Kripke structure
(definition 1) is used to model the program behavior. Weak
probabilistic noninterference (definition 8) of Smith [7] is
reformulated in terms of the program model, and finally an
algorithmic verification technique (Algorithm 1) is developed
to check the property.

A program satisfies weak probabilistic noninterference, if
each pair of program executions with low-equivalent initial
values are indistinguishable. Smith defines indistinguishability

via weak probabilistic bisimulation
p (definition 6), an

equivalence relation relating executions that change low values
in the same order, with the same probability. Thus, an attacker
observing pairs of weak probabilistic bisimilar executions with
low-equivalent initial values (and probably different initial
high values), will not be able to distinguish these executions
and consequently infer secret information.

For further clarity, consider the following example
program:

l:=0; l:=h mod 2; (l:=h || (l:=0 || l:=1))

Where, || is the parallel operator and h can have values 0

or 1. Suppose a uniform scheduler S , where each statement of

|| is chosen with probability ½ . Then, final value of l will

reveal h with probability of ¾ . This is a probabilistic leak.

Fully probabilistic Kripke structure of the program SK

induced by the uniform scheduler is shown in Fig. 2. In this
figure, nodes and edges represent states and transitions
between states of the program, respectively. Edge labels show
transition probabilities. Probability of transitions without a

label is 1. Each state label shows the value of l in the
corresponding state. The set of states, initial states, and

executions are 0 1 24{ , , , }S s s s  , 0{ }sI , and

0 0 1 2 3 4 1 0 1 2 5 6 7 0 13 22 23 24() { , , , }Execs s s s s s s s s s s s s s s s        SK ,

respectively.

Verification. According to weak probabilistic
noninterference, executions with low-equivalent initial values
should be weak probabilistic bisimilar. A key idea of the
proposed technique is to break down the executions of the
program into various groups, depending on low-equivalency of

initial states, and in each group check
p between the

executions. To do this, the initial states are partitioned, based

on the low-equivalence relation, into 0 , , mI B I B
 so that

p

can be checked between every
()iExecs  I B

.

Fig. 2. Model of the example program.

Fig. 3. Witness execution for the example program.

Another key idea is that a witness execution iw is chosen

for each group of executions ()iExecs I B and check
p

between iw and every ()iExecs  I B . According to lemma 1

(Section Ⅴ), iw and  have relation
p if and only if their

initial states, i.e., [0]iw and [0] have relation
p . This

means the set of equivalence classes (quotient space) of

combination of ()iExecs I B and iw with respect to
p can be

computed. Then, [0]iw and every [0] should belong to the

same equivalence class. If not, then the program does not
satisfy weak probabilistic noninterference and is not secure.

Back to the example, the set of initial states are partitioned.
As there is only 1 initial state, just 1 block is obtained:

00 { }sI B . The execution
0 1 2 3 4s s s s s is chosen as the witness

and the state names are renamed, so that they are not confused

with the states of SK . Thus, the witness execution is
' ' ' ' '

0 0 1 2 3 4w s s s s s  (Fig. 3). The quotient space of the

combination of SK and 0w is computed. The quotient space

has 12 blocks: 0{ }s , 1{ }s , 13{ }s , 2{ }s , 7{ }s , 5 8 10 17{ , , , }s s s s ,

14{ }s , '

3 3 15 19 23{ , , , , }s s s s s , 22{ }s , 6 9 11 12 18{ , , , , }s s s s s , ,
'

4 4 16 20 21 24{ , , , , , }s s s s s s , ' ' '

0 1 2{ , , ,}s s s . As 0s and '

0s do not

belong to the same equivalence class, the verification algorithm
returns insecure. This is what was expected.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

199 | P a g e

www.ijacsa.thesai.org

III. PROGRAM MODEL

In this section, the program model assumed throughout the
paper is introduced. Furthermore, some basic concepts
concerning probability distributions, partitions, and
equivalences are recalled.

A probability distribution  over a set X is a function

: [0,1]X  , such that () 1
x X

x


 . The set of all probability

distributions over X is denoted by ()XD . The support of a

probability distribution ()X D is the set of all elements

with a positive probability, i.e., () { | () 0}supp x X x    .

A partition of a finite set S of states is a set

1 2{ , , , }nB B B
 such that iB   ,

i iB S , and iB
 are

pairwise disjoint. iB
 are called blocks. An equivalence relation

R on S partitions S into the set of equivalence classes. The

equivalence class of s S w.r.t. R , denoted
[]Rs

, is defined

as
[] { | (,) }Rs s s s R  

. The set of equivalence classes of S

w.r.t. R is called quotient space, denoted /S R .

Probabilistic Kripke structures are used to model
operational semantics of probabilistic programs. Probabilistic
Kripke structures are state transition systems that permit both
probabilistic and nondeterministic choices. A state of a
probabilistic Kripke structure indicates the current value of all
low variables (shared memory of the multi-threaded program)
together with the current value of the program counter that
indicates the next program statement to be executed.

Definition 1 (Probabilistic Kripke Structure (PKS)): A

probabilistic Kripke structure is a tuple (, , , ,)S AP La K

where,

 S is a set of states,

 ()S S D is a transition relation,

  is an initial distribution such that () 1
s S

s


 ,

 AP is a set of atomic propositions,

 : 2APLa S  is a labeling function.

Here, atomic propositions are possible values of the low

variables. K is called finite if S and AP are finite. The set

I containing states s with () 0s  is considered as the set

of initial states. The set of successor distributions of a state s

is defined as () { () | }DPost s S s   D . The set of

successor states of a state s is defined as

()() ()
DPost sPost s supp  . A state s is called terminal if

()Post s   .

Executions in a PKS K are alternating sequences of states

that may arise by resolving both nondeterministic and

probabilistic choices in K . More precisely, a finite execution

fragment ̂ of K is a finite state sequence 0 1 ns s s such that

1()i is Post s  for all 0 i n  . An infinite execution fragment

 is an infinite state sequence 0 1 2s s s  such that

1()i is Post s  for all 0 i . An execution fragment is called

initial if it starts in an initial state, i.e., if 0() 0s  . An

execution of K is either an initial finite execution fragment

that ends in a terminal state, or an initial infinite execution
fragment.

Let 0 1 2s s s   be an execution and let 0[0] s  .

()Execs s denotes the set of executions starting in s and

()Execs K the set of executions of the initial states of K :

() ()sExecs Execs s IK . Let
 I I ; Then,

() ()
s

Execs Execs s






I
I .

A PKS with no non-determinism is called a fully
probabilistic Kripke structure.

Definition 2 (Fully Probabilistic Kripke Structure
(FPKS)): A PKS is called fully probabilistic if for each state
there is at most one outgoing transition, i.e., :s S s   

and s   implies    .

FPKSs are state transition systems with probability
distributions for transitions of each state. That is, the next state
is chosen probabilistically, not non-deterministically. In the
definition of FPKS, for convenience the transition relation 

is replaced with a transition probability function
: [0,1]S S P . The function P determines for each state s

the probability (,)s sP of a single transition from s to s  . The

probability (,)s TP is defined as the probability of moving

from s to some state t T in a single step, i.e.,

(,) (,)
t T

s T s t


P P .

Reasoning about probabilities of sets of executions of a
PKS relies on the resolution of the possible non-determinism in
the PKS. This resolution is performed by a scheduler. A
scheduler takes a finite execution (history of computation) as
input and chooses the next transition to execute. Let

1 2{ | 0 and each }k iS s s s k s S     . Formally,

Definition 3 (Scheduler): Let
(, , , ,)S AP La K

 be a

PKS. A scheduler for K is a function
: ()S S U D

, such

that for all 0 1 ns s s S   
,

() ()D nPost s U
.

A finite-memory scheduler denotes a scheduler that can be
described by a deterministic finite automaton (DFA). Formally,

Definition 4 (Finite-memory scheduler): Let K be a

PKS with state space S . A finite-memory scheduler S for K

is a tuple (, , ,)Q de st S where,

 Q is a finite set of modes,

 : Q S Q   is a transition function,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

200 | P a g e

www.ijacsa.thesai.org

 : ()de Q S S  D is a decision function that selects the

next transition (,)de q s for any mode q Q and state

s of K ,

 :st S Q is a function that selects a starting mode for

state s of K .

The behavior of a PKS (, , , ,)S AP La K under a

finite-memory scheduler (, , ,)Q de st S is as follows. At the

beginning, an initial state 0s is randomly chosen such that

0() 0s  and the DFA S is initialized to the mode

0 0()q st s Q  . Assuming that K is in state s and the

current mode of S is q , the next transition is given by the

decision function, i.e., (,) ()Dde q s Post s  . Subsequently,

the PKS randomly moves to the next state according to the

distribution  , while S changes mode to (,)q s .

As all nondeterministic choices in a PKS K are resolved by

a finite-memory scheduler S , a fully probabilistic Kripke

structure KS is induced. The states in KS are pair ,s q 

where s is a state in K and q a mode of S . Formally,

Definition 5: Let 0(, , , , ,)S s Var La La 
h l

K be a PKS

and (, , ,)Q de st S be a finite-memory scheduler on K .

The FPKS of K induced by S is given by

0(, , , , ,)S Q s Var La La   P
h l

KS

Where,
(,) ()La s q La s   

h h ,
(,) ()La s q La s   

l l , and

() if (), (,),

(, , ,) and (,) ()

0 otherwise.

s s Post s q q s

s q s q de q s Post s





  

 

   


      



P D

If K is a finite PKS, then
KS is finite too [20]. If

KS has a

terminal state ns
, a transition

(,) 1n ns s P
 is included,

ensuring that
KS has no terminal state. Therefore, all

executions of
KS are infinite. It is assumed that the state space

of the model of the multi-threaded program and the shared
memory used by the threads are finite.

A combination operator  is defined to combine two

FPKSs in a single FPKS. Let (, , , ,)i i i i iS AP La PK , 1,2i 

be two FPKSs. The combination of 1K and 2K is defined as

1 2 1 2 1 2 1 2(, , , ,)S S AP La   P Pâ â âK K where â stands

for disjoint union and () ()iLa s La s if is S .

IV. SPECIFYING WEAK PROBABILISTIC NON-INTERFERENCE

A multi-threaded program is secure when a variation of the
values of the high variables does not influence the low-
observable behavior of the program [6]. Thus, low-observable
behavior of the program should be indistinguishable as high

variables are varied. Variation of the values of high variables is

represented by low-equivalence relation. Two states 1s and 2s

are low-equivalent, denoted 1 2Ls s , if 1 2() ()La s La s .

Smith [7] uses the notion of weak probabilistic bisimulation to
represent the indistinguishability of low-observable behavior of
the program.

Weak probabilistic bisimulation abstracts from steps that
remain inside the equivalence classes, i.e., it does not care
which state within the equivalence class the system is in [21].

Let (, , , ,)S AP La PK be an FPKS and R S S  be an

equivalence relation. State s is silent with respect to R , if

(,[]) 1Rs s P , i.e., s does not have a successor state outside

[]Rs . Any state that is not silent with respect to R , may leave

its equivalence class by a single transition with positive

probability. Let R

silentS denote the set of silent states with respect

to R . For any state R

silents S and /C S R with []RC s

(,)
(,)

1 (,[])
c

R

s C
s C

s s




P
P

P

denotes the conditional probability for non-silent state s to

reach block C under the condition that being in s the system

does not make a move inside []Rs .

Definition 6 (Weak probabilistic bisimulation) [21],

[22]: Let (, , , ,)S AP La PK be an FPKS. A weak

probabilistic bisimulation for K is an equivalence relation R

on S such that for all 1 2s R s :

 1 2Ls s
.

 If
(,[]) 1i i Rs s P

 for 1,2i  then for each equivalence

class /C S R , 1 2[] []R RC s s  :

 1 2(,) (,).c cs C s CP P

 1s
 can reach a state outside 1[]Rs

, iff 2s
 can reach a

state outside 2[]Rs
.

States 1s and 2s are weak probabilistic bisimilar, denoted

as
1 2ps s , if there exists weak probabilistic bisimulation R

for K such that 1 2s Rs .

Condition (1) asserts that states 1s and 2s are low-

equivalent, and condition (2) ensures that their conditional
probability to move to another equivalence class is the same.
According to condition (3) for any equivalence class C , either

for all s C : R

silents S or for all s C there is an execution

fragment 0 1
ˆ

ns s s   starting in 0s s with 0n  , is C

for 1, , 1i n   and ns C .

Weak probabilistic bisimulation for pairs of executions is
defined as follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

201 | P a g e

www.ijacsa.thesai.org

Definition 7 (Weak probabilistic bisimilar executions):

For infinite execution fragments
0, 1, 2,i i i is s s   , 1,2i  in

K , 1 is weak probabilistic bisimilar to 2 , denoted

1 2p  if and only if there exists an infinite sequence of

indices 0 1 20 j j j    and 0 1 20 k k k    with:

,1 ,2j p ks s for all 1r rj j j   and 1r rk k k   with

1,2,r  

In other words, two executions are weak probabilistic
bisimilar, if they run through the same sequence of equivalence

classes under
p .

Smith [7] states that if a secure program is run starting from
two low-equivalent states, then two executions must pass
through the same sequence of equivalence classes. This is
captured formally by the definition of weak probabilistic
noninterference.

Definition 8 (Weak probabilistic noninterference):

Given a finite-memory scheduler S , a multi-threaded program
MT satisfies weak probabilistic noninterference, iff

, (). [0] [0]L pExecs           KS

Where, KS denotes an FPKS, modeling the executions of

the program MT under the scheduler S , L is low-

equivalence relation between states, and
p is weak

probabilistic bisimulation relation.

The intuition is that low-equivalent executions must visit

the same sequence of equivalence classes of
p , but some

executions may run slowly than the others.

V. VERIFICATION

In this section an algorithm is developed to verify weak
probabilistic noninterference. In what follows, a finite fully

probabilistic Kripke structure (, , , ,)S AP La PKS is fixed

which models the executions of a multi-threaded program MT

under a scheduler S . Let I denote the set of initial states of

KS , i.e., set of states s with () 0s  .

A. The Algorithm

Weak probabilistic noninterference requires that all
executions of the program with low-equivalent initial states
must be weak probabilistic bisimilar. To verify this, the set of

initial states I of KS is partitioned into initial state blocks

0 , , mI B I B . Each initial state block contains all low-

equivalent initial states. Then, an arbitrary witness execution

()i iw Execs I B is chosen for each iI B ({0,1, , }i m ) and

FPKS
iwK is created from iw . KS and all

iwK are combined to

form FPKS (, , , ,)S AP La     PK :

0 mw w

   K K K KS . Now, KS satisfies weak

probabilistic noninterference if and only if [0]iw and all states

of iI B belong to the same equivalence class in the quotient

space / p

 K , i.e., [[0]]
pi iw I B , where [[0]]

piw 
 denotes

the equivalence class of [0]iw w.r.t.
p .

The main steps of the verification algorithm are sketched in
Algorithm 1. The algorithm takes a finite FPKS as input and
returns secure if the FPKS satisfies weak probabilistic
noninterference, and insecure if it does not. In the sequel, some
steps of the algorithm are explained in more detail.

Taking a witness execution: As pointed out earlier, all
executions of the input FPKS are infinite and hence form a
cycle. To take a witness execution, a cycle detection algorithm
based on depth-first search, called colored DFS, is used. The
algorithm initially marks all states white. It then proceeds by
moving to successor states and coloring them, and terminates
when a colored state (i.e. a state that was encountered before)
is visited. The sequence of states remains in the stack of the
depth-first search form the witness execution.

Algorithm 1. Verification of Weak Probabilistic Non-interference

Input: finite FPKS KS

Output: secure, if the program satisfies weak probabilistic
noninterference;
 insecure, otherwise;

Partition I into 0 , , mI B I B ;

Take a witness execution ()i iw Execs I B ({0,1,..., }i m);

Build FPKS
iwK for each iw ;

Build FPKS
0 mw w

   K K K KS ;

Compute the quotient space / p

 K ;

for each iI B and the corresponding witness iw do

if [[0]]
pi iw I B then

 return insecure;
end if

end for
return secure;

Computing the quotient space w.r.t.
p : Equivalence

classes w.r.t.
p are computed using an approach similar to

that of Baier and Hermanns [21]. The general idea of the
computation algorithm is to use an iterative partition
refinement technique. It starts from a trivial initial partition,
where each block of the partition contains all low-equivalent
states (condition (1) of the definition 6). It then successively
refines the given partition by splitting any block of the partition
into sub-blocks, eventually resulting in the set of weak
probabilistic bisimulation equivalence classes. A general
schema of the iterative refinement is depicted in Fig. 4.

The main idea for splitting each block B of the partition is

to isolate non-silent states ,s s B  with equivalent conditional

probability to some other block C , i.e. (,) (,)c cs C s CP P , in

order to ensure condition (2) of the definition 6. By condition
(3) of the definition, each such non-silent isolated subblock
A B has to be enriched with those silent states of B , which

produce execution fragments that remain inside B and end up
in A . Fig. 5 shows how B is refined into two subblocks.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

202 | P a g e

www.ijacsa.thesai.org

Fig. 4. Successive partition refinement to compute the quotient space.

Fig. 5. Refinement of the block B into A and B\A.

B. Correctness of the Algorithm

Before diving into proving correctness of the proposed
algorithm, a lemma is presented, which will be used in the

correctness proof. This lemma asserts that
p can be lifted

from states to executions and vice versa.

Lemma 1. Weak probabilistic bisimilar states have weak
probabilistic bisimilar executions and vice versa:

1 2 1 1 2 2 1 2iff (), ().p ps s Execs s Execs s       

Proof: “if”: Let
1 0,1 1,1 2,1 1()s s s Execs s   starting in

1 0,1s s and
2 0,2 1,2 2,2 2()s s s Execs s   starting in

2 0,2s s

. By definition 7, if two executions are weak probabilistic
bisimilar, then their initial states are weak probabilistic

bisimilar too. Thus,
1 2ps s .

 “only if”: Let
1 2ps s and

1 0,1 1,1 2,1 1()s s s Execs s   .

Successively, a weak probabilistic bisimilar execution 2

starting in 2s is defined by lifting the transitions from
,1is to

1,1is 
 with

,1 1,1i p is s  to finite execution fragments

,2 ,1 , 1,2ii i i n is u u s  (Fig. 6) such that:

,1 ,2 1,1 1,2 ,2 ,1 ,, , and
ii p i i p i i p i p p i ns s s s s u u     

The proof is by induction on i . The base case 0i  is

straightforward and omitted. Assume 0i  and that the

execution fragment

 0 1
2 0,2 0,1 0, 1,2 1,1 1, 2,2 ,2...n n is u u s u u s s 

is already constructed. Distinguish two cases:

1) ,1 1,1i p is s 
. Since ,1 ,2i p is s

 and ,1 1,1(,) 0i is s  P
,

there exists a finite execution fragment 2 ,2 ,1 , 1,2
ˆ

ii i i n is u u s 

 

such that:
1,1 1,2i p is s  and ,2 ,1 , ii p i p p i ns u u  

.Concatenating the execution fragment 2̂ with the execution

fragment
2̂
 yields an execution fragment that fulfills the

desired conditions.

Fig. 6. Construction of a weak probabilistic bisimilar execution.

Fig. 7. Relation between the witness execution iw and other executions of

iI B
.

2)
,1 1,1i p is s  . Distinguish between

,1is can reach outside

,1[]
pis  and cannot reach outside ,1[]

pis  :

a)
,1is can reach outside ,1[]

pis  , i.e., there exists an

index 1j i  with
,1 ,1i p js s . Without loss of generality,

assume that j is minimal, i.e.,
,1 1,1 1,1i p i p p js s s   

1,1 ,1j p js s  .As
,2 1,1i p js s  and

1,1 ,1(,) 0j js s P , there exists

a finite execution fragment 2 ,2 ,1 , 1,2
ˆ

ii i i n is u u s 

  such that

,1 1,2j p is s  and ,2 ,1 , ii p i p p i ns u u   . Concatenation of

the execution fragment 2̂ with the execution fragment
2̂


yields an execution fragment that fulfills the desired

conditions.

b) ,1is
 cannot reach outside ,1[]

pis  , i.e., ,1 ,1i p js s
 for

all j i . As ,1 ,2i p is s
, and ,1is

 cannot reach outside ,1[]
pis  ,

,2is
 cannot reach outside ,2[]

pis  (see condition (3) of

definition 6), i.e., there is an execution ,2 1,2 2,2i i is s s  
 with

,2 1,2 2,2i p i p i ps s s     . Concatenating the execution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

203 | P a g e

www.ijacsa.thesai.org

fragment 2̂ with the execution fragment
,2 1,2 2,2i i is s s  

yields an execution that fulfills the desired conditions.

Consequently, the resulting execution 2 is weak probabilistic

bisimilar to 1 .

The following theorem proves correctness of the
Algorithm 1.

Theorem 1. Algorithm 1 returns secure if and only if the

input FPKS KS satisfies weak probabilistic non-interference.

Proof: The algorithm starts by partitioning I into low-

equivalent sets of states 0 , , mI B I B . Then, a witness

execution ()i iw Execs I B is chosen and Kripke structures

0
, ,

mw wK K , and
K are created. Now, the problem of KS

satisfying weak probabilistic noninterference is reduced to

checking weak probabilistic bisimilarity between iw and each

()iExecs  I B . For example, in Fig. 7, the relation
p

should be established between the witness execution iw and all

executions in ()iExecs I B , i.e., iw , iv , ix , iy .

According to lemma 1, iw and  are weak probabilistic

bisimilar if and only if their initial states, i.e., [0]iw and [0]

are weak probabilistic bisimilar:

iff [0] [0]i p i pw w  

Given that
p was defined as an equivalence relation,

[0] [0]i pw  if and only if [0]iw and [0] belong to the

same equivalence class in the quotient space / p

 K . Thus,

each [0] , i.e., all states of iI B , should belong to [[0]]
piw  .

In other words, for each initial state block iI B and the

corresponding witness execution iw , it should be

[[0]]
pi iw I B .

C. Complexity of the Algorithm

For computing the initial state blocks, HashMap class of
Java was used. The worst case complexity of inserting a key-

value pair to the hash map is  | |O AP . Hence, the time

complexity of computing the initial state blocks is

 | | . | |O API .

Let t be the number of transitions of KS . A witness

execution can be extracted in time (| |)O t S . Thus, the time

complexity of extracting all witness executions is

(| | .(| |))O t SI .

The quotient space / p

 K can be constructed in time

 3| ' |O S [21]. Assuming | |S t and considering the fact that

| ' |
| |

2

S
S , verification of weak probabilistic noninterference

can be implemented in time 3(| | | | .(| |))O S t AP I .

D. Case Study

The algorithm proposed in this paper has been implemented
as part of SCT (Security Certifying Tool), which has been
developed in JAVA to verify secure information flow for
multi-threaded programs. SCT gets a probabilistic Kripke
structure as model of the program and checks whether the
program satisfies weak probabilistic noninterference. To our
knowledge, no other algorithmic verification technique for
weak probabilistic noninterference has been published, so it is
not possible to compare the implementation to other
algorithms.

As a case study, consider the problem of dining
cryptographers. The problem is borrowed from [11] to show
how an attacker can deduce secret information through
probabilistic leaks. David Chaum first proposed this problem in
1988 as an example of anonymity and identity hiding [23]. In
this problem, three cryptographers are sitting at a round table to
have dinner at their favorite restaurant. The waiter informs
them that the meal has been arranged to be paid by one of the
cryptographers or their master. The cryptographers respect
each other‟s right to stay anonymous, but would like to know
whether the master is paying or not. So, they decide to take part
in the following two-stage protocol:

 Stage 1: Each cryptographer tosses an unbiased coin
and only informs the cryptographer on the right of the
outcome. The situation is illustrated in Fig. 8. In this
figure, c1, c2, and c3 are identities of cryptographer 1,
cryptographer 2, and cryptographer 3 respectively.

 Stage 2: Each cryptographer publicly announces
whether the two coins that she can see are the same
(„agree‟) or different („disagree‟). However, if she
actually paid for the dinner, then she lies, i.e., she
announces „disagree‟ when the coins are the same, and
„agree‟ when they are different.

Fig. 8. Dining cryptographers. c1 can observe c2‟s coin, and c2 can observe

c3‟s coin.

An even number of „agree‟s implies that none of the
cryptographers paid (the master paid), while an odd number
implies that one of the cryptographers paid. David Chaum
names this protocol as Dining Cryptographers network or DC-
net. DC-net is secure, since it does not leak the identity of the
paying cryptographer (in case one of the cryptographers made
arrangement to pay for the meal). Following Ngo [11], to make
this protocol leak information, a slight change is done: coins
are biased, i.e., with probability 0.6 it comes up heads, and
with probability 0.4 it comes up tails.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

204 | P a g e

www.ijacsa.thesai.org

To model the case study, PRISM has been used. PRISM is
a tool for formal modeling and analysis of probabilistic
systems [24]. PRISM describes models using the PRISM
language, a simple, state-based language with a guarded
command notation. The program is implemented in PRISM
and its model is built. Then, export the explicit-state model,
containing the set of reachable states and their labels, along
with the transition matrix. Then, the model is given to SCT to
compute the quotient space and check the security property.
SCT was run on a PC with a Core i3 2.53 GHz CPU and 6 GB
RAM.

Without lack of generality, suppose one of the
cryptographers has made arrangement for the meal, and the
other one is the attacker, i.e., the one who tries to find out the

payer‟s identity. The FPKS KS of the model built by PRISM

has 285 states and 582 transitions. KS has just 3 initial states.

All initial states have the same label value of  0 (label values

are explained in the next paragraph). Thus, a witness execution

0w is extracted from KS and
0w

  K K KS is built.
K has

292 states and 589 transitions. The quotient space / p

 K is

computed in 1.672 seconds and has 13 equivalence classes. As

expected, the initial states and [0]iw do not belong to same

equivalence class and hence SCT correctly recognizes the
model as insecure.

To see how an attacker can infer the identity of the payer,
consider an example scenario where cryptographer 2 is the
attacker and aims to find out which one of the cryptographers 1
or 3 is the payer. Suppose cryptographer 2 and cryptographer 3
both toss tail. Cryptographer 2 can observe the coin of
cryptographer 3, and thus announces „agree‟. Assume
cryptographer 2 observes that cryptographer 1 announces
„agree‟ and cryptographer 3 announces „disagree‟ for the
values of the coins. Two situations corresponding to this case
are shown in Fig. 9 and executions of these situations are
outlined in Fig. 10. In Fig. 10, each state is represented as 10-
tuples listing the current values of the variables (pay, agree1,
agree2, agree3, coin1, s1, coin2, s2, coin3, s3) and labeled
with the current value of parity: 0 for even number of „agree‟s,
and 1 for odd number of „agree‟s. The variable pay contains
the number of the cryptographer who is actually the payer.
Variables agree1, agree2, and agree3 contain the
announcements of cryptographer 1, 2, and 3, respectively: 0 for
„disagree‟, and 1 for „agree‟. Variables coin1, coin2, and coin3
contain the coin values for cryptographer 1, 2, and 3,
respectively: 1 for head, and 2 for tail. Finally, variables s1, s2,
and s3 contain the status values for the three cryptographers: 0
for „not done‟, and 1 for „done‟.

Fig. 9. Two situations corresponding to the case where c2 and c3 both toss

tail.

Fig. 10. Two executions corresponding to the situations 1 and 2.

Execution 1 occurs when cryptographer 1 is the payer and

tosses head. Therefore, cryptographer 1 announces „agree‟ and

cryptographer 3 announces „disagree‟. Execution 2 occurs

when cryptographer 3 is the payer and tosses tail. Thus,
cryptographer 3 announces „disagree‟ and cryptographer 1

announces „agree‟. As seen in Fig. 10, the probability of 1

(i.e. cryptographer 1 tossing head) is more than the probability

of 2 (i.e. cryptographer 1 tossing tail) and hence the attacker

can deduce that cryptographer 1 is more likely to be the payer.
This is a probabilistic leak.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

205 | P a g e

www.ijacsa.thesai.org

VI. RELATED WORK

In the following, some related approaches from the
literature are discussed and the proposed approach is compared
with them.

Barthe et al. [10] propose the idea of self-composition for
logical characterization of information flow properties. Self-
composition reduces the problem of verifying information flow
property for a program P to a safety property for a program
derived from P, by composing P with a renaming of itself.
Then, standard model checking and algorithmic verification
techniques can be used to verify secure information flow.
Terauchi and Aiken [14] introduce 2-safety properties, which
can be refuted by observing two executions. They show that
termination insensitive secure information flow problem is a 2-
safety problem. They further generalize the idea of self-
composition and show that it can be used to verify 2-safety
properties. Huisman et al. [15] use the idea of self-composition
to characterize secure information flow in CTL* and modal µ-
calculus temporal logics. They specify secure information flow
using observational determinism, an information flow property
proposed by Zdancevic and Myers [25] for concurrent
programs. Van der Meyden and Zhang [16] employ a self-
composition-like method to reason about noninterference
properties and develop algorithmic verification techniques for
these properties. They characterize the computational
complexity of the developed verification techniques and
discuss some possible heuristics for optimizing the verification.
Verification methods that use the idea of self-composition
suffer from the state-space explosion problem, i.e., space
needed to store the states and transitions of the program exceed
the available memory. This occurs because in self-composition
a program model is composed with a copy of itself. In the
proposed algorithm, the program model is composed with only
a small part of the model (witness execution). Furthermore,
security analysis is done on the abstract model (quotient space),
not on the concrete model.

Ngo et al. [26] propose scheduler-specific probabilistic
observational determinism as a property to specify secure
information flow for probabilistic multi-threaded programs.
They define the property based on two conditions. First
condition requires that all traces of each public variable starting
in the same initial state are stuttering equivalent. A trace of an
execution is a mapping of states of the execution to the
corresponding state labels. Two traces are stuttering equivalent
if they become the same after removing repeating adjacent
labels. Second condition requires that for all traces of an initial

state is , there exists a trace of an initial state '

is low-equivalent

to is , that is stuttering equivalent to each one of the traces of

is and the probabilities of the traces are the same. Condition 2

of this property is closest in semantics to our definition of weak
probabilistic noninterference. Of course, weak probabilistic
noninterference requires weak probabilistic bisimulation
between executions, which is different from stuttering
equivalence. To verify condition 2 of their property, Ngo et al

build two FPKSs for each pair of initial states is and '

is . Then,

they transform the FPKSs to stuttering-free ones and check

equivalence of the probabilistic languages arising from
executions of the two FPKSs using an off-the-shelf algorithm.

The time complexity of the algorithm is  3O n for each pair

of initial states is and '

is , where n is the number of states of

each FPKS. The deficiency of this verification algorithm is that
it builds two copies of the program for each pair of initial
states. It is clear that if the input program has enormous state
space, then the algorithm would suffer from the state explosion
problem.

A trending field in security verification is proof-based
verification, in which mathematical logic is used to describe
the program, specify the property of interest, and prove
satisfiability of the property. Hoare logic [27] is one of the
most widely-used logics for proof-based verification of
software. Variants of Hoare logic have been proposed for
verifying relational, and in particular, k-safety properties [28-
30]. An advantage of these techniques is that they avoid the
state-space explosion problem, because they do not check the
whole state space of the program. Consequently, they are
suitable for verifying programs with huge, and even infinite,
state space. A disadvantage with these techniques is that they
are semi-automatic. Although many of the proof steps are done
mechanically, some steps need expert user intervention. This
contrasts with algorithmic verification, which is fully
automatic.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, the problem of verifying weak probabilistic
noninterference was discussed. Weak probabilistic
noninterference is a notion of confidentiality for multi-threaded
programs. The behavior of multi-threaded programs running
under the control of a scheduler was modeled by probabilistic
Kripke structures. Weak probabilistic noninterference was
formalized in terms of executions of the probabilistic Kripke
structure. Then, a verification algorithm was proposed to check
the property.

As future work, we plan to use the proposed algorithm to
verify other information flow properties. We believe the
applicability of the algorithm can be extended and it can be
used to verify many security properties, such as strong security
[6] and probabilistic noninterference [6]. In an earlier paper
[31], we used a similar algorithm to verify observational
determinism.

A disadvantage of the proposed verification algorithm is
that it works on explicit model of the program, which may be
too huge for real-world programs. This harms scalability of the
approach. To solve this problem, one can change the algorithm
in such a way that it works on abstract models of the program,
such as binary decision diagrams.

We also aim to modify the algorithm to support
compositional verification, thereby reducing conceptual
complexity and making the analysis scale.

REFERENCES

[1] A. Sabelfeld and A. C. Myers, “Language-based information-flow
security,” IEEE Journal on Selected Areas in Communications, vol. 21,
2003, pp. 5–19.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 10, 2017

206 | P a g e

www.ijacsa.thesai.org

[2] T. M. Ngo and M. Huisman, “Complexity and information flow analysis
for multi-threaded programs,” The European Physical Journal Special
Topics, 2017, pp. 1-18.

[3] D. E. Denning, “A lattice model of secure information flow,”
Communications of the ACM, vol. 19, 1976, pp. 236–243.

[4] J. A. Goguen and J. Meseguer, “Security policies and security models,”
in IEEE Symposium on Security and Privacy, 1982, pp. 11–20.

[5] D. Volpano and G. Smith, “Probabilistic noninterference in a concurrent
language,” Journal of Computer Security, vol. 7, 1999, pp. 231–253.

[6] A. Sabelfeld and D. Sands, “Probabilistic noninterference for multi-
threaded programs,” in Proceedings of the 13th IEEE workshop on
Computer Security Foundations, CSFW‟00, 2000, pp. 200–214.

[7] G. Smith, “Probabilistic noninterference through weak probabilistic
bisimulation,” in Proceedings of the 16th IEEE workshop on Computer
Security Foundations, CSFW‟03, 2003, pp. 3–13.

[8] D. Volpano, C. Irvine, and G. Smith, “A sound type system for secure
flow analysis,” Journal of Computer Security, vol. 4, 1996, pp.:167–187.

[9] G. Smith, “A new type system for secure information flow,” in
Proceedings of the 14th IEEE workshop on Computer Security
Foundations, CSFW‟01, 2001, pp. 115–125.

[10] G. Barthe, P. R. D‟Argenio, and T. Rezk, “Secure information flow by
selfcomposition,” in Proceedings of the 17th IEEE workshop on
Computer Security Foundations, CSFW‟04, 2004, pp. 100–114.

[11] T. M. Ngo. Qualitative and quantitative information flow analysis for
multi-thread programs, PhD thesis, University of Twente, 2014.

[12] T. Antonopoulos, P. Gazzillo, M. Hicks, E. Koskinen, T. Terauchi, and
S. Wei. “Decomposition Instead of Self-Composition for k-Safety,” To
appear in ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), 2017.

[13] N. Grimm, K. Maillard, C. Fournet, C. Hritcu, M. Maffei, J. Protzenko,
A. Rastogi, N. Swamy, and S. Zanella-Beguelin, “A Monadic
Framework for Relational Verification (Functional Pearl),” arXiv
preprint arXiv:1703.00055, 2017.

[14] T. Terauchi and A. Aiken, “Secure information flow as a safety
problem,” in Proceedings of the 12th International Static Analysis
Symposium, SAS‟05, 2005, pp. 352–367.

[15] M. Huisman, P. Worah, and K. Sunesen, “A temporal logic
characterisation of observational determinism,” in Proceedings of the
19th IEEE workshop on Computer Security Foundations, CSFW‟06,
2006.

[16] R. van der Meyden and C. Zhang, “Algorithmic verification of
noninterference properties,” in Proceedings of the Second International
Workshop on Views on Designing Complex Architectures, VODCA‟06,
2007, pp. 61–75.

[17] P. Cerny and R. Alur, “Automated analysis of java methods for
confidentiality,” in Proceedings of the 21st International Conference on
Computer Aided Verification, CAV‟09, 2009, pp. 173–187.

[18] G. Snelting, D. Giffhorn, J. Graf, C. Hammer, M. Hecker, M. Mohr, and
D. Wasserrab, “Checking Probabilistic Noninterference Using JOANA,”
IT - Information Technology, Vol. 56, 2014, pp. 280-287.

[19] D. D‟Souza and K. R. Raghavendra, “Model-checking trace-based
information flow properties for infinite-state systems,” Journal of
Computer Security, (Preprint), 2016, pp. 1–27.

[20] C. Baier and J. P. Katoen, Principles of model checking, MIT press
Cambridge, 2008.

[21] C. Baier and H. Hermanns, “Weak bisimulation for fully probabilistic
processes,” in Proceedings of the 9th International Conference on
Computer Aided Verification, CAV‟97, 1997, pp. 119–130.

[22] C. Baier, J. P. Katoen, H. Hermanns, and V. Wolf, “Comparative
branching-time semantics for markov chains,” Information and
computation, vol. 200, 2005, pp. 149–214.

[23] D. Chaum, “The dining cryptographers problem: Unconditional sender
and recipient untraceability,” Journal of cryptology, vol. 1, 1988, pp.
65–75.

[24] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification
of probabilistic real-time systems,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, CAV‟11, vol.
6806 of LNCS, 2011, pp. 585–591.

[25] S. Zdancewic and A. C Myers, “Observational determinism for
concurrent program security” in Proceedings of the 16th IEEE Computer
Security Foundations Workshop, CSFW‟03, 2003, pp. 29–43.

[26] T. M. Ngo, M. Stoelinga, and M. Huisman, “Confidentiality for
probabilistic multi-threaded programs and its verification,” in
Proceedings of the 5th international conference on Engineering Secure
Software and Systems, ESSoS‟13, 2013, pp. 107–122.

[27] C. A. R. Hoare, “An axiomatic basis for computer programming,”
Communications of the ACM, vol. 12, 1969, pp. 576–580.

[28] M. Sousa and I. Dillig, “Cartesian hoare logic for verifying k-safety
properties,” in Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation, 2016, pp. 57–69.

[29] G. Barthe, J. M. Crespo, and C. Kunz, “Product programs and relational
program logics,” Journal of Logical and Algebraic Methods in
Programming, vol. 85.5, 2016, pp. 847-859.

[30] A. Banerjee, D. A. Naumann, and M. Nikouei, “Relational Logic with
Framing and Hypotheses,” in Proceedings of the 36th IARCS Annual
Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS), 2016, pp. 11:1-11:16.

[31] J. Karimpour, A. Isazadeh, and A. A. Noroozi, “Verifying Observational
Determinism,” in Proceedings of the 30th IFIP International Information
Security Conference, SEC‟15, 2015, pp. 82-93.

