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Abstract—This paper is concerned with the synthesis of 

dynamic model of the redundant manipulator robot based on 

Linear Parameter Varying approach. To evaluate its behavior 

and in presence of external disturbance several motions profiles 

are developed using a new algorithm which produce smooth 

trajectories in optimal time. The main advantages of this 

proposed approach are its robustness and its simplicity with 

respect to the flexibility structure, to the motion profile and mass 

load variations. Numerical simulations with several tasks show 

that in presence of mass load variation the desired trajectory is 

more efficiently followed by the LPV model than the dynamic 

model of the studied mechanism. Its performances are ensured 

using the smoothest trajectory designed by the Eighth-degree 

polynomial profile than the Fifth-degree polynomial one and the 

trapezoidal one. 
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I. INTRODUCTION 

Redundant manipulators robots, the combination of rigid 
and flexible structures mounted in series are of great interest 
in a number of applications in the modern industry [1]-[3]. 

Recently, the use of these manipulators containing flexible 
arm has received much attention. It has been an important 
progress several tasks like in planning [4], [5], design [6] and 
control [7], [8]. It gives more feasibility to robotic 
mechanisms because of the existence of several solutions in 
the specified workspace. 

However, the dynamic complexity of redundant 
manipulator robot related to the flexible structure may cause 
some difficulties especially in high speeds such as external 
disturbance and highly nonlinearity [8]. In order to cope with 
this problem, we propose to apply the linear parameter varying 

approach to the calculated nonlinear model of the redundant 
manipulator robot in the first step. Then, several motions 
profiles are applied to evaluate the system’s behaviour with a 
variable mass load as an external disturbance. 

The contribution of this paper consists of simulating the 
Linear Parameter Varying (LPV) model of the considered 
robotic system using several inputs and evaluating the 
system’s performances in presence of external disturbances 
and discontinuous inputs. 

This paper is organized as follows: In Section II, the 
trajectory generation overview of several motions profiles is 
detailed. Section III deals with the presentation of the dynamic 
modelling of redundant manipulator mechanism followed with 
its LPV model. In Section IV, the simulation results testing the 
dynamic performance of our mechanism by applying the 
motions profiles are analysed with varying of its mass load. 
Section V presents some concluding remarks. 

II. TRAJECTORY GENERATION OVERVIEW 

In the scientific literature, almost all techniques on the 
problem of trajectory planning are focused on the parameter 
optimization [8]. The algorithms with optimized time were the 
first proposed techniques of trajectory generation in the 
literature. Moreover, some applications require the algorithms 
for optimized energy because of limited capacity for the 
energy source (for example underwater robots). 

The regularity’s degree of inputs will directly touch the 
excitation order of vibrational modes of the robotic 
mechanism. A trajectory containing a high and discontinuous 
acceleration causes during movement an important vibrational 
excitation of some joints of the mechanism or its entire 
structure [8]. In order to minimize the effector vibration and to 
suppress its residual vibration, the motion profile must be 
characterized by a limited jerk [8], [9]. So, using continuous 
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acceleration, a motion profile with a limited jerk will be 
obtained and a smooth movement will be guaranteed. Unlike 
excessive jerk, its values can cause the excitation of vibrations 
in the mechanism structure [8]. 

The trajectory generation mechanism generates the 
reference profiles for the control system in order to ensure that 
the manipulator follows the planned trajectories [10]. It 
consists of generating a temporal sequence of the values 
obtained by trapezoidal and polynomial functions as the 
desired trajectory. 

A. Trapezoidal Motion Profile 

Using the mathematical principle appointed by the Bang-
Bang profile, the researcher Hermes formulated the 
trapezoidal motion Profile [11]. This profile consists of 
ensuring the saturation of the acceleration variable of control 
plant when its level is switched several times between its 
extreme values. This saturation leads to optimize the time, 
whereas, it needs the maximum power available to saturate the 
mechanism actuators [12]. 

In order to ensure an optimal time, the trapezoidal motion 
profile leads to generate a continuous speed by ensuring the 
saturation of both the speed and the acceleration. In the rest of 
this paper, a time derivation of such function is usually 
denoted by a number in brackets in the power of this function. 
The joint position of the trapezoidal profile is defined by 
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and its first derivative is given by 
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where q( t )  is the function according to the time of joint 

position,   is the time period of the acceleration phase, T  is 

the time period of movement, i i i i i, , , ,      and i  are 

constants depending on the initial and the final positions. 

Using this profile, its joint velocity is presented along the 
time period of 0.6 seconds as presented in Fig. 1. 

The acceleration saturation produced by this profile is 
performed by switching between two levels. This switching 
causes the problem of torque discontinuity that the DC motor 
cannot track. Moreover, the delivered torque causes a delay in 
response in the real path compared to the desired path [8]. In 
order to remedy these problems, others motions profiles called 
polynomial functions will be proposed. 

 

Fig. 1. Joint position and joint velocity for trapezoidal motion profile. 

B. Fifth-Degree Polynomial Motion Profile 

The three most common approaches are the linear, the 
fifth-polynomial and the eighth-polynomial interpolations 
functions. Its general form of these functions is expressed as 
follows: 

0q(t)=q +h(t)D
     (3)

 

Where, 0q  presents the initial position, h( t )  presents the 

interpolation function and D  presents the difference between 

the final position 
fq and the initial position 0q . In this work, 

we limited to apply the fifth-polynomial and the eighth-
polynomial interpolations functions to the studied mechanism. 

Concerning the fifth-polynomial profile, it produces a 
smooth movement similar to that of the human movement 
joint. The acceleration provided by this motion profile is 
characterized by an excitation of natural modes and a 
minimum jerk, so its movement is appointed by minimum-jerk 
movement [13]. 

The joint position of the fifth-polynomial interpolation 
function is expressed by 
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and its first derivative is given by 
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(1)
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ë û  (5)

 

Along the time period of 0.6 seconds, the joints position 
and velocity of this profile are described in Fig. 2. 
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In order to improve the fifth-polynomial motion profile by 
obtaining a smoother movement and by minimizing the 
response time, the eighth-polynomial function will be 
explained and then simulated. 

 
Fig. 2. Joint position and joint velocity for fifth-polynomial profile. 

C. Eighth-Degree Polynomial Motion Profile 

Smooth trajectories of given path can be generated by 
eighth-degree polynomial interpolation function [12]. It can be 
expressed by 
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and its first derivative can be defined as follows: 
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Where, ndI  is a parameter allowing to obtain the 

smoothest trajectory, it is defined as follows: 

nd max

f

T
I V

q
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     (8)

 

Where, maxV  is the maximum velocity generated during the 

trajectory. The eighth polynomial motion profile allows 
issuing a smooth movement. This smoothness is ensured with 
this motion profile more than that with fifth-polynomial and 
trapezoidal motions profiles. Moreover, using the eighth-
polynomial motion profile, the robustness of the system is 

guaranteed opposite to the external disturbances which are 
presented by the variation of the load mass in our work. 

The joints position and velocity of this motion profile are 
presented along the time period of 0.6 seconds as in Fig. 3. 

 
Fig. 3. Joints position and velocity for eighth-polynomial profile. 

 

Fig. 4. Velocities profiles of the robot manipulator when ndI  is within the 

interval of natural movements. 

In order to generate smooth trajectories using the eighth-

polynomial interpolation function, the parameter ndI  must be 

in the interval [1.251, 1.753], as it is presented in Fig. 4 which 
shows the velocities profiles of the robot manipulator when 

ndI  is within the interval of natural movements. 

The use of eighth-polynomial interpolation function with 

variable parameter ( ndI ) allows generating a big number of 

smooth trajectories for a given path. If this parameter is inside 
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this interval, the eighth-polynomial function generates natural 

movements. We can note that if ndI 1.251 , the generated 

slope of the velocity curve is very sharp at the beginning of 

the trajectory and its end, so this trajectory has the lowest maxV

With regard to the case where ndI 1.753 , the velocity curve 

slope is very smooth at the beginning of the trajectory and its 

end, but this trajectory needs the highest maxV  [14]. 

III. LINEAR PARAMETER VARYING APPROACH FOR 

DYNAMIC MODELLING OF REDUNDANT MANIPULATOR ROBOT 

A. Mechanism’s Description and Assumptions 

Before the dynamic modelling, the redundant manipulator 
robot is presented by the rigid-flexible manipulator 
mechanism [15]. It consists of five rigid bodies and the sixth 
one presenting the end-effector which is considered as a 
flexible body. A mass load appointed by M  is recessed in the 
free extremity of end-effector. An articulated chain with serial 
architectures links the robot bodies which are manipulated 
using six rotary joints. These six rotary joints are ensured by 
DC motors each one of them is placed directly on each link. 
This plant is an example of a non-linear, under-actuated and 
multivariable system. It has as inputs the torques generated by 
the DC motors and as outputs the values of its articulation 
angles. 

With the aim of simplifying its modelling calculation, only 
the two last bodies of the system are taken into consideration. 

The first one 1C  is rigid, whereas the second 2C  is flexible. 

This flexible solid have a mass load at its end will be treated 
as a uniform Euler-Bernoulli beam as shown in Fig. 5. 
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Fig. 5. Two arms of rigid-flexible manipulator robot with its rotary joint. 

Where, iM
, iL

, iI
, iE

, im
 and il  present respectively the 

mass, the length, the area moment of inertia, the Young’s 

modulus, the mass per length’s unit of 
thi  solid, the length of 

the 
thi  element and ir , iJ

 are respectively the radius and the 

inertia’s moment having brought back to the 
thi  articulation. 

Moreover, i ( t )q
 presents the rotation angle of the solid 

thi  

around the axis Z . 

The modelling assumptions will be taking into 
consideration as follows: 

- The robot motion is assumed to be in the vertical plane. 

- The shear strain, the effect of the axial force and the 

rotational inertia of the flexible arm are supposed to be 

negligible. 

- The length of the flexible arm is assumed as constant, in 

order to avoid the problems appearing from the variability of 

the flexible arm. 

- In order to guarantee the manipulator vibration in the 

horizontal direction, the depth is considered to be smaller than 

its length. 

B. Dynamic Modelling of the Studied Mechanism 

The dynamic modelling of a rigid-flexible manipulator 
mechanism provides a description of the relationship between 
the structure motion and the joint actuators torques [16], [17]. 
The simulation allows analysing the dynamic performances of 
the manipulator structure, to test the trajectory planning 
algorithms and to design the control strategies without the 
need to use the physical system. 

In general, the two most common approaches used to 
establish the dynamic equation of rigid-flexible manipulator 
mechanism are the Euler-Lagrange formulation and the 
Newton-Euler method [18]. 

The Newton-Euler approach consists of correlating the 
forces coupling acted on the links displacement and the joint. 
But, using this method, it is difficult to obtain the dynamic 
modelling of the robot with several joints. The Euler-Lagrange 
formulation is described by the energy equilibrium equation 
which is more adapted in analysing the constraints of the links 
motion [19]. 

To develop the dynamic model of the studied mechanism, 
we will apply besides the Euler-Lagrange approach, the 
fundamental principles of dynamics and kinematics and the 
finite elements. 

By using the total potential and kinetic energies denoted 

respectively by 
pTotE  and cTotE , the Lagrangian is given by 

cTot pTotL E E= -
     (9)

 

According to [20], the Euler-Lagrange equations of motion 
is described by 

n ( 1 )

jj

d L L

dt qq

æ ö¶ ¶÷ç ÷ç= -÷ç ÷ç ÷ ¶¶è ø
t

    (10)

 

Where, nt  states the generalized torques vector at the 

robot joint, j  is body index ( j 1,2= ), the vectors 
jq  and 

( 1 )

jq  present, respectively, the joints angles and its velocities. 

From the Fig. 6, the positions of two points 
1P  and 

2P  placed 

respectively on the first rigid body and on the second flexible 
arm are given by 

1 1 x1P x e
     (11) 

2 1 x1 2 x2 2 y2P l e x e y e  
    (12)
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Its derivatives are respectively described as follows: 

1 1 1 x1V x e
     (13) 

2 1 1 2 2 1 2 x2 1 1 2 2 2 1 2 y2V l S y ( ) e l C y x ( ) e                   (14) 

where 2 2S sin( )
 and 2 2C cos( )

. 

In all expressions, the trigonometric function isin( )q  is 

appointed by iS  and the trigonometric function icos( )q  is 

appointed by iC . 

In our work, it is assumed that the flexible body is divided 
into two elements and its lateral displacement is described by 
the B-spline functions [21], [22]. 

The joint angles and the nodal displacements identify the 
total degree of freedom of the system presented by 

1 2 11 12 21 22[ , , , , , ]Tq q q q q 
   (15)

 

Where, 
11q  and 

21q  present respectively the nodal 

displacement related to the first node, 
12q  and 

22q  present 

respectively the nodal displacement related to the second 
node. 

The calculation of kinetic and potential energies is 
performed from the elemental energies of each body. For the 

total kinetic energy cTotE , it is evaluated as the sum of the 

kinetic energy of the rigid body and that of the flexible body. 
The general expression can be given by 

i

i i

i

l

cTot 1 i i i i i i i i i x l
r
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E J w w mVV dx M VV
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|
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Where, iw  is the absolute angular speed of the system and 

iV  is the absolute speed of any point of the 
thi  body. 

The kinetic energy of the rigid body 1T  can be deduced as 

follows: 
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The flexible body can be presented by uniform Euler-
Bernoulli beam [23]. The kinetic energy can be given by 

2 2r 2 fT T T= +
     (21)

 

Where, 2rT  is the kinetic energy of rigid part of the 

flexible arm and 
2 fT  is the kinetic energy of the flexible part 

of this arm. The energy 2rT  can be deduced as follows: 
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According to the generalized coordinates, the energy 
2 fT  

can be deduced as follows: 

2 1

1
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Where, h  and ( 1 )h present the vectors of nodal variables of 

the elementary bodies of the flexible arm and the derivatives 

and 
ffM  deduced from the Hermite Spline Functions presents 

the mass matrix of the flexible part. 

The total potential energy 
pTotE  can be composed of the 

strain energy aU  delivered by the centrifugal forces at a point 

on the Bernoulli’s beam, the strain energy bU  due to 

deformation resulted by deflection, the energy cU  delivered 

by the engines and the potential energy 
gU  due to gravity. 

The energy aU  is deduced from 

2

2

l

2 2

a 2 2

2 2r

y y
U R( x ) dx

x x
d d

æ ö æ ö¶ ¶÷ ÷ç ç÷ ÷- = - ç ç÷ ÷ç ç÷ ÷ç ç¶ ¶è ø è ø
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  (27)

 

Where, 2R( x )  presents the axial load of a point of the 

Bernoulli beam located at 2x  and 2y  is the elementary 

displacement which can be expressed by 

4

2 i i

i 1

y ( x,t ) U ( t )f
=

= å
    (28)
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Where, i  is the Hermite Spline functions and iU ( t )  is the 

movement (rotation or translation) of resulted by each 

fictitious joint of the flexible arm [16]. The energy bU  can be 

expressed by 

2

2

2l

2
b 2 2 22

2r

y1
U E I dx

2 x

æ ö¶ ÷ç ÷= ç ÷ç ÷ç¶è ø
ò

    (29)

 

Concerning the energy cU , it is described by 

2

c i i

i 1

U u q
=

= - å
     (30)

 

Where, iu  is the 
thi  input torque produced by the 

thi  

actuator. Then, the energy 
gU  is given by 
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Where, according to the base, iH  presents the 
thi  body 

height and ih  is that of the gravity centre of the 
thi  body. 

Using the previous expressions, the Lagrangian can be 
deduced with respect to (9). Then, according to the joint 
variable vector with respect to the time, the derivatives of 
Lagrangian are deduced. In terms of generalized coordinates, 
the dynamic equation of the mechanism’s model can be 
calculated and deduced as follows: 

[ ] ( 2 ) ( 1 )

n a d

( 1 ) ( 1 )

a

M M ( q ) M ( q ) q D q

K K ( q,q ) q N( q,q ) Bu

+ + +

é ù+ + + =ê úë û   (32)

 

Where, the sum of the matrices M  and aM ( q )  presents 

the inertia matrix due to rotation induced by the axial load 
where the first matrix is linear whereas the second is 

nonlinear, nM ( q )  presents the inertia matrix due to the 

additional rotation delivered by the axial load which is 

nonlinear, dD  presents the damping linear matrix, K  

presents the generalized geometric stiffness matrix which is 

nonlinear, ( 1 )

aK ( q,q )  presents the geometric stiffness matrix 

due to the rotation induced by the axial load which is linear, 
( 1 )N( q,q )  presents the sum of the vector of Gravity's torque 

and the vector of inertial forces with the second derivatives of 
the coordinates of the system which is nonlinear, B  presents 
the input matrix and ending with u  which presents the input 

torques delivered by the DC motors. 

C. Linear Parameter Varying Approach for Dynamic Model 

As shown in (26), the dynamic model of the studied 
system is nonlinear. This nonlinearity caused some problems 
which can be avoided using the linearization approach. 
However, this approach is available only in a delimited region 

and it does not consider the external perturbations. In order to 
remedy the limits of the linearization method, the LPV 
approach is applied to the differential equation of the rigid-
flexible manipulator robot. Several approaches can be used the 
transformation of a nonlinear dynamic model into an LPV 
model [24], [25]. 

The PLV approach is defined as a linear time-varying 
system presented by its state-space matrices which are given 
by functions of some varying parameters. It consists of 
adopting some change of variable methodology which is based 
on function substitution for the LPV dynamic model of the 
studied mechanism. In general, the LLV dynamic model can 
be deduced by continuous-time state-space equations as 
follows: 

     x( t ) A t x( t ) B t u( t )  
 (33) 

     y( t ) C t x( t ) D t u( t )  
 (34)

 

Where,  

( t ) , t 0   
   (35)

 

Where, y( t ) , x( t )  and u( t )  are respectively the outputs, 

the inputs and the states of the system,    x xn n
A t 

 , 

   x un n
B t 

 ,    y xn n
C t


  and   D t  are time-

varying matrices depending to  t  and   is the polygon of 

vertices detailing the limit values of the variable parameters. 

In our work, the input output and feedforward matrices are 

invariant that is    totB t B     totC t C   and 

  D t 0   can be considered. So, the particular form of 

LPV system of our model can be shortly presented as follows: 

 lpv totx( t ) A ( t ) x( t ) B u( t ) 
 (36) 

toty( t ) C x( t )
    (37)

 

Where, lpvA  presents matrix which depends on time-

varying parameters given by 

lpv
1 2

3 4

0 0 1 1
0 0 1 1

A
0 0 (t) (t)
0 0 (t) (t)

  
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 
 

  
   (38) 

Each variable parameter of the vector i (t)  and its time-

derivative vary between known extremal values: 

i i i(t) ,    
 and 

i i i(t) ,   
 

. 

IV. NUMERICAL SIMULATIONS AND DISCUSSION 

The rigid-flexible manipulator robot is installed in the 
laboratory of robotics in the University Polytechnic of 
Catalonia (UPC) in Spain presented as follows in Fig. 6. 
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After obtaining the LPV dynamic model, for several 
motions profiles, the torque will be applied to each joint of the 
robot. Table 1 summarizes the numerical values of parameters 
of the studied mechanism. 

Rigid bodies

Flexible arm

Variable mass load

 
Fig. 6. Rigid-flexible manipulator robot. 

TABLE I. DYAMIC PARAMETERS 

Parameter Unit Value 

1E  GPa  71  

2E  GPa  196  

1I = 2I  
4m  

-121.6710  

1m = 2m  Kg / m  0.831 

1r = 2r  m  0.05  

1J = 2J  
2Kg.m / rad  0.05  

1L = 2L  m  0.375  

1M  Kg  0.05  

2M  Kg  (0.05)²  

M  Kg  0.01  

In our work, the perturbation is presented by the mass load 
variation and the initial value of this variable is announced in 
the previous table. 

In order to illustrate the validity of the LPV dynamic 
model of the rigid-flexible manipulator system and 
effectiveness of the motion profiles in presence of the 
parameter perturbation, we perform the simulation in 
MATLAB using a PID controller considering the parameters 
of Table 2. The parameters of PID controller are chosen by 
varying manually and gradually its values in order to obtain 
the best tracking of the robot at the reference. 

TABLE II. PID CONTROLLER PARAMETERS 

Parameter Unit Unit 

P1K  _  500  

I1K  _  1  

D1K  _  
-310  

1N  _  50  

D. With Trapezoidal Profile as Input 

In the first case, let apply the trapezoidal motion profile as 
input to the redundant manipulator robot then the mass load is 
increased in order to evaluate the system behaviour in 
presence of disturbance as shown in Fig. 7. We can note that 

the input discontinuity in one hand and in the other hand the 
mass load variation has an important impact on the studied 
system, especially on its flexible structure. 

 

Fig. 7. Torque for trapezoidal profile applied to each joint. 

 

Fig. 8. Torque for fifth-degree polynomial profile applied to each joint. 

E. With Fifth-Degree Polynomial Profile as Input 

In another case, a fifth-degree polynomial profile is 
applied as input along the time period of movement of 0.6 
seconds. Fig. 8 shows that this profile keeps the continuity in 
form of this motion however it does not retain its sign. 

With a variable mass load M , it is clear that increasing 
M  lead to a higher difference between input and system 

response as aD  increases. From this, it can be deduced that a 

variation of M  and aD  is proportional. 

F. With Eighth-Degree Polynomial Profile as Input 

Using the same period time of the previous case, the 
eighth-degree polynomial profile is used to test the system 
performances in presence of disturbance described by a 
variable mass load (Fig. 9). 

This profile is characterized by the parameter ndI  which 

allows having the smoothest trajectory. In our work, this 

smoothest trajectory is maintained in ndI 1.452 . 

After applying several tasks with variable mass load, more 
the mass load increases more the error between the desired 
trajectory and the system output increases. 
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Fig. 9. Torque for eighth-degree polynomial profile applied to each joint. 

V. CONCLUSION 

This paper focuses on the simulation of a redundant 
manipulator robot. For this purpose, this robot is dynamically 
modelled using the LPV approach by applying several 
motions profiles. These inputs are characterized by a 
continuous torque in minimum time. 

The contribution of this paper relies on evaluating the 
system behaviour by adding to the external perturbation 
created by the flexible structure of its second arm an external 
vibration provided by the discontinuous torque applied to the 
system in a first test and then adding a smooth torque as a 
motion profile. An improvement in the system performance is 
obtained through the choice of motion profile characterized by 
the torque continuity and the movement smoothness. 

The results with several tasks demonstrate the 
effectiveness of the smooth motions profiles and the 
robustness of LPV modelling using variable mass load as an 
external distribution. 

The future work will be interested in the synthesis of a 
command that takes into account the flexibility structure of the 
robot on the one hand and on the other by the input 
smoothness. 
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