
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 10, 2017 

318 | P a g e  

www.ijacsa.thesai.org 

A Novel Algorithm to Improve Resolution for Very 

Few Samples

Sidi Mohamed Hadj Irid 

STIC Laboratory, Faculty of Technology 

University of Tlemcen, BP119 Chetouane 

Tlemcen, Algeria 

Samir Kameche 

STIC Laboratory, Faculty of Technology 

University of Tlemcen, BP119 Chetouane 

Tlemcen, Algeria

 

 
Abstract—This paper presents a new technic to improve 

resolution and direction of arrival (DOA) estimation of two 

closed source, in array processing, when only few samples of 

received signal are available. In these conditions, the detection of 

sources (targets) is more arduous, and even breaks down. To 

overcome these problems, a new algorithm is proposed. It 

combines spatial smooth method to widen the spatial resolution, 

bootstrap technique to estimate increased sample size, and a high 

resolution technique which is Multiple Signal Classification 

(MUSIC) to estimate DOA. Through different simulations, 

performance and effectiveness of the proposed approach, 

referred to as Spatial Smooth and Bootstrapped technique 

“SSBoot’’, are demonstrated. 
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I. INTRODUCTION 

When two sources are very close in space in the ambiguity 
range, the radar detects them like one target. The spatial 
resolution limits for two closely spaced sources in the context 
of array processing is still an active research [1]-[3]. In fact, 
there has been a tremendous involvement in the investigation 
of how DOA estimation of many closed source (targets) can be 
estimated. Most of them, [4], [5], are based on high resolution 
methods, e.g. Multiple Signal Classification (MUSIC) or 
Estimation of Signal Parameter via Rotational Invariance 
Technique (ESPRIT), and detect sources using eigenvalues 
obtained from covariance matrix of samples. However, the 
main issue of high resolution method for DOA‟s estimation is 
predetermination of the model order, since these techniques 
requires imperatively number of sources, as input parameter 
within estimation. This estimation is based on information 
theoretic criteria like AIC (AKAIKE) and Rissanen‟s 
minimum description length criterion (MDL) algorithms to 
estimate DOA of sources [2], [5]-[7]. 

In other hand, performance of these techniques stays very 
poor for low samples, low SNR, correlated source signals and 
presence of impulsive white noise. To improve the resolution, a 
spatial smoothing technique is used. This technique divides the 
array into multiple overlapping sub-arrays. In each sub-array, 
the correlation matrix is estimated from bootstrapped data 

samples. We exploit the idea of the author in [3] and applied 
MUSIC in each sub-array; to estimate the number of sources as 
number of peaks [1], [8], [9]. 

Unfortunately, the most existing methods are less efficient 
and lost large performance or even breakdown when only few 
samples of received signal are available. To reduce this hurtful 
effect and improve the robustness of the covariance estimator, 
a robust non-parametric bootstrap method estimator was 
proposed [10]-[13]. Based on time random sampling of original 
data, to estimate its sampling distribution without any model 
assumption. 

In this work, a new algorithm is proposed. It combines 
spatial smoothing, a high resolution method (MUSIC) and 
Bootstrap technique to estimate closely spaced number of 
sources and their DOA‟s when only few samples of received 
signal are available. First, it‟s used bootstrap method to 
estimate the covariance matrix, then spatial smoothing curves 
up the antenna array into L sub-networks. In each sub-network, 
MUSIC algorithm allows to estimate the number of closely 
spaced sources and their DOA‟s. Numerical simulations are 
given to assess the performance of the used technique. 

The paper is organized as follows. Data, array model and 
MUSIC description are introduced in Section 2, followed by 
spatial sampling model description in Section 3. Then 
bootstrap technique is presented in Section 4. The proposed 
algorithm “SSBoot” is described in Section 5. Simulation 
results are given in Section 6. Finally, discussion and 
conclusion are given in Section 7. 

II. PROBLEM FORMULATION 

Just to simplify the notation, we assume a Uniform Linear 
Array (ULA) composed of M sensors, with equip-spacing 
d=λ/2 as shown in Fig. 1; where λ is the wavelength of the 
source signal. Consider a K narrowband far-field uncorrelated 
source impinging on the array with (M > K), such that sources 
have a    direction of arrival (DOA) θk, with k=1... K. 

A. Array Signal Model 

The received snapshots at this array, at instance t are given 
by [1], [14]. 
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Fig. 1. Localization of two closely spaced sources impinging on ULA. 

The received signal corrupted by additive white Gaussian 
noise is presented at instance t by mathematical equation [1], 
[15], [16]: 

  ( )     ( )   ( )       (1) 

Where 

   [         ]
     (2) 

is the steering matrix (MxK) full rank,  
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and each column is written in function of the received 
signal as follows: 
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Superscript (.)
T
 presents the transpose operation. Where 

yk(t) denotes the output of  k
th
 sensors, sq(t) source signal and 

nk(t) is a stationary noise model, temporally white, zero-mean 
Gaussian random process independent of the source signals. 
The covariance of received data is [1], [17], [18]: 
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The superscript (.)
H
 stands for the conjugate transposition, 

σ
2
 is variance and I indicate the identity matrix. 

Furthermore, the covariance matrix is estimated by [2], [3], 
[17], [18]: 
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The eigenvalues are given as follows: 
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where the first K eigenvalues belong to the source signal, 
and the last (M-K) to the noise. 

MUSIC plots the pseudo-spectrum [2], [19]: 
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Where En is the (Mx(M-K)) noise subspace composed of 
the eigenvectors associated with the noise. 

If we assume two closely spaced source where their DOA 
are θ1 and θ2 such as: 

  21     with  5°    

B. Spatial Smoothing 

In this section, it‟s described the use of spatial smoothing in 
proposed algorithm in order to improve resolution of very close 
spaced sources. The ordinary spatial smooth consists of 
dividing the whole array into L sub-arrays shifted one another 
by one sensor; the rest of sensors are overlapped as shown in 
Fig. 2. It estimates the correlation matrix as the average of all 

correlation matrices from the sub-arrays  ̂  and can be 
represented as: 

 ̂  
 

 
∑  ̂    
               (12) 

 
Fig. 2. An ULA antenna is divided into L sub array. 

Our method is based on representations of Abed-Meraim et 
al. in [7] who divided the whole array into interleaving sub-
arrays. In each sub-arrays the received signal is given by: 
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Where m is ( )
th
 array and varies from 1 to L, and NL= M/L. 

The same, the steering matrix for the m array is given by: 
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Where T is a snapshot number and q is the number of 
source signal received in each sub-array. 

In this case, and unlike results of Abed-Meraim in [3], [19], 
we are sure that number of sensors is always greater than 
number of sources, and therefore it respects the assumption to 
apply MUSIC. 

Thus, that spatial smoothing or spatial sampling 
considerably improves the resolution. Indeed, according to (13) 
and (14), the angular part in the matrix output are multiplied by 
a factor (NL-1) which is greater than 1. Therefore, the angular 
separation is widened and the resolution is improved. 

C. Bootstrap Replication 

In this section, non-parametric bootstrap resampling 
techniques are presented, designed for independent and 
identically distributed data. However, the assumption of iid 
data can break down during operation either because data are 
not independent or because data are not identically distributed 
[7], [8].The original data points: 

  (            )         (15) 

with probability 
 

 
 for each sample. 

A bootstrap sample X* is obtained through replacement of 
original data points by random sampling (n times) [10]-[12]. 

Some bootstrap samples can be: 
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  ( )  (            ) 
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with n samples. 

We assume that the xi‟s are independent identically 
distributed (iid), each having distribution F. Bootstrap proposes 
to resample from a distribution chosen to be close to F in some 
sense. This could the empirical distribution ̂, resampling from 
 ̂is referred to as non-parametric bootstrap [10]. 

At the end we obtain: 
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Herein, we create a number B of resamples   
      

 . The 
resampled boostrapis an unordered collection of n samples 
points drawn randomly from   with replacement, so that each 

  
 has probability 

 

 
of being equal to any one of the Xj‟ s. In 

other terms [8], [9], [11]: 
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This means that   is likely to contain repeats. The 
probability that a particular value xi is left out is 

   (  
 

 
)        (19) 

We exploits the resample bootstrap algorithm described in 
[9] to reproduce samples and use it in our proposed “SSBoot” 
algorithm. 

III. SPATIAL SMOOTH BOOTSTRAPPED “SSBOOT” 

ALGORITHM 

Firstly, the proposed method is based on increasing the 
number of snapshots received on array network using bootstrap 
technique. Secondly, each of sub-arrays is processed separately 
and finally the average DOA estimation is considered. 

Determination number of sources first is essential for high-
resolution method. It should use AIC or MDL algorithm to 
determine the model order. But, in this work, we followed the 
same spirit given in [3], [7]. We estimated the source number 
using beamforming or Capon method applied to the global 
array output. If q peaks appear, we re-apply MUSIC algorithm 
by restricting our research in intervals around each q peaks. 

Applying spatial smoothing yields to divide the array 
network into L overlapping sub-arrays thus, we obtain L 
different DOA‟s estimates. Among these L sets, we keep only 
the highest number of peaks in each interval. 

Our new algorithm, we named “SSBoot” can be 
summarized as follows: 

 Step 1: Applying bootstrap technique to generate new 
samples by sampling with replacement of original data. 

 Step 2: First estimation number of sources on global 
array network using Capon method. 

 Step 3: Defining set of intervals where search are 
refined. 

 Step 4: Divide the global antenna array into L shifted 
overlapped sub-arrays. 

 Step 5: On each sub-array, we apply MUSIC 
Algorithm. The number of MUSIC spectrum peaks 
equals to number of sources.  
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 Step 6: The number of sources is selected from p 
intervals for L sub-arrays that present maximum 
number peaks, 

 Step 7: Computing the final DOA, after sorting and 
calculating the average from each interval and selecting 
sub-arrays with maximum peaks. 

   ̂  
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           (20) 

Where   
 ̂ , l =1..p  represents p estimates DOA from 

different sub-arrays. 

IV. SIMULATION AND RESULT 

To illustrate the performance of the proposed method, some 
numerical results are presented to analyse and compare 
behaviour estimation of the new proposed algorithm which is 
named “SSBoot”. A Uniform Linear Array (ULA) is 
constituted of N=10 sensors spaced of half-length wave length 
is employed. Assume that there are two closely spaced 
uncorrelated narrowband signal sources with the same 
wavelength λ, θ1= 32° and   θ2= θ1+δθ, where δθ is a very small 
angle difference. Simulation results were obtained based on 
1000 Monte Carlo simulation. 

Performance of bootstrap for varying snapshots for arrival 
angles of  -40° -20° 60° and 80° respectively, are illustrated in 
Fig. 3. When a few samples (20 snapshots) are received the 
MUSIC spectrum response is almost flat and the DOA is 
difficult to extract, but when these samples are bootstrapped at 
200, 1000 the 2000 samples, the responses increases and the 
peaks become noticeable. However, it demonstrates the 
effectiveness of the bootstrap method to improve the detection 
and estimation of DOA. 

Fig. 4 presents the probability of target detection in 
percentage for various angular separations; it illustrates the 
performance achieved by our method for few snapshots with 
low SNR. In fact, for received low samples, the detection is 
weak; it increases slowly when SNR increases. But when these 
samples are bootstrapped at 1000 snapshots the estimation rate 
improves and reaches the maximum rate with low SNR. 
However, our algorithm SSBoot bootstraps the received 
samples and uses the spatial sampling to improve its estimation 
performance for the same number of snapshots. Indeed the 
very close spaced sources are detected for low SNR. 

 
Fig. 3. MUSIC Spectrum for various snapshots. 

Fig. 5 depicts the probability of detection rate in percentage 
for various SND in dB; it shows that for few samples the 
detection nearly breaks down. With bootstrap at 1000 
snapshots, the detection is slightly achieved because of low 
SNR values. The SSBoot proposed method overcame this 
limitation by ensuring a highest detection rate for low SNR and 
very close separation sources. 

Fig. 6 illustrates, the DOA‟s MSE (Mean Square Error) vs. 
SNR for L=2, and angle difference δθ =5°, it can be observed 
that the MSE for Only bootstrapped MUSIC method and our 
technique SSBoot that uses Bootstrap, spatial smooth and 
MUSIC  have almost the same estimation accuracy. It means 
that SSBoot improves the resolution with no estimation 
accuracy enhancement. 
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Fig. 4. Angular separation vs. detection rate. 
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Fig. 5. SNR vs. Detection rate. 
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Fig. 6. RMSE vs. SNR. 
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V. CONCLUSION 

In this paper, we have introduced a new technique based on 
the combination of bootstrap technique, spatial smoothing and 
MUSIC method to improve resolution and the estimation of 
closed source number. It was shown that for the case of small 
sample size, the bootstrap technique is used to estimate and 
evaluate the resample data. The spatial smoothing was also 
presented as spatial sampling method, which provides different 
sub-arrays and widens the angle separation of closed source 
when MUSIC Algorithm is applied. 

The results presented in this paper prove that our method is 
attractive when few samples are available and outperforms the 
ordinary technique at difficult scenarios especially for very 
close source and low SNR. Simulations have shown that spatial 
sampling and bootstrap techniques outperforms DOA 
estimation, when MUSIC method is applied for small sample 
size and very close sources. But it‟s demonstrated that SSBoot 
technique can‟t improve the estimation accuracy. 
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