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Abstract—Role of packages in organization and maintenance
of software systems has acquired vital importance in recent
research of software quality. With an advancement in modu-
larization approaches of object oriented software, packages are
widely considered as re-usable and maintainable entities of object-
oriented software architectures, specially to avoid complicated de-
pendencies and insure software design of well identified services.
In this context, recently research study of H. Abdeen on automatic
optimization of package dependencies provide composite frame of
metrics for package quality and overall source code modulariza-
tion. There is an opportunity to conduct comprehensive empirical
analysis over proposed metrics for assessing their usefulness and
application for fault-prediction, design flaw detection, identifica-
tion of source code anomalies and architectural erosion. In this
paper, we examine impact of these dependency optimization based
metrics in wide spectrum of software quality for single package
and entire software modularization. Our experimental work is
conducted over open source software systems through statistical
methodology based on cross validation fault-prediction and cor-
relation. We conclude with empirical evidence that dependency
based package modularization metrics provide more accurate
view for predicting fault-prone packages and improvement of
overall software structure. Thus, application of these metrics can
help the developers and software practitioners to insure proactive
management of the source code dependencies and avoid design
flaws during software development.

Keywords—Software quality; package-level metrics; software
modularization; fault-prediction

I. Introduction

Software engineering is aimed at developing mechanism
and tools that automates the manual operation. For the assess-
ment of software quality, functional stability and maintainabil-
ity of its design are prime objectives. Recently, packages have
acquired core interest for proper organization of source code
entities due to growing complexity of classes in object oriented
(OO) source code paradigms. A package is relatively easier
to re-use, re-factor and test, eventually reducing maintenance
cost [1], [2]. There have been increasing efforts to analyze
packages and their architecture in object oriented systems to

determine quality attributes of object oriented source code
[3], [4]. Conventionally, software evolution process has been
subject to structural and architectural changes in the source
code, targeting suitable and organized placement of classes
in particular. However, such re-factoring practices can cause
drift and deterioration in modularization quality of software
[5]. Consequently, to insure flexible software modularization,
optimization of package structure and their connectivity can
be a vital maintenance task. In practice, if quality of package
dependencies is evaluated quantitatively, then modifying its
structural components to avoid potential flaws becomes easier
task.

Although, there have been attempts to improve the modu-
larization of software through heuristic search methods using
decomposition techniques and deterministic procedures. These
are frequently based on clustering approaches which do not
address the source code design issues at precise level of
granularity like, classes or packages [6], [7]. Furthermore, the
existing approaches of software modularization for changing
the structure of package entail costly maintenance overhead,
complicating its understandability and comprehension [8], [9].
Abdeen et al. recently proposed a package level metrics suite
which support the modularization of source code architecture
using existing package structure, thus without affecting preva-
lent software design adversely [10].

Despite different existing efforts of proposing metrics to
characterize the packages in object oriented systems, there
is a need to evaluate capability of these metrics to measure
intended quality attributes of software [11], [12]. In this paper,
we examine the usefulness of package quality metrics proposed
by Abdeen et al. in wide spectrum of software quality, i.e.,
fault-proneness, vulnerability detection, coding standard viola-
tion. We also determine the correlation of modularization met-
rics presented by Abdeen et al. with already studied modularity
metrics of different application domains. In this context, First,
we develop prediction model for fault-proneness of packages
with logistic regression in comparison to traditional Martin
package level metrics suite and linear correlation models
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with post-release faults (reported in standard bug repositories),
vulnerabilities and coding standards are examined. Secondly,
we form correlation model among different modularization
metrics to understand and evaluate the their relationships and
its impact over entire modularization design. Experimental
results on open source software systems show that: 1) Package
Quality metrics by Abdeen et al. are better candidates of fault-
proneness when used in combination with Martin’s metric
suite in inter as well as intra releases of software systems;
2) Most of Package Quality metrics have shown reasonable
association with actual post-release faults, vulnerabilities and
coding standards violations detected through open source tools
like FindBugs and PMD; 3) Package level Modularization
metrics by Abdeen et al. can be used to evaluate the external
strength of overall structural design from the perspective of
cohesion, coupling and cyclic/acyclic dependencies. It asserts
that improper handling of dependencies at package level can
further deteriorate source code causing operational complexity
and difficult re-usability.

The rest of the paper is organized as follows. Section
2 explains the motivation of research study in the context
of Software Quality. Section 3 describes investigated metrics
with their formal definitions. Section 4 provides illustrative
example for comprehension of metrics computation. Section 5
presents detailed empirical study with stated research objec-
tives, methodology and obtained results using graphical and
tabular representation. Section 6 illustrates most significant
related work in the literature of package level fault-prediction.
Implication of research study is discussed in Section 7. Threats
to validity are explained in Section 8 followed by Conclusion
as Section 9.

II. Motivation

Over the years, a variety of quality models (QMs) has been
proposed objectively to support the software development,
through description, assessment and prediction of software
quality [13]. These models evaluate quality of software systems
using defined metrics. Examples of metrics-based models are
Maintainability Index(MI) that determines quantitative value
of maintainability [14], Modularization Quality (MQ) that
evaluates cluster based cohesion or software architecture [15].
However, there is rare study over the package based design
of source code for maintenance objectives. In this section, we
briefly present the motivational context of our research. To
achieve this, we discuss domains of these QMs relevant to our
paper.

A. Static Analysis based Quality Assessment

Static analysis is carried out to analyze the source code
using mainly using open source tools to discover security
vulnerabilities. These vulnerabilities can cause critical system
malfunction are economically harmful as well. Clearly, tech-
niques that can reduce occurrence of bugs would be beneficial.
To achieve this goal, static analysis tools have been designed
to report early warnings and design anomalies. Although, their
effectiveness is realized some settings, however, usefulness of
warnings generated by them is still unclear. Recently, two
static analysis tools FindBugs and PMD have been empirically
reported to have less false positives [16] which are briefly
introduced below:

1) FindBugs: FindBugs, developed by Hovemeyer et al.,
is a tool that analyzes the java byte-code against various
families of warnings characterizing common bugs in many
system [17]. The main warnings provided by Findbugs are: null
pointer de-reference, method not checking for null argument,
close() invoked value that is always null. It actually checks
the correctness, bad practice, malicious code vulnerability and
performance, etc.

2) PMD: PMD is static analysis tool that finds defects,
deadcode, duplicate code, sub-optimal code and overcompli-
cated expression, was first developed by Copeland et al. [18].
PMD operates over Java source code unlike FindBugs which
analyzes byte-code. PMD statically warns many patterns, such
as, jumbled incremented, return finally block, class cast excep-
tion, etc.

B. Prediction based Quality Assessment

These models are usually based on source code metrics
or defection detection to estimate number of systems faults,
failures chances and maintenance effort. Mostly, software fault
proneness prediction is taken as good example of these models.
Other examples include Software Reliability growth (SRGM)
and modeling of processes associated with software failures
[19].

III. Description of StudiedMetrics

As a matter of best programming practices, software code
should adhere to basic principle of high cohesion and low cou-
pling. However, package optimization process should facilitate
any structural change within current design of modularization,
otherwise, subsequent decision of modification shall make
software system vulnerability prone. Metrics proposed by Ab-
deen et al. provide an approach for automatic optimization of
software modularization by minimizing the cyclic connections
(direct cyclic-connectivity) among the packages. There are
mainly two suites of proposed package measure, i.e., 1) for
quality of single package; 2) evaluation of modularization qual-
ity on based cyclic/acyclic dependencies which are described
in Tables I and II.

TABLE I. Description of Investigated Package QualityMetrics

Metric Definition
Package Cohesion CohesionQ(p) =

|pInt.D |
|pD |

Package Coupling CouplingQ(p) = 1 − |pPro.P∪pCli.P |
|pD |

Package Cyclic Dependencies CyclicDQ(p) = 1 −

∣∣∣∣pCyc.D
∣∣∣∣

|pD |

Package Cyclic Connections CyclicCQ(p) = 1 −

∣∣∣∣pCyc.Con
∣∣∣∣

|pD |

• CohesionQ(p): Measures ratio of Internal Dependen-
cies of package to all dependencies among and within
a package.

• CouplingQ(p): Measures ratio of package providers
and clients to all dependencies among and within a
package.

• CylicDQ(p) : Measures ratio of class cyclic depen-
dencies within the package to all dependencies of
package.
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• CylicCQ(p) : Measures ratio package cyclic connec-
tions among the packages to all dependencies of
package.

TABLE II. Description of Investigated PackageModularizationMetrics

Metric Definition
Inter-Package Dependencies IPD =

∑|Mp |
i=1

∣∣∣piExt.Out.D

∣∣∣
ICD =

∑|Mc |
j=1

∣∣∣c jOut.D

∣∣∣
CCQ(M) = 1 − IPD

ICD

Inter-Package Connections IPC =
∑|Mp |

i=1

∣∣∣piOut.Con

∣∣∣
CRQ(M) = 1 − IPC

ICD

Inter-Package Cyclic Dependencies IPCD =
∑|Mp |

i=1

∣∣∣piOut.Cyc.D

∣∣∣
ADQM(M) = 1 − IPCD

ICD

Inter-Package Cyclic Connections IPCC =
∑|Mp |

i=1

∣∣∣piOut.Cyc.Con

∣∣∣
ACQM(M) = 1 − IPCC

ICD

• CCQ(M): measures common closure of modulariza-
tion for the classes that change together among the
packages.

• CRQ(M): measures common reuse of modularization
for package that are are reused together.

• ADQ(M): measures the extent of modularization to
which cyclic dependencies between the classes are
minimized.

• ACQ(M): measures the extent of modularization to
which cyclic connections among the package are min-
imized .

Table I summarizes formal definitions of above mentioned
metrics. All theses metrics are based on relationships estab-
lished among the software entities through direct/indirect and
cyclic/acyclic dependencies established through classes and
packages. Abdeen et al. has described utility of these metrics
in addressing following optimization challenges in packages.

1) Inter-connections among the classes of large applica-
tion create complex design and also increase inter-
package connectivity.

2) Inadequate distribution of classes may result in highly
complex afferent coupling on particular package,
hence, violating the basic design rules of package,
i.e, domain, size and coding practice.

3) Minimization of package dependencies may also de-
grade other packages.

Table II describes modularization metrics proposed by
Abdeen et al. These modularization metrics were specifically
formulated to address the prevalent modularization limitations
which mainly focused on changing the structural shape of
software from the scratch. Where as, metrics presented in Table
II have goal of multi-objective optimization for improving
existing package structure in accordance with well-known de-
sign principles. Thus, these metrics bear unique importance in
automatic software re-modularization while respecting original
design decisions.

Martin metrics suite has been defined in Table IV which
have been already used as Baseline in many package level bug

TABLE III. Description of Notations used Tables I and II

Metric Definition
pInt.D Unique internal dependencies present within the package.
pPro.P Unique provider dependencies of package p.
pCli.P Unique client dependencies of package p.
pCyc.D Unique cyclic dependencies produced through classes of modularization.
pCyc.Con Unique cyclic dependencies produced using packages of modularization.
piExt.Out.D Unique inter-package dependencies going out from package p.
piOut.Con Unique inter-package external connections from package p.
c jOut.D Inter-class dependencies going outside the package p.
piOut.Cyc.D out-going cyclic dependencies produced through classes from package p.
piOut.Cyc.Con out-going cyclic dependencies produced through packages from package p.

TABLE IV. Description ofMartinMetric Suite

Metric Definition
N Class entities: The number of concrete, abstract classes and interfaces in the package.
Ca Afferent Coupling: The number of other packages that depend upon classes within a package.
Ce Efferent Coupling: The number of other packages that other class in a package depend upon.
A Abstractness: The ratio of abstract classes in package to total number classes in a package.
I Instability: The ratio of Efferent Coupling to total Coupling, I = Ce

(Ce+Ca) .
D Distance: The distance from the main sequence: D = |A + I − 1|.

TABLE V. BaselineModularizationMetrics Studied in Different
Domains

Reference Definition

Modularity and community structure in network[23] Mnewm = 1
2m

∑
i
∑

j

(
Ai j −

kik j
2m

)
δ(gi, g j)

Modularity of software based on clustering[15] MQ =
k∑

i=1

2µi

2µi+
k∑

j=1
(εi, j+ε j,i )

, Mbunch =
MQ

k

Modularity of mechanical products. [24] Mg&g =

M∑
k=1

mk∑
i=nk

mk∑
j=nk

Ri j

(mk−nk+1)2
−

M∑
k=1

mk∑
i=nk

nk−1∑
j=1

Ri j+
N∑

j=mk+1
Ri j


(mk−nk+1)(N−mk+nk−1)

M

Modularity based on dependency cost[25] Mrcc = 1 −
N∑

i=1

N∑
j=1

DependencyCost(i, j)
N2λ

prediction studies [20], [21]. Table V presents the definitions
of modularization metrics studied by Lee et al. [22]. The main
objective of their research was to analyze and compare the
various modularity metrics that have been studied in different
domains. We set this research work as baseline to further
investigate the applicability of package based modularization
proposed by Abdeen et al. Below we summarize the defini-
tions, notations used in definitions and interpretation of these
metrics in particular context of study by Lee et al.. [22]. They
have conducted an experimental evaluation of these metrics
on evolutionary software and reported correlation of different
modularity metrics and their sensitivities towards particular
modular factors.

• Mnewm: This metric is well known approach for quan-
tifying modularity of social network represented in
graphical structures. Recently, there has been exten-
sive focus on application of this metric into studies
pertaining different scientific domains, specially, social
network, metabolic network, neural network and the
World Wide Web. Computation of metric is based
on theoretical heuristic that edges (links between
nodes) within a module (community) are greater than
expected ones. Further, in the definition, i and j
are nodes, Ai j represents edges between nodes. m is
the number of total edges and ki indicates expected
number of edges in node i. δ is a comparator function
that it outputs 1 where its two parameters are same,
0 otherwise. gi, parameter of δ, represents the module
containing node i. This metric ranges between 1 as
best value and 0 as worst value.

• Mbunch: This metric is normalized version of cluster-
ing factor (MQ) introduced by Mancoridis textitet al..
[15]. MQ is the most frequently used method for eval-
uation of a software modularity. µi is representation of
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intra-edges of module i, while εi, j denotes inter-edges
between modules i and j in total number of modules
k.

• Mg&g: This metric was formulated to measure the
modularity of complex mechanical products. However,
their application in software systems can be inter-
esting towards incorporating mechanical engineering
principles and software design theories. Basically,
metric quantifies modularity of physical entities using
difference of inter and intra edge densities. In the
definition, M is number of modules and N is number
of mechanical components (total software nodes in
our context of study). The numerator of the fraction
consists of two part, the sum of intra-edge density
of modules and the sum of inter-edge density of the
modules. Symbols, i.e., nk and mk are the indexes of
first node and last node respectively in module k. Ri j
denotes row and column in dependency between node
i and j (software nodes).

• Mrcc: This metric has its basic application in mea-
suring the modularity of evolving software systems.
Computing the Relative Clustered Cost of software
systems is key idea of this metric. In perspective of
software architectures, software systems having no
dependencies shall bear the value 0 and 1 in case of
all inter-dependent nodes. DependencyCost function
returns a weighted dependency between node i and j.
N is the number total nodes, n is the size of module,
λ is a user defined parameter for the metric. The
weight varies along with the dependency types. If a
dependency between i and j is an intra-dependency of
a single module, the weight is nλ, where n indicates
the number of nodes in the module. On the other hand,
if it is an inter-dependency between separate modules,
the weight becomes Nλ to have considerable penalty
in terms of poor coupling.

IV. Working Example

Consider an example of four packages connected through
different dependencies as shown in Fig. 1. To simplify the
working mechanism of Abdeen et al.’s metrics, we illustrate
dependencies by package p with other packages in modular-
ized design.

In Fig. 1, package p forms four kinds of dependencies
with four other packages; Internal dependencies which is
within the classes of package p, external dependencies which
connect classes of package with other four packages, cyclic
dependencies which goes out of classes of package p and
return to same classes of package p, cyclic connections which
form cycle between package p and other package in the
modularization design.

It can be seen from Fig. 1, package p contains five
internal dependencies within classes C1,C2,C3,C4. Also,
it can be visualized that there are 7 external incom-
ing dependencies of package p from the classes, i.e.,
(C31,C32,C41,C23,C21,C52) and it contains five external
outgoing dependencies towards the classes, i.e., (C31, C41,
C42, C21, C23, C52). Among external dependencies, four
dependencies produce the cycle between package p and other

Fig. 1. Example of packages having inter and intra dependencies.

TABLE VI. Computation of Abdeen et al.’s Metrics

Metric Computation
CohesionQ(p) |C1+C2+C3+C4|

|C1+C2+C3+C4+C31+C32+C41+C23+C21+C52+C42| = (4/11)

CouplingQ(p) 1 − |(C52+C41+C31+C42)∪(C52+C21+C23+C41+C32+C31)|
|C1+C2+C3+C4+C31+C32+C41+C23+C21+C52+C42| = (7/11)

CyclicDQ(p) 1 − |(C3+C31+C32+C1+C2+C52+C4+C41+C42)|
|C1+C2+C3+C4+C31+C32+C41+C23+C21+C52+C42| = (9/11)

CyclicCQ(p) = 1 − |(P3+P5+P4)|
|C1+C2+C3+C4+C31+C32+C41+C23+C21+C52+C42| = (3/11)

packages, i.e., (C3, C31), (C3, C31, C32), (C4, C41), (C1,
C52, C2). Similarly, these external dependencies create three
cyclic connections (p, p1), (p, p3), (p, p4). On the basis of def-
initions of Abdeen et al.’s metrics, Table VI presents metrics
computation of modularization design of packages p shown in
Fig. 1.

V. Empirical Study

In this section, we describe the methodology used to
analyze the metrics on open source software systems. The anal-
ysis procedures for empirical evaluation involve descriptive
structural information of subject systems, statistical analysis,
linear correlation and logistic regression analysis. An overview
of data processing steps are introduced in Fig. 2. The first step
is to mine the source code of subject systems from repositories
and archives. Second step is to apply three pronged static
analysis of source code files through: 1) Understand 1, com-
mercial static analysis tool for re-engineering and maintenance
the software that provides metrics information of parsed code;
2) FindBugs 2 that identifies high priority warnings in the
source code; 3) PMD 3 an extensive cross language static code
analyzer that reports high priority coding rule violations. Step
three is mapping of post-release faults from bug repositories,
dependency based metrics and high priority source code viola-
tion warnings against package entities of corresponding source
code file to compose the data-sets. In fourth step, data analysis
techniques are used to build prediction models and determine
the relationships among the modularization metrics. Finally,
fifth step reports performance of models.

1https://scitools.com/
2http://findbugs.sourceforge.net/
3https://pmd.github.io/

www.ijacsa.thesai.org 348 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

Fig. 2. Data processing mechanism.

A. Research Objectives

In particular, our research is directed to explore following
implications of inter and intra-package dependencies as salient
objectives.

1) Cyclic dependencies among the packages are anti-
patterns and may cause design flaws or make pack-
ages fault-prone.

2) Directed dependencies can provide composite view
of package coupling and package cohesion which are
yet evolving concepts for package entities of source
code.

3) Automatic package optimization improve overall
modularization quality of software.

Above mentioned challenges require evaluation of metrics
through rigorous process of software quality. This can be
achieved, if described metrics may succeed to provide com-
plementary view of source code, consequently strengthening
structural and functional validity of software design through
proactive decision making. Another aspect of this study is
to investigate relationship among Abdeen’s modularization
metrics solution based on package optimization and Base-
line modularization approaches described in Table III. Our
assessment criterion are formed on the basis of notion that
proposed modularization can provide better illustration of
Baseline approaches through different dimensions (e.g., Cyclic
dependencies minimization, intra-package dependencies maxi-
mization), eventually, help developer’s decisions to adhere with
design principles during software development.

B. Experimental Methodology

In this section, we provide a brief overview of statistical
techniques and mechanism of their application in our study.

1) Correlation Analysis: The correlation analysis aims to
determine relationship among variables. The correlation co-
efficient is measure of linear association between two vari-
ables. For this purpose, Spearman’s rank correlation is widely
performed over nonparametric nature of software metrics.
The significance of correlation is tested at different levels of
confidence interval 95%, i.e., p − value < 0.05.

2) Multivariate Logistic Regression:: Logistic regression
is standard statistical modeling technique in which the
dependent variable can take on one of two different values: 0
and 1. A multivariate logistic regression model is based on
the following relationship equation:

Pr (Y = 1|X1, X2, ...Xn) = eα+β1 X1+β2X2+...βnXn

1+eα+β1X1+β2X2+...βn Xn

Where, X1, X2..., Xn are independent variables, i.e., char-
acteristics describing the source code(package level metrics),
Pr (Y = 1|X1, X2, ...Xn) represents the probability that the de-
pendent variable Y = 1, i.e., the extent of package predicted
as faulty.

3) Classification: Classification methodology is applied to
predict weather a package is faulty or not. Various studies have
set confusion matrix as benchmark to evaluate the performance
of models and analyze the prediction capability of independent
variables. From the confusion matrix, following two popular
accuracy measures are computed to conduct the evaluation. All
our prediction models output probabilities of fault-proneness
of package entities. To classify a package as faulty, varying
thresholds on probability are utilized. Thus, different choices of
threshold will produce varying rates of false positives/negatives
(FP/FN) and true positives/negatives (TP/TN).

• Accuracy (Acc.): Measures the proportion of
correct predictions. Accuracy is defined as:
Acc = T P+T N

T P+T N+FP+FN .

• Precision (Pr.): Measure of exactness, defines prob-
abilities of true faulty packages to the number of
package predicted as faulty. Precision is defined as
Pr = T P

T P+FP .

• Recall (Rec.): Measure of completeness, defines the
probabilities of true faulty packages in comparison to
total number of faulty packages. Recall is defined as
Rec = T P

T P+FN .

• F-measure (F1.): Measures harmonic mean of preci-
sion and recall of predicted model. F1 = 2∗Pr.∗Rec.

Pr.+Rec. .

We build Logistic Regression (LR) model to predict the
fault-proneness of Abdeen’s metrics (AbdeenMod) and com-
parative analysis is carried out against the Martin’s package
level metrics (RM). Further, statistical association is used to
discover the impact of dependencies over design anomalies
(null pointer de-references, infinite recursive loops, bad uses
of java libraries) and common programming flaws (unused
variable, unnecessary object creation). The correlation analysis
aims to determine significant relationship of each of metric
described in Table I with quality attributes of source code. Ac-
cording to recent survey, logistic regression is most commonly
used and productive technique for fault-prediction performance
in software engineering [26].

C. Data Sets

Basically, there are two different types of data-sets formed
for experimental work for each category of metrics. We tend to
follow the research based perspectives of taking into account
subjects (software systems ) of varying nature, i.e., with large
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TABLE VII. Structural Information of Subject Systems

System Versions Number of Total Number Faulty Percentage of FB-Warnings PMD-Warnings
Packages of faults Packages Faulty packages Priority-1 Priority-1

Eclipse 2.0 377 917 190 50% 551 422
Eclipse 2.1 428 657 193 45% 720 5365
Eclipse 3.0 642 1523 307 47% 356 7002
POI 2.5 74 107 15 20% 96 2601
POI 3.0 80 316 30 38% 175 3743
Camel 1.6 210 144 23 62% 27 148
JDTCore 3.4 46 47 32 47% 159 931
Lucene 2.4 42 318 34 80% 82 879
jEdit 4.2 28 14 12 42% 115 363
jEdit 4.3 37 19 6 16% 109 485

and small size of packages, with diverse domain of application
and already utilized in research literature of software quality.
For package quality metrics, seven releases of 3 different open
source software systems and four other open source software
releases were considered. Eclipse4: An Integrated Development
Environment (IDE) for software development in collaborative
working groups. jEdit5: A mature programmer’s text editor,
written in java and an extensible plug-in architecture. POI 6 a
powerful tool to read and write MS Excel files in Java. Lucene
7 provides java based indexing and search technology. JDT-
Core8 is an infrastructure of eclipse IDE. In total 10 data-sets
are formed. Each data-set comprises of 6 traditional package-
level metric described by R.C Martin [2],4 package quality
metrics defined by Abdeen et al. [10] for fault-proneness of
packages, source code bug warnings of priority 1 identified
by FindBugs and code rules violation warnings of priority 1
reported by PMD.

It can be well inferred that meaningful statistical conclu-
sions can be drawn, as data-sets encompass diverse domains
of architectural composition. Post-release fault data of sub-
jects was obtained from public repositories, i.e., Eclipse Bug
Data 9 and PROMISE10. For package modularization metrics,
experiment study consists of 23 versions of two different
open source software systems. JHotDraw 11: is a Java GUI
framework for technical and structured Graphics. Ant12: is
a Java library and command-line tool whose mission is to
drive processes described in build files. These data-sets have
been already studied in comparative modularity analysis by
Lee et al. [22]. Therefore, we utilized same data for 4 well-
known clustering based modularity metrics in our study part
of modularity analysis. However, all the AbdeenMod metrics
(package quality and package modularization) were computed
by our own scripts developed through Understand-Perl API13

with utmost reliance and incremental testing (Made available
public ally at site14).

Table VII provides a summarized description of the data-
sets in our experimental study. It mainly represents system
name with release version, number of total packages, total
Number of faults, number of highest priority design flaws
detected through FindBugs15 and source code violations having

4https://eclipse.org/
5http://www.jedit.org/
6https://poi.apache.org/
7https://lucene.apache.org/
8https://eclipse.org/jdt/core/
9https://www.st.cs.uni-saarland.de/softevo/bug-data/eclipse/
10http://openscience.us/repo/issues/bugfiles.html
11http://www.jhotdraw.org/
12http://ant.apache.org/
13https://scitools.com/feature/api/
14https://github.com/Analyzer2210cau/Cyc-Deps-Maintainence-Objectives
15http://findbugs.sourceforge.net/

TABLE VIII. Intra-release PredictionModels: Comparison

System RM AbdeenMod+RM Improved

Acc. F1. Acc. F1. %age
(mean) (mean) (mean) (mean)

Camel-1.6 0.88 0.40 0.90X 0.50 1.1%
Eclipse-2.0 0.60 0.46 0.68X 0.64 13.3%
Eclipse-2.1 0.59 0.38 0.62X 0.40 5%
Eclipse-3.0 0.64 0.50 0.66X 0.54 3%
JDTCore-3.4 0.77 0.84 0.76 0.77 –
Lucene-2.4 0.83 0.56 0.84 0.53 –%
POI-2.5 0.67 0.65 0.62 0.42 -7%
POI-3.0 0.75 0.5 0.77X 0.6 2.6%
jEdit-4.2 0.68 0.77 0.78X 0.83 14.7%
jEdit-4.3 0.82 0.4 0.80 0.3 –%

TABLE IX. Inter-release PredictionModels: Comparison

System RM AbdeenMod+RM %Improvoed
(Acc) (Acc)

Eclipse-2.0(Train), Eclipse-2.1(Test) 0.65 0.67X 3%
POI-2.5(Train), POI-3.0(Test) 0.57 0.75X 31%
jEdit-4.2(Train), jEdit-4.3(Test) 0.60 0.59 -2%

highest priority identified through PMD 16 in corresponding
software. Both of these tools are extensively used in source
code analysis with recognition in software industry and re-
search pertaining to software quality [27].

D. Experimental Results

This section briefly illustrates experimental results and
analysis on both categories of metrics. In our empirical evalu-
ation, our focus is to obtain maximum possible statistical sig-
nificance for the research objectives defined in earlier section.

1) Package Quality Metrics: Fig. 3 depict the box-plot
to describe the distribution of four package-quality metrics
in each data-set. Box-plot range distribution of CohesionQ
and CouplingQ lies within 25 to 75 percentile as shown in
Fig. 3. It can be observed that CohesionQ metric has low
median (value ≈ 0.15) for three versions of eclipse, however,
it is almost in even distribution for all versions of jEdit
(value ≈ 0.3). On the contrary, CouplingQ values seem to be
distributed with quite high median (value ≈ 0.75) for all the
versions of data-sets. It depicts the fact that high coupling and
low cohesion trend is found in almost all data-sets of our study,
employing potential threat of packages being faulty quite high.
Similarly, values of CyclicCQ and CyclicDQ are relatively
with very high median (value ≈ 0.95) compared to other two
metrics. Whereas, distribution of CylicCQ and CyclicDQ range
within 25 to 75 percentile as shown in Fig. 3, showing presence
of high inter-package cyclic dependencies and connections in
all the data-sets.

Table VIII summarizes detailed information of fault-
prediction model built on the basis of intra-release test and
train data-sets. Results obtained from 10 times 10-fold cross-
validation for two models RM and AbdeenMod+RM using LR
are presented in Table VIII. It can be clearly observed that
there is substantial accuracy improvement while classifying
the AbdeenMod+RM model against RM(Baseline) model in
most of cases (indicated with X). From Table VIII, we
make following observations. First, AbdeenMod+RM models
for data-set with higher number of packages have easily

16https://pmd.github.io/
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Fig. 3. Box plot representation of metrics for all data-sets.

outperform traditional approaches of fault-prediction which is
case with three versions of Eclipse (2.0, 2.1, 3.0) and Camel-
1.6. Second, if data-set contains small number of packages
then prediction may result adversely which is the case with
jEdit-4.3 and JDTCore-3.4 where accuracy is not improved
with AbdeenMod+RM model. Third, AbdeenMod+RM model’s
highest accuracy improvement was reported as 14.7%, making
the application of cyclic dependency metrics quite significant
for fault-proneness prediction. F1-score is another dimension
of performance measure that takes int account both precision
and recall. Mean accuracy of successful models in Table VIII
has been seen in range of 0.83 ≈ 0.40 (indicated with X).
Despite the accuracy improvement in some of cases, F1-score
is still unsatisfactory in some cases, e.g., Lucene-2.4, implying
lesser precision of AbdeenMod+RM. Generally, prediction
result has been improved by 13.3% as maximum value in
Eclipse (Larger data-set) and 14.7% as maximum value in jEdit
(Relatively smaller data-set).

Table IX presents summary of fault-prediction model us-
ing inter-release frame which is more rigorous approach of
developing train and test data-sets. Table IX mainly shows
values of accuracy measure for fault-prediction model across
releases of Eclipse, POI and jEdit. Clearly, prediction re-
sults with AbdeenMod+RM achieved competitive accuracy in
two cases (indicated with X) as shown in Table IX and
is recorded with 31% of maximum improvement. Table X
shows analysis carried out over the linear correlation of each
Abdeen’s Package Quality metrics with number of post-release
faults, coding violation and anomalies warnings of priority-
1 using FindBugs and source code vulnerabilities arnings
of priority-1 using PMD in corresponding package for each
dataset. Significant magnitude of association is indicated with
(∗) evaluated at p − value < 0.05 as thresh-hold. Findings of
Table X can lead following inferences: First, Cohesion metrics
exhibits significantly negative correlation as observed in most
of the cases except Lucene and JDTCore. Second, statistical
significance of all the package quality metrics was observed
frequent in data-sets with larger number of packages, e.g.,

(Eclipse, POI, Camel). Third, coupling metric CouplingQ
exhibits statistically significant magnitude of correlation with
post-release faults in most of the data-sets. Fourth, statistical
significant correlation of CyclicDQ(p) and CyclicDQ(p) met-
rics is not witnessed frequently with the exception of Eclipse-
2.0. Another objective was to determine the relationship of
all AbdeenMod metrics with design flaws and vulnerabilities
detected PMD or FindBugs. Interestingly all the AbdeenMod
metrics show the positive or negative association, but, their
statistical significance is rarely observed in all cases. However,
Cohesion and CouplingQ metrics have managed to develop
correlation significance to considerable extent with data-sets,
like (Eclipse, POI, jEdit), adding an evidence to soundness
of study. On the contrary CyclicCQ and CyclicDQ(p) are not
found correlated with with FB and PMD. Such findings lead
to implication that design anomalies detected through open
source tools like FindBugsand PMD have relatively substantial
influence over package quality metrics, however, lack impact
in comparison to actual post release faults.

2) Modularization Metrics: In Table XI, degree of mod-
ularization correlation between Abdeen’s modularization met-
rics solutions and Baseline modularization metrics is presented.
Values inside the visualization table show the magnitude of
association in corresponding cell of metric at the significant
level denoted as: p − values(0.001, 0.01, 0.05, 0.1) ⇔ sym-
bols(“***”, “**”, “*”, “.”). For further illustration, Fig. 4(a)
and (b) show overall correlation among the modularity metrics
through visualization table representation for JhotDraw and
Ant data-sets respectively. Distribution of each variable is
shown on the diagonal with bi-variate scatter plot. As described
earlier, impact of cyclic or direct dependencies is relatively
considered as an anti-pattern, hence, negative correlation can
be expected in our analysis.

There are some unique implications which can be formed
from modularity analysis of each data-set. For JHotDraw,
CCQ(M) ADQ(M) and CRQ(M) exhibit complementary view
of strong association with modularity metrics except Mg&g.
On the contrary, ACQ(M) is found with less association in
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TABLE X. Magnitude of Correlation of Package QualityMetrics in Eclipse

Metric CohesionQ(p) CouplingQ(p) CyclicCQ(p) CyclicDQ(p)

Faults FB PMD Faults FB PMD Faults FB PMD Faults FB PMD

Eclipse-2.0 -0.03 0.27∗ 0.14∗∗ 0.18∗ -0.39∗ 0.23 -0.25∗ -0.038 0.47 -0.25∗ -0.038 0.47
Eclipse-2.1 −0.03 0.03 0.14∗∗ 0.18∗∗∗ 0.15∗∗ 0.24∗∗∗ 0.06 0.045 0.04 0.076 0.052 0.068
Eclipse-3.0 -0.024 0.14∗∗∗ 0.015 0.22∗∗∗ 0.17∗∗∗ 0.14∗∗∗ 0.06 0.05 0.03 0.089∗ 0.063 0.052

JDTCore-2.4 -0.012 - 0.016 -0.15 0.30∗ 0.33∗ 0.083 -0.20 -0.13 0.024 0.17 0.20 0.081
Lucene-3.0 0.034 - 0.049 0.000092 0.17∗ -0.11 0.083 0.047 -0.044 0.0016 0.092∗ -0.094 0.083

POI-2.5 0.33∗ 0.35∗ 0.34∗ 0.19 0.21 0.23 0.36∗ 0.074 0.098 0.095 0.011 0.24
POI-3.0 0.20 0.31∗ 0.20 0.20 0.23∗ 0.27∗∗ 0.053 0.067 0.12 0.087 0.11 0.14

Camel-1.6 0.43∗∗ 0.23∗ 0.33 0.39∗∗ 0.41∗∗ 0.058 0.0550.036 0.052 0.054 0.04 0.059 0.13
JEdit-2.0 -0.23∗ 0.49∗ 0.33 0.34∗ 0.48∗ 0.40∗ -0.020 0.047 -0.12 0.086 0.19 0.12
JEdit-2.5 -0.25∗ 0.14 0.095 0.29∗ 0.35∗ 0.31∗ 0.026 0.074 0.028 0.095 0.16 0.12
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Fig. 4. Box-plot representation of Cohesion and Coupling metrics in each data-sets.

TABLE XI. Correlation Coefficient ofModularityMetrics

Project Mnewm Mbunch Mg&g Mrcc

JHotDraw(9)

CCQ(M) 0.77∗ 0.64. 0.33 0.72∗
CRQ(M) -0.80∗∗ -0.68∗ -0.25 0.69∗
ADQ(M) -0.89∗∗ -0.69∗ -0.19 0.76∗
ACQ(M) -0.25 0.14 0.67∗ –

Apache-ant(14)

CCQ(M) -0.08 -0.78∗∗∗ -0.79∗∗∗ -0.74∗∗
CRQ(M) 0.18 0.84∗∗∗ 0.86∗∗∗ 0.84∗∗∗
ADQ(M) 0.38 0.70∗∗ 0.74∗∗ 0.87∗∗∗
ACQ(M) 0.21 0.74∗∗ 0.79∗∗∗ 0.89∗∗∗

terms of statistical significance as shown in Table XI. These
indications are evident for the presence of less cyclic depen-
dencies and cohesiveness of packages. On the other hand, for
Ant data-set, CCQ(M) and CRQ(M) are seen to have strong
negative and positive correlation with our baseline modularity
metrics respectively. Whereas Mnewm is an exception to reveal
any prominent significance. However, ACQ(M) and ADQ(M)
exhibit strong positive correlation with our bench mark mod-
ularity metrics as shown in Table XI. Another perspective
of this dependence among multiple variables reveal that all
the Abdeen’s modularization are significantly related with
each other as shown in Fig. 4(a) and (b). More importantly,
CCQ(M), CRQ(M) and ADQ(M) depict a strong positive
correlation with Mbunch which is considered as most efficient
modularity measure in software quality evaluation.

VI. RelatedWork

Some research studies have used package level metrics in
evaluation of software quality and bug prediction. D’Ambros
proposed coupling based technique for package understand-
ability and their evolution [28]. Wilhelm et al. proposed

package dependencies management and control using Martin
and size metrics. Additionally, Reibing utilized these metrics to
build Object-Oriented Design Model (ODEM) for formaliza-
tion of design metrics [29]. It is worth mentioning that Abdeen
et al. continued their effort to propose metrics for improving
modularization, but, scope of their study was for entire mod-
ularization not for a single package [30]. However, exploring
the relationship between package level metrics and external
quality attributes is yet an interesting research subject. Gupta
et al. presented empirical evaluation for package coupling as
indicator of its understandability and maintenance [31]. Elish
explored utility of Martin metrics as determinants of package
understandability. He determined that almost all the Martin
metrics have significant correlation with effort required to
understand the package design [32]. Zimerman et al. collected
fault data and complexity metrics for Eclipse releases 2.0,
2.1 and 3.0 at package level [33]. They successfully derived
fault-proneness of packages by constructing logistic and linear
regression models.

As a matter of observation, size and complexity met-
rics can not produce enough information on fault-prediction.
There are certainly opportunities to explore other structural
properties of packages to achieve an improved prediction
accuracy. Taking this direction, Elish developed comparative
inter and intra-release prediction models using CK, MOOD
and Martin metrics suite [34]. Another notable study in recent
time is by Zhao et al. [21], who has further endorsed the
utility of package level metrics. He presented an empirical
analysis for package modularization proposed by Sarkar et
al. [35] metrics as having significant association with fault-
proneness. All these efforts form the motivation of our study
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to further investigate dependency based structural properties
of packages. In particular, study extends the evidence for role
f package based design in improvement of fault-prediction
and effectiveness in describing software quality attributes [36],
[37].

VII. Discussion

Abdeen et al. extended their research work on the basis of
package entities in proceeding years. Admittedly, each of their
research effort was unique in terms of application and theo-
retical rationale. Similarly, modularization metrics described in
Table V were studied for correlation among themselves, which
required further exploration too. Therefore, our work differs in
the context of application to determine modularity of Abdeen
et al. in relation with these metrics. Following features makes
our study distinctive and useful for research community.

• Adding an evidence of relationship between code
metrics and design rules by static analysis tools.

• Empirical evaluation of package entities as effective
de-bugging components.

• Providing the rationale that maintenance is multi-
objective phase using techniques of modularity en-
hancement, fault-proneness prediction and source code
design improvement.

Aforementioned aspects our this research study basically
set novelty and technical significance for assuring quality
software design and functioning. This study can help software
quality engineers to prioritize their tasks.

VIII. Threats to Validity

In empirical software engineering research, use of open
source and limited software projects often account for external
threats to validity. However, software systems used in our
study are state-of-the-art in research literature of software
quality bearing an abstract representation of software structure.
Since, dependency information extracted in our study can be
characteristics of any industrial based operational software,
the reported results can be helpful in forming a generalized
opinion to reasonable extent. Although, use of more industrial
based software systems can mitigate the threat of external
validity. Another aspect of computation which is likely to
create threats to construct and external validity, is use of Find-
Bugs and PMD. Unfortunately, the performance of these tools
are dependent on particular experimental environmental setup
and system configuration. Therefore, false positives in static
analysis results can’t be ruled out. Similarly, measurement of
metrics and their experiment through use of tools for analysis
and programming have their specific limitation like, language
dynamics and precision of statistical computation. However,
results were acquired with maximum possible programming
reliance and analysis confidence to avoid any internal threats.

IX. Conclusion

In this paper, we evaluated the impact of dependency based
Package-Quality metrics towards software quality assurance.
Our study validates the computation of these metrics on open-
source software. Inter-release and intra-release of predictive

models were constructed to conclude following: 1) Depen-
dency based Package Quality metrics in combination with
traditional package level metrics provide complementary view
of fault-proneness of packages. It employs proper management
and organization of packages by minimizing the dependencies
can enhance the quality and ensure functional stability of
software; 2) Comprehensive assessment of post-releases of
software can be obtained with dependency based Package
Quality metrics to avoid future potential bugs; 3) Dependency
based Cohesion and Coupling metrics value improvement can
help to keep the software systems up to coding standards and
design rules.

The results indicate that prediction models developed with
AbdeenMod+RM metrics achieved reasonable accuracy against
RM metrics and traditional metrics are outperformed in fault-
prediction modeling. Thus, recommendation of collecting de-
pendency information can be significant towards software
maintenance. In addition to obtained improved prediction
accuracy compared to traditional model, AbdeenMod metrics
show notable correlation with number of faults in the packages.
These results also indicate that dependencies of source code
at package level should be properly managed and resolved
to depict the reliable software design. We also investigated
the numerical relationship between Abdeen’s modularization
metrics and widely used modularization metrics. Our statistical
computation through correlation matrix indicates that these
metrics can be applied in quality assurance framework of
object oriented software systems. This study has made vital
contribution and provided an insights into early prediction of
faults in packages through empirical evidences and statistical
validations. In future, we aim to derive more metrics and ex-
plore the their relationships in other software quality attributes.
In addition to this, comparative analysis using effort aware
fault-prediction models is research domain to be explored in
future.
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