
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

Framework for Managing Uncertain Distributed
Categorical Data

Adel Benaissa, Mustapha Yahmi, Yassine Jamil
Université Paris Cité Sorbonne

Laboratoire informatique Paris Descartes
45, Rue des saints pères

Paris, France

Abstract—In recent years, data has become uncertain due to
the flourishing advanced technologies that participate continu-
ously and increasingly in producing large amounts of incomplete
data. Often, many modern applications where uncertainty occurs
are distributed in nature, e.g., distributed sensor networks,
information extraction, data integration, social network, etc.
Consequently, even though the data uncertainty has been studied
in the past for centralized behavior, it is still a challenging issue
to manage uncertainty over the data in situ. In this paper, we
propose a framework to managing uncertain categorical data
over distributed environments that is built upon a hierarchical
indexing technique based on inverted index, and a distributed
algorithm to efficiently process queries on uncertain data in
distributed environment. Leveraging this indexing technique,
we address two kinds of queries on the distributed uncertain
databases 1) a distributed probabilistic thresholds query, where
its answers satisfy the probabilistic threshold requirement; and
2) a distributed top-k-queries, optimizing, the transfer of the
tuples from the distributed sources to the coordinator site and
the time treatment. Extensive experiments are conducted to verify
the effectiveness and efficiency of the proposed method in terms
of communication costs and response time.

Keywords—Distributed uncertain data; Top-k query; threshold
query; indexing; categorical data

I. INTRODUCTION

In recent years, data has become uncertain due to the flour-
ishing of advanced technologies that participate continuously
and increasingly in producing large amounts of incomplete
data, data with missing values and uncertain data. When we
talk about these types of data, some questions that come to
mind are: 1) What are uncertain, imprecise and incomplete
data? 2) How can we represent these data? 3) What is the
difference between them? 4) How can we manage these types
of data? 5) Can we use the traditional relational database man-
agement systems to store and request these data?. Therefore,
Researchers of the database community have been asking these
questions since the early 1980’s. In fact, managing uncertain
data has seen a revival in recent years due to new methods and
the emergence of applications that produce this type of data.
This is what prompts many challenges in terms of modeling,
storing, indexing and querying uncertain data. Thus, many ef-
forts have been devoted to studying uncertain databases. These
efforts yield different approaches and algorithms for modeling
and representing uncertain data [1–3], indexing techniques and
query processing over uncertain data [3–9].

Over the last decade, many cases where uncertainty arises
have been distributed in nature, e.g. distributed sensor networks

and multiple data sources for information integration [10–12].
Unfortunately, existing techniques that include indexing and
query processing over uncertain data were mainly proposed in
centralized environments and are not adaptable to distributed
environments. As a result, it is still challenging to efficiently
process queries over distributed uncertain data. Notable excep-
tions include recent work on indexing and query processing
of distributed uncertain data [10–13]. These works have only
considered top-k queries on uncertain real-valued attributes.
Distributed top-k query processing focuses on reducing com-
munication cost while providing high quality answers. How-
ever, in many domains, data records are composed of a set
of descriptive attributes many of which are neither numeric
nor inherently ordered in any way. In this paper, we address
the problem of indexing and query processing on uncertain
categorical data in distributed environments. We propose an
original approach that efficiently answers queries on distributed
uncertain data with minimum communication and processing
costs.

Example 1.1: Let us consider that Farm is a relation
that stores bovine records of breeders and veterinary surgeons
as it is explained in the motivating example of the general
introduction. The Relation Farm is specified by the schema
Farm(Tid, weight, illness) where the illness attribute speci-
fies the illnesses that can affect a cow. Illness attribute is an
uncertain one that takes its values from the categorical domain
{mc, fa, nc, fs} where mc means mad cow, fa means fever
accurate, nc means normal cow, fs means fever simple. Let R
be a relation instance of Farm. In Fig. 1, the relations R1, R2,
R3 and R4 are the horizontal partitions of R on S1, S2, S3 and
S4 distributed sites respectively. The first tuple in R1 specifies
that the cow with the identifier T1 has a weight 700 kg and that
its possible illness maybe acute fever (fa) with the probability
0.7 or maybe simple fever (fs) with the probability 0.3. The
veterinary surgeons are interested in locating which farm is
affected by a disease in order to begin preventive measures.

From the previous Example 1.1, two interesting queries for
the breeders and insurers are as follows:

Q1 : Find the cows affected by an accurate Fever with a
probability above 0.5;

Q2 : Find the two cows affected by an accurate fever in
all the farms.

The query Q1 aims to identify the tuples where the illness
attribute has the value fa and The query Q2 aims to return
the first 2 tuples with the highest probability, where the

www.ijacsa.thesai.org 359 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

Tid Weight Illness
T1 700 {(fa, 0.7); fs(0.3)}
T2 710 {(fa, 0.9); fs(0.1)}
T3 790 {(nc, 1)}
T4 725 {(nc, 0.9); (fs, 0.1)}

(a) R1

Tid Weight Illness
T5 700 {(fa, 0.2); fs(0.8)}
T6 710 {(fa, 0.9); fs(0.1)}
T7 790 {(nc, 0.85); (fs, 0.15)}
T8 725 {(nc, 0.9); (fs, 0.1)}

(b) R2

Tid Weight Illness
T9 749 {(mc, 0.8);nc(0.2)}
T10 645 {(mc, 1)}
T11 801 {(nc, 0.7); (mc, 0.3)}
T12 799 {(nc, 0.5); (mc, 0.5)}

(c) R3

Tid Weight Illness
T13 711 {(mc, 0.18);nc(0.82)}
T14 745 {(nc, 0.9); (mc, 0.1)}
T15 901 {(nc, 0.85); (mc, 0.15)}
T16 799 {(nc, 0.95); (mc, 0.05)}

(d) R4

Fig. 1. Example of distributed uncertain relation R.

illness attribute has the value nc. The two queries Q1 and
Q2 are distributed probabilistic threshold and distributed top-
k queries, respectively .

A straightforward and naive approach to answer such a
query is to answer the above queries is to forward them to all
the sites so that local treatment and processing will be done on
each site locally. Then, each site send its results to the coor-
dinator site. Finally the query site merges the tuples received
from all sites and computes the final result. The drawbacks
of this approach is that all sites are asked even when their
tuples are not involved in the final response. Also, transferring
a large number of tuples consumes bandwidth in the network
and takes time to process. Furthermore, this approach does
not scale with number of distributed sites. Hence, In order
to address these drawbaks, we propose an approach that use
a Local Uncertain Index (LUI) for uncertain data on each
local site, while a Global Uncertain Index (GUI) is used to
summarizing the local indexes. The local and global uncertain
indexes are inverted-index based structures. We show that these
structures support a broad range of probabilistic queries over
uncertain data, including distributed uncertain threshold and
top-k queries. Specifically, we propose DUTh and DUTk, two
distributed algorithms for processing probabilistic threshold
and top-k queries on distributed uncertain data. The main
contributions of this paper are as follows:

• We propose a distributed indexing of distributed uncer-
tain categorical data based on a two-level hierarchical
index: a local index LUI on each site [7] and a top-
level global index on a coordinator site (query site).
The global index(GUI) summarizes local indexes and
determines which ones should be accessed.

• We propose two distributed algorithms DUTh and
DUTk to respectively answer threshold and top-k
queries. Our proposed algorithms use the proposed
indexes LUI and GUI to perform distributed pruning
and allow minimum communication and processing
costs.

• We conduct an extensive experimental study to evalu-
ate our proposed framework over syntactic data. The
results of the study show the efficiency of our two
proposed algorithms and indexing techniques.

The rest of this paper is organized as follows: Related
work is presented in Section II. Then, Section III presents the

problem definition. In Section IV, we present an overview of
our proposed framework. Section V presents our distributed in-
dexing technique. In Section VI, we describe query processing
using the distributed index. We report a performance evaluation
of our proposed framework in Section VII and finally we
conclude the chapter in Section VIII.

II. RELATED WORK

With the advent of the Internet and network technol-
ogy [14], there is an important emergence and unprecedented
flourishing of real world applications and devices that par-
ticipated to produce large amounts of uncertain data daily.
e.g. data collected from sensor networks [15], information
extraction from the web [16, 17], data integration[18, 19], data
cleaning [20–25], social networks [26, 27], radio frequency
identification RFID [7]. Due to various reasons that differ
from one application to another, the uncertainty is inherent
in such applications. With the emergency of these applica-
tions, considerable research efforts have been made in into
the field of managing uncertain data [6]. Existing work in
this area provides new models for uncertain data, prototype
implementations, specific indexing techniques and efficient
query processing algorithms.

Indexing uncertain data was extensively studied in the
literature of centralized uncertain databases. Many approaches
and a variety of indexing techniques were proposed in this
field. However, these are not suitable for distributed uncertain
data. To the best of our knowledge, there is only the work
in [12] that proposed indexing uncertain data, presented as
moving objects over a peer to peer (P2P) environment based
on Quad-Tree indexes structures. In our work, we aim to
propose an original indexing technique for uncertain data
in general distributed environments and not specifically P2P
environments.

As the same, many query processing techniques on dis-
tributed certain data have been studied with particular interest
in top-k queries [5, 15]. However, these techniques are not
adaptable to uncertain distributed environments. As a result,
it is still challenging issue to efficiently process queries on
distributed uncertain data. Thus, we aim to study query pro-
cessing over uncertain distributed data based on efficient index
structures.

Most existing work on top-k query processing in distributed
environments performs with several rounds of communication

www.ijacsa.thesai.org 360 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

between the query site and the other distributed sites. As
a result, it is still challenging to efficiently process top-k
queries in a minimum communication rounds between sites.
In our work, we seek to reduce the communication cost of
query processing in distributed environments and reduce it
to one round of communication, in addition to dealing with
uncertainty.

In the literature, the majority of works considered top-
k queries on uncertain real-valued data. However, in many
domains, data records are composed of a set of descriptive
attributes, many of which are neither numeric nor inherently
ordered in any way. Thus, we focus on indexing and querying
distributed uncertain data presented as qualitative (or categor-
ical) data.

III. PROBLEM DEFINITION

In this section, we describe the data model and query
classes which we consider in our work. Then, we define the
problem of query processing over uncertain categorical data
on distributed environments.

A. Data Model

Uncertainty can be identified both at the tuple level [1, 3]
and the attribute level [2]. In this work, we consider the
attribute-level uncertainty model. The uncertain data in our
work is modelled as a probabilistic database horizontally
distributed over a set of sites S = {S1, S2, ..., Sm}. A database
consists of a set of relations R partitioned into (R1,..., Rm)
such that R = ∪

i∈[1,m]
Ri and Ri∩Rj = ∅, for i, j ∈ [1..m], i 6=

j. Consequently, each database on a local site Si consists
of a relation Ri, with n tuples each of which has uncertain
attribute values. For the sake of simplicity and without loss
of generality, we limit the discussion to relations with a
single uncertain attribute. In our work, we focus on uncertain
attributes that are drawn from categorical domains. Let S.a be
a particular attribute in S which is uncertain. S.a takes values
from the categorical domain D with cardinality |D| = N .
For a traditional (certain) relation, the value of an attribute
a for each tuple would be a single value in D. In the case
of an uncertain relation, tk.a is a probability distribution over
D instead of a single value. Let D = {d1, d2, ..., dN}, then
tk.a is given by the probability distribution Pr(tk.a = di) for
i ∈ {1, ..., N}. We illustrate our uncertainty model with the
following example:

B. Basic Queries on Uncertain Data

We specifically examine two types of queries: distributed
uncertain query threshold and top-k queries. They are defined
below:

Distributed Uncertain Threshold Query (DUTh): Thresh-
old queries can be used in different settings [28]. In the
literature related to databases, there has been much interest
in studying such queries [29]. Generally, most of these work
said that the goal of this type of query is to detect all tuples (or
objects) whose likelihood (or score) exceeds a given threshold.

In our work, we defined a distributed threshold query as
follows1:

Definition 3.1: Given a set of distributed uncertain rela-
tions S = ∪

i∈[1,m]
Si, DUTh returns a set of tuples tk ∈ Si

such that Pr(tk.a = di) > τ , where τ is a probability
threshold and tk.a is a probability distribution over D where
D = {d1, d2, ..., dN}.

Example 3.1: From the previous Example 1.1, an interest-
ing query for the breeders and insurers is as follows:

Q1 : Find the cows affected by an accurate Fever with a
probability above 0.5

The query Q1 is distributed probabilistic threshold queries
that aim to identify the tuples where the illness attribute has
the value fa with probability above 0.5 (cf. Fig. 1) respectively,
from the whole distributed relation S .

Distributed Uncertain Top-k Query (DUTk): A lot of
effort has been devoted to studying top-k query in the uncertain
database [30]. The majority of these works considered two
aspects for ranking (top-k) uncertain databases. These were
the score and the likelihood of objects (or tuples). In our work,
we consider only the likelihood attached to the tuples in the
ranking process. Hence, the definition of the top-k query in
our work is as follows:

Definition 3.2: Given a set of distributed uncertain rela-
tions S = ∪

i∈[1,m]
Si, DUTk returns the k first tuples tk ∈ Si

with the highest probability among all distributed sites of S.

Example 3.2: From the previous example 1.1, an interest-
ing query for the breeders and insurers is as follows:

Q2 : Find the two cows affected by an accurate fever in
all the farms

The query Q2 is distributed probabilistic Top-k queries.
The aim of query Q2, is to return the first 2 tuples with the
highest probability, where the illness attribute has the value fa.

IV. PROPOSED FRAMEWORK

Having presented the uncertain model and the query classes
that we aim to process, let us now present, the main compo-
nents of our framework. The principal aim of our approach is
to efficiently answer queries on uncertain distributed data with
minimum communication and processing costs. Our frame-
work is performed in two main phases (Fig. 2):

Offline Phase

We propose a distributed indexing technique based on a
two-level hierarchical index:

• Local uncertain indexes(LUI) : we build a local index
at each local site. To do so, we adopt the inverted
uncertain index structure proposed by Shin et al. [7].

• Global uncertain index(GUI): This index summa-
rizes the local indexes on the distributed environments.

1In our work, we do not use the family of threshold algorithms [28]
for the reason that we treat queries with threshold probability in distributed
environments in different contexts.

www.ijacsa.thesai.org 361 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

Fig. 2. Our proposed framework.

Its structure is the same as the local index structures
LUI (Inverted list).

Online Phase

Using the local (LUI) and global uncertain indexes (GUI),
we propose two distributed algorithms DUTh and DUTk to
respectively answer distributed uncertain threshold and top-
k queries. The main steps of the proposed algorithms are as
follows:

• DUTh (Distributed Uncertain Threshold Query): In
this algorithm, only the sites whose tuples are involved
in a final response are asked. DUTh performs the
following main steps in one round of communication:
◦ Distributed Pruning on the coordinator site.
◦ Local pruning on each site.
◦ Result computation on the coordinator site.

• DUTk (Distributed Uncertain Top-k Query) The
main objective of this algorithm is to reduce the com-
munication cost and time processing of the execution
of the Top-k query processing. To do this, the top-k
query will only be concerned with a subset from S.
The main steps of this algorithm are:
◦ Distributed Pruning on the coordinator site.
◦ Probability threshold tuning.
◦ Local pruning and query ranking.
◦ Distributed query ranking.

V. DISTRIBUTED UNCERTAIN INDEXING

To index distributed uncertain data, we propose a two-level
hierarchical index: a local index on each site as proposed in [7]
and a top-level global index to determine which local indexes
should be accessed. Hence, our indexing process is performed
in two stages. In the first stage, each local site builds its local
uncertain index. In the second stage, summaries from local
indexes are merged to build a global index on a coordinator site
where the query will be executed. In what follows we describe
the main process used to build local and global uncertain
indexes in detail.

A. Local Uncertain Index Structure

For the local uncertain index on each site we adopt the
inverted index based structure proposed in [7]. The main build
of this index is as follows:

Each value di of an uncertain attribute a is stored in the list
of the inverted index, which consists of a set of pairs including
the Tid tuple of the local relation Ri and the probability of
di.a attached to Tid. Therefore, the component of the list of
a given di ∈ D is a pair of (tid, Pi). This list is organized
in decreasing order. In practice, such a list is organized in
the memory with a dynamic structure such as B+ tree. The
main advantage of the local indexing is that most parts of the
query processing can be performed by the site containing the
required index data. The site responsible for solving the query
is only required to broadcast the query to the coordinator site,
which then combines the returned results.

Example 5.1: Returning to Example 1.1 of the uncertain
distributed database R in Fig. 1. The local uncertain index LUI
of R1 (the local relation of R on S1) is depicted in Fig. 3. It is
built on the illness uncertain attribute. Notice that each entry
of LUI corresponds to a value from the categorical domain of
illnesses: {mc, fs, fa, nc}. For each of those values, a set of
pairs is stored. For instance, the nc value is associated with the
following pairs (t3, 1) and (t4, 0.9). The pair (t3, 1) specifies
that the tuple with the t3 identifier includes the value nc with
the probability 1 in its illness uncertain attribute.

nc (t3; 1.0) (t4; 0.9)

fa (t2; 0.9) (t1; 0.7)

fs (t1; 0.3) (t2; 0.1) (t4; 0.1)

Fig. 3. Local inverted index of R1.

B. Global Uncertain Index Structure

Now, we describe the structure of the global uncertain
index which we refer to as GUI. The GUI determines which
local index(es) should be accessed. Hence, GUI should be
stored in the coordinator site.

input : D = {d1, d2..., dn};S = {S1, S2..., Sn};
output: GUI
for each site ∈ S do

Goes through the index LUI
for each d ∈ {D ∧ LUI} do

Pmax ← maximal probability of d in LUI
Ld← (S, Pmax))

end
end
for each d ∈ D do

organize ld as inverted list in decreasing order
end
return(GUI)
Algorithm 1: Global Index (GUI) Construction

Given a distributed relation R on S, GUI is an inverted
index based structure on the uncertain attribute a of R. It sum-
marizes information of local indexes LUIs. More specifically, it
stores the sites of each LUI. As for the local indexes, entries in

www.ijacsa.thesai.org 362 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

nc (S1; 1.0) (S4; 0.95) (S2; 0.9) (S3; 0.7)

fa (S1; 0.9) (S2; 0.9)

fs (S2; 0.8) (S1; 0, 3)

mc (S3; 1.0) (S4; 0.18)

Fig. 4. Global inverted index (GUI).

a GUI correspond to the categorical domain values of a, i.e.
{d1, d2..., dn}. For each entry dj , GUI collects information
from the local indexes as shown below:

• Given a LUI stored on a local site Si, for each entry d
of LUI, GUI stores one pair (Si, Pmax) where Si ∈ S
and Pmax(R.a = d) is the maximum probability over
the set of pairs (tid, Pmax) associated with d on the
LUI of site Si.

• To complete the list of pairs for each entry dj in the
GUI, all the LUI’s are explored to obtain the corre-
sponding pair for dj as performed above. Once the
list is completed, the pairs are ordered in decreasing
order of their probabilities.

Algorithm 1 depicts the main steps of creating the GUI.

Example 5.2: Returning to Example 1.1 of the distributed
database R in Fig. 1. The global uncertain index of our
distributed environments is depicted in Fig. 4. In our dis-
tributed environment we have four values of the domain
D = {nc,mc, da, fs}, For each of those values, a set of pairs
is stored. Hence each value from domain D has an inverted
list. For instance, the fa value is associated with the following
pairs: (S1, 0.9) and (S2, 0.9). The pair (S2, 0.9) specifies that
the illness fa is located in site S2 with maximal probability
0.9. The Inverted list of fa indicates that this illness is only
located within site S1 and site S2.

In what follows, we will discuss how to provide two kinds
of queries on uncertain distributed sites using the proposed
index structures.

VI. DISTRIBUTED UNCERTAIN QUERY PROCESSING

In our uncertain distributed environment, the query can be
initiated by the coordinator site, also called query site (Sc).
The naive approach2 to processing a distributed query requires
transferring an excessive amount of data and processing the
distributed query at each site. Instead, we present two algo-
rithms DUTh and DUTk which improve the overall perfor-
mance by reducing both the processing and communication
cost of the threshold and top-k queries, respectively.

2We will call this approach NAIV in our experiments.

A. Distributed Uncertain Threshold Algorithm

The Distributed Uncertain Threshold Algorithm, referred to
as DUTk, is depicted in Algorithm 2. The aim of our algorithm
is to reduce the communication cost by pruning the sites that
are not concerned by the query. Let us consider an uncertain

input : Query Q,Index GUI ,Threshold:τ
output: DUThresponse()
DUThresponse() = {};
Qanswer = {}
Execute query Q in coordinator site;

Goes through the index GUI;

for each Si in index GUI do
if pmax > τ then

Execute query Q ;
Qanswer ← Answer of Q

end
DUThresponse()← DUThresponse() ∪Qanswer

end
return(DUThresponse())

Algorithm 2: The DUTh Algorithm

database R distributed over a set of site S = {S1, S2, ..., Sm}
and query Q on S. Note that the query Q will be initiated in
the coordinator site with a given threshold probability (τ). The
main steps of the DUTh algorithm execution are as follows:

• The query Q will be executed in the coordinator site
Sc ∈ S. The first step of DUTh, is to go through
the global index (GUI) and visit the inverted list of
associated value driven from the domain of categorical
data initiated in the query Q.

• In this step, we get only the list of sites which have
maximal probability greater than the defined threshold
(pmax > τ). All sites that cannot satisfy this condition
will not be concerned by the query Q and will be
pruned.

• The query will be sent to the concerned sites where it
will be executed locally. Notice, that in each concerned
site, pruning is performed locally.

• Each site forwards its results to the coordinator site,
which will merge all the received results.

Example 6.1: We illustrate the main steps of DUTh by
considering the query Q1 from Example 3.1 that we will
execute on the farms data depicted in Example 1.1 and Fig. 1:

Q1 : Select∗from S hereW illness =′ fa′ And P > 0.5

We suppose that we would have all cows that are affected
by fa illness with probability (p > 0.5).

• The query Q1 is executed in the coordinator site. In
the first step of our DUTh, the GUI will be visited to
obtain a list of sites(farms) where fa illness is present.

• Then, we visit the inverted list of fa. All sites that
had maximal probability of illness q above p < 0.5
will be pruned. Consequently, in our case the query
Q1 will be concerned with farm S1 and S2.

www.ijacsa.thesai.org 363 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

• Next, we send the query Q1 to S1 and S2 with
threshold probability τ > 0.5

• In the farms S1 and S2 the query Q will be executed
and local pruning will be performed in each sites (R1

and R2).

• Only tuples with probability attached to value fa
above 0.5 will be returned to the coordinator site Sc
as presented in Table I.

TABLE I. RESULTS OF DUTH QUERY Q1 .

Ri.Tid weight illness
R1.T1 700 (fa,0.7)
R1.T2 710 (fa,0.9)
R2.T6 710 (da,0.9)

B. Distributed Uncertain Top-k Algorithm

Given an uncertain relation R = ∪
i∈[1,n]

Ri distributed on

S = {S1, S2, ..., Sn} where Ri is located on Si. Each Si
stores a local index LUI and a coordinator site Sc stores a
global index GUI. Given a top-k query Q issued from Sc,
the algorithm DUTk will efficiently and effectively answer Q.
We consider the following query Q on the distributed relation
R. The class of queries we treat are obviously those with an
uncertain attribute in the where-clause. The main steps of the
execution of DUTk are as follows:

input : Query Q,Index GUI ,DUTh, k
output: DUTkresponse()
DUTkresponse() = {};
Execute query Q in coordinator site;
crossing the index GUI;
Li← list of site from GUI
for each Si in liste Li do

explore LUI;
Lpmin ← get the probability of kth of site from
Local index;

end
τ ← Max of Lpmin
//Execute Threshold algorithm DUTh(τ)
Global response← Duth(τ)
//Merge and Rank the results, then choose the top-k

response
DUTkresponse()← Order(Global response(limitk))
return(DUTkresponse())

Algorithm 3: DUTk Query Algorithm

• Distributed pruning: On the coordinator Sc where
Q is executed, the algorithm explores the global
index GUI to find the uncertain attribute value of
the where-clause, and then obtain the distributed sites
in the corresponding list of that value. Let SQ =
{S1, S2, ..., Sh} where h ≤ m, is the list of the
distributed sites where Q should be executed. The
coordinator site Sc broadcasts the query Q to those
sites. Notice that the GUI allows distributed pruning,
i.e. only sites where Q should be executed are consid-
ered and the others are pruned. The main advantages

of this pruning is reducing the query processing time
and cost.

• Probability threshold tuning: On each site Si in SQ
from the previous step, the algorithm explores its local
indexes LUI . The aim of this step is to search the
kth probability Pi (i.e. the maximal probability in the
LUI inverted list) from each selected site. Then, this
probability value is sent to the query node where a
threshold list ThList stores all the probability values
sent by the distributed sites. The maximal probabil-
ity, τ = Maxi∈[1,m]Pi (maximal probability of the
list (ThList), is considered as the new probability
threshold, then a new pruning is performed from the
global index GUI according to τ . Indeed, for each pair
(Si, Pmax) from the GUI inverted list, if Pmax ≤ τ ,
then the corresponding site Si is pruned. The result of
this step is a new list SQτ of distributed sites where
Q should be executed where SQτ = {S1, S2, ..., Sl}
where l ≤ h ≤ m. Consequently, the coordinator site
Sc sends the query Q to the sites in SQτ .

• Local query ranking: On each site Si in SQτ , the
algorithm executes Q. It explores each local index LUI
and obtains the tuples from the corresponding inverted
list of the uncertain attribute value. Each node ranks
its own tuples in decreasing probability order, stopping
once no more tuples are likely to satisfy k. Then the
ranked kth tuples are sent to the coordinator site.

• Distributed query ranking: On the coordinator site,
the algorithm computes the final query result. Another
ranking is performed on the whole top-k tuples of each
site.

Example 6.2: Returning again to Example 1.1, we illus-
trate the main steps of DUTk using the distributed environ-
ments presented in Fig. 1. Let us consider the query Q2 of
Example 3.2 that we can rewrite as follows:

Q2: Find the two cows affected by an accurate fever (fa)
in all the farms.

Let us show the execution of the example step by step:

• Distributed pruning: First, the GUI is explored to
find the value fa of the uncertain attribute illness.
Only the farms S1 and S2 are concerned by the query
Q, because the value fa is present in these farms. The
farm S3 and S4 will not be concerned by query Q2 for
the reason that value fa does not exist in these farms,
so distributed pruning is first conducted in this step. As
presented in Fig. 4, the GUI will contain the highest
probabilities for each node, that is max(S1) = 0.9,
max(S2) = 0.9,

• Probability threshold tuning: Second, the query site
sends the query to the concerned farms S1 and S2.
The aim is to get the 2nd (k = 2) probability value
fa after consulting their LUIs. Next, the farms S1 and
S2 send the values of the 2nd probability to the query
site((P2ndofS1

= 0.7) and (P2thofS2
= 0.2)), which

will define the maximal received value (Pmax = 0.7)
from S1 as the new threshold probability. Then, given
this threshold probability τ = 0.7 the GUI will be

www.ijacsa.thesai.org 364 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

visited again and only the farm S1 will be concerned
by the query Q2, S2 will be pruned.

• Locally query ranking: Third, S1 and S2 will process
the query locally and send the tuples that satisfy the
threshold τ = 0.7 to the query site. In this step only
t1,t2 from S1 and t6 from S2 will be retained.

• Distributed query ranking: Fourth, the query site
will rank the received tuples in decreasing order of
their probability and will finally choose the first two
tuples as the result of top-2 of the query Q2 (cf.
Table II).

TABLE II. RESULT OF DUTK QUERY Q2

Ri.Tid Weight Illness
R1.T1 700 (fa,0.9)
R2.T6 710 (fa,0.9)

From these steps, we have the following Lemma:

The DUTk algorithm effectively provides an effective top-
k tuples with minimum cost communication and reduces the
transferring of tuples between the coordinator site and the other
sites. It executes the process in two rounds of communications
between the query site and the other sites.

VII. EXPERIMENTAL STUDY

We experimentally evaluate the performance of our pro-
posed algorithms DUTh and DUTk. We study the effect of the
different parameters for both of the proposed algorithms and
we compare their results with the NAIV approach to show the
efficiency of the pruning phase.

We conduct an extensive experiment on a synthetic data
sets. In particular, we have generated uncertain database Farm
with three attributes (Fig. 1). The uncertain attribute Illness has
60 possible domain values (|D| = 60). The data sets follow
two different distributions 1) a pairwise distribution where the
probabilities for an illness are chosen randomly from [0,1];
and 2) a Zipf distribution over probabilities with the default
skewness 1.2.

Next, we distributed the database horizontally over 50 sites
where each site contains more than 230 000 tuples. To better
show the performance of our algorithms and the efficiency of
their pruning phases, we ensure that some categorical values do
not appear in all sites. For this, we ensure that the distribution
of the maximal probabilities of these categorical values are
different in each site and their probabilities are in the range
[0.1, 1].

We implemented DUTh,DUTk and NAIV in R and C# and
tested them using a simulated distributed environment where
each node has an Intel Core TM processor CPU 3.40 GHZ
with 8 GO RAM. We measure the total communication cost
in terms of number of transferred tuples. Then, we measure the
response time as the time elapsed between sending the query
from the query site and receiving all the responses in the query
site. Each experiment is repeated 10 times in order to calculate
an average time.

Table III shows the experimental setting.

TABLE III. EXPERIMENTAL SETTING

Symbol Meaning Range
m number of nodes {10, 20, 30, 40, 50}
k size of top-k [10, 100] and [100.1000]
τ threshold value [0, 1] and [0.91, 1]
N size of database on each node above 230000 tuples

A. Efficiency of DUTh

In this subsection, we show the efficiency of the proposed
DUTh algorithm. In particular, we compare the DUTh algo-
rithm with the NAIV algorithm. We conducted experiments
on the two types of data sets and we consider the response
time of DUTh compared with the naive algorithm (NAIV) that
sends the query Q to all nodes.

0.2 0.4 0.6 0.8 1.0

4
6

8
1
0

1
2

1
4

(a) Execution Time (Naiv, DUTh)

Threshold Probablity

R
e

s
p

o
n

s
e

 T
im

e
 (

s
e

c
)

NAIV

DUTH

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.92 0.94 0.96 0.98 1.00

2
4

6
8

1
0

1
2

(b) Execution Time (Naiv, DUTh)

Threshold Probability

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
)

NAIV

DUTH

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Fig. 5. Efficiency of DUTh with pairwise distribution by varying τ .

In these experiments, we varied the value of threshold τ
(Table III). In Fig. 5(a) and 6(b), the threshold τ is in the
range [0.1, 1]. For Fig. 6(b) and 5(b), it is in the range [0.9, 1]
with varying step 0.01. We observe that execution time for the
DUTh algorithm decreases with the increase of the value of τ .
For the highest value τ = 1, the total response time is about
1.65 sec for DUTh and 13.79 sec for NAIV.

We note that the difference between the response time of
DUTh and NAIV is due to the fact that the number of sites
pruned are more important when the threshold probability is
greater. When a threshold probability increases the number
of pruned sites increases as well for the two data distributions.

www.ijacsa.thesai.org 365 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

0.2 0.4 0.6 0.8 1.0

4
6

8
1
0

1
2

1
4

(a) Execution Time (Naiv, DUTh)

Threshold Probablity

R
e
s
p
o
n
s
e
 t

im
e
 (

s
e
c
)

NAIV
DUTH

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.92 0.94 0.96 0.98 1.00

4
6

8
1
0

1
2

1
4

(b) Execution Time (Naiv, DUTh)

Threshold Probability

R
e
sp

o
n
se

 t
im

e
 (

se
c)

NAIV
DUTH

0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

Fig. 6. Efficiency of DUTh with Zipf distribution by varying τ .

B. Scalability of DUTh

In this experiment, we study the scalability of the DUTh
algorithm with respect to the number of distributed nodes using
Zipf distribution. To do so, we fixed the size of the whole
distributed data and we varied the number of distributed sites
from 10 to 50. Fig. 7 shows the results of the fixed threshold
probability (τ = 0.95).

We note that the gap between DUTh and NAIV when m >
20 increases as m increases due to the fact that only a subset
of sites is requested based on GUI (only 20 sites have maximal
probability of value d above 0.96). Consequently, the number
of sites who have a maximal probability less than threshold
τ , do not effect the query processing. This clearly shows the
benefit of the GUI index in terms of scalability.

C. Efficiency of DUTk

In this subsection, we investigate the computation time
of the DUTk algorithm. More precisely, we compare the
computation time of DUTk and NAIV over different values of
k. In Fig. 8(a) and 9(a), k is in the range [10, 100], for the (b)
figures, it is in the range [100, 1000]. As these figures clearly
show, DUTk is substantially faster than NAIV. Furthermore,
the computation time of DUTk is highly stable relative to the
variations of k. This demonstrates the advantages of the GUI
index in terms of time processing.

D. Effectiveness of DUTk

We compared the proposed DUTk algorithm with the NAIV
method, over different k, i.e. k ∈ [10, 100] and k ∈ [100, 1000].

10 20 30 40 50

2
4

6
8

10
12

Execution Time (Naiv, DUTh) (p=0.95)

Number of site m

R
es

po
ns

e
T

im
e

(s
ec

)

NAIV
DUTh

10 20 30 40 50

Fig. 7. Scalability of DUTh with Zipf distribution by varying m.

20 40 60 80 100

4
6

8
10

12
14

Execution Time (Naiv, DUTk)

Value of K

R
es

po
ns

e
T

im
e

(s
ec

)

NAIV
DUTK

10 20 30 40 50 60 70 80 90 100

200 400 600 800 1000

4
6

8
10

12
14

Execution Time (Naiv, DUTk)

Value of K

R
es

po
ns

e
T

im
e

(s
ec

)

NAIV
DUTK

100 200 300 400 500 600 700 800 900 1000

Fig. 8. Efficiency of DUTk with pairwise distribution by varying k.

Fig. 10 (a) and 11 (a) show the communication cost of the
two algorithms for different values of k over the data sets
generated, respectively with the Pairwise and Zipf distribu-
tions. Interpreting our findings is straightforward: from the
experimental results, we can see that DUTk involves substan-
tially fewer tuples than the NAIV. Moreover, we note that the
number of returned tuples is greater than k which demonstrates
the effectiveness of DUTk.

Furthermore, for different value of k, the communication
cost of DUTk algorithm is smaller then NAIV. Consequently,
using the GUI index yields a better communication cost and
ensures returning the requested tuples. The second important
point observed in this experiment is that the number of tuples
transferred using DUTk is always greater than the value of k

www.ijacsa.thesai.org 366 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

20 40 60 80 100

4
6

8
10

12
14

Execution Time (Naiv, DUTk)

Value of K

R
es

po
ns

e
T

im
e

(s
ec

)

NAIV
DUTK

10 20 30 40 50 60 70 80 90 100

200 400 600 800 1000

4
6

8
10

12
14

Execution Time (Naiv, DUTk)

Value of K

R
es

po
ns

e
T

im
e

(s
ec

)

NAIV
DUTK

100 200 300 400 500 600 700 800 900 1000

Fig. 9. Efficiency of DUTk with Zipf distribution by varying k.

10 20 30 40 50 60 70 80 90 100

(a) Communications Cost Of DUTk

Value Of k

N
u

m
b

e
r

o
f
T

u
p

le
s
 i
n

 %

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

NAIV
DUTk

100 200 300 400 500 600 700 800 900 1000

(b)Communications Cost Of DUTK

Value Of k

N
u

m
b

e
r

o
f
T

u
p

le
s
 i
n

 %

0
1
0
0
0
0

3
0
0
0
0

NAIV
DUTk

Fig. 10. DUTk with pairwise distribution by varying k.

which proves the effectiveness of our results.

10 20 30 40 50 60 70 80 90 100

(a) Communications Cost Of DUTk

Value Of k

N
u
m

b
e
r

o
f
T

u
p
le

s
 e

n
 %

0
1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

NAIV
DUTk

100 200 300 400 500 600 700 800 900 1000

(b)Communications Cost Of DUTK

Value Of k

N
u

m
b

e
r

o
f
T

u
p

le
s
 i
n

 %

0
1
0
0
0
0

3
0
0
0
0

Naive
DUtK

Fig. 11. DUTk with Zipf distribution by varying k.

E. Scalability of DUTk

10 20 30 40 50

2
4

6
8

10
12

Execution Time (Naiv, DUTk) (k=400)

Number of site m

R
es

po
ns

e
T

im
e

(s
ec

)

NAIV
DUTK

Fig. 12. Scalability of DUTh with Zipf distribution by varying m.

In this experiment, we study the scalability of our algorithm
with respect to the number of distributed sites m. We keep
the size of the whole distributed data unchanged and vary the
number of sites from 10 to 50. We use the Zipf Data set in
this experiment. Fig. 12 shows the results for k = 400. DUTk
scales well with the number of sites m and outperforms NAIV
substantially.

We note that the gap between DUTk and NAIV increases
as m increases from m > 30. Fig. 12 clearly shows that the
execution time of DUTk for m > 30 is constant.

This result is expected due to the fact that the only a
subset of sites are queried based on the GUI. Consequently,

www.ijacsa.thesai.org 367 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

the number of sites does not effect the query processing. This
clearly shows the benefits of the index structures in terms of
scalability.

VIII. CONCLUSION

In this paper, the problem of indexing and query processing
over uncertain categorical data in distributed environments
was addressed. An original approach was proposed to effi-
ciently answers queries over distributed uncertain data using
a distributed top-level index with Local Uncertain Indexes
(LUIs) at local nodes and a Global Uncertain Index (GUI)
summarizing local indexes. Leveraging the distributed indexing
technique, we proposed a framework integrating two dis-
tributed algorithms DUTh and DUTk to process distributed
uncertain threshold and top-k queries respectively.
An extensive experiment was conducted to illustrate the perfor-
mance of the proposed framework, which performs distributed
query processing and allows for minimal communication and
processing costs as opposed to the naive(NAIV) approach.

We have seen that our proposed DUTk enhanced the naive
approach that effectively and efficiently answers top-k queries
over distributed uncertain data with minimum communication
by using the proposed hierarchical index. However, during
the ranking phase on the coordinator site, the tuples of some
queried sites cannot be considered in the final result as shows
in the effectiveness experiments. Hence, these sites should
not be accessed and should be pruned to further reduce the
communication cost and processing time.

REFERENCES

[1] R. Cavallo and M. Pittarelli, “The theory of probabilistic databases,” in
VLDB, 1987, pp. 71–81.

[2] D. Barbará, H. Garcia-Molina, and D. Porter, “The management of
probabilistic data,” TKDE, pp. 487–502, 1992.

[3] N. N. Dalvi and D. Suciu, “Efficient query evaluation on probabilistic
databases,” in VLDB, 2004, pp. 864–875.

[4] M. Hua, J. Pei, W. Zhang, and X. Lin, “Ranking queries on uncertain
data: a probabilistic threshold approach,” in SIGMOD. ACM, 2008, pp.
673–686.

[5] M. A. Soliman, I. F. Ilyas, and K. C. Chang, “Top-k query processing
in uncertain databases,” in ICDE. IEEE Computer Society, 2007, pp.
896–905.

[6] P. K. Agarwal, S. Cheng, Y. Tao, and K. Yi, “Indexing uncertain data,”
in PODS, 2009, pp. 137–146.

[7] S. Singh, C. Mayfield, S. Prabhakar, R. Shah, and S. E. Hambrusch,
“Indexing uncertain categorical data,” in ICDE, 2007, pp. 616–625.

[8] R. Cheng, Y. Xia, S. Prabhakar, R. Shah, and J. S. Vitter, “Efficient
indexing methods for probabilistic threshold queries over uncertain data,”
in VLDB, 2004, pp. 876–887.

[9] A. Benaissa, S. Benbernou, M. Ouziri, and S. Sahri, “Indexing uncertain
categorical data over distributed environment,” in IFSA-EUSFLAT, 2015.

[10] X. Li, Y. Wang, and J. Yu, “An efficient scheme for probabilistic skyline
queries over distributed uncertain data,” Telecommunication Systems,
vol. 60, no. 2, pp. 225–237, 2015.

[11] F. Li, K. Yi, and J. Jestes, “Ranking distributed probabilistic data,” in
SIGMOD, 2009, pp. 361–374.

[12] Y. Sun, Y. Yuan, and G. Wang, “Top-k query processing over uncertain
data in distributed environments,” WWW, vol. 15, pp. 429–446, 2012.

[13] Y. M. AbdulAzeem, A. I. El-Desouky, H. A. Ali, and M. M. Salem,
“Ranking distributed database in tuple-level uncertainty,” Soft Comput.,
vol. 19, no. 4, pp. 965–980, 2015.

[14] N. A. Othman, A. S. Eldin, and D. S. E. Zanfaly, “Handling uncertainty
in database: An introduction and brief survey,” Computer and Informa-
tion Science, vol. 8, no. 3, pp. 119–133, 2015.

[15] M. Ye, X. Liu, W. Lee, and D. L. Lee, “Probabilistic top-k query
processing in distributed sensor networks,” in ICDE, 2010, pp. 585–588.

[16] H. Ji, H. Deng, and J. Han, “Uncertainty reduction for knowledge
discovery and information extraction on the world wide web,” WWW,
2012.

[17] E. Michelakis, R. Krishnamurthy, P. J. Haas, and S. Vaithyanathan,
“Uncertainty management in rule-based information extraction systems,”
in SIGMOD, 2009, pp. 101–114.

[18] X. L. Dong, A. Y. Halevy, and C. Yu, “Data integration with uncertainty,”
in VLDB, 2007, pp. 687–698.

[19] E. Altareva and S. Conrad, “The problem of uncertainty and database
integration,” in EFIS, 2001, pp. 92–99.

[20] R. J. Miller, “Management of inconsistent and uncertain data,” in VLDB,
2007, p. 7.

[21] ——, “Efficient management of inconsistent and uncertain data,” in
BIRTE, 2008.

[22] A. Fuxman, E. Fazli, and R. J. Miller, “Conquer: Efficient management
of inconsistent databases,” in SIGMOD, 2005, pp. 155–166.

[23] M. Chen, G. Yu, Y. Gu, Z. Jia, and Y. Wang, “An efficient method
for cleaning dirty-events over uncertain data in wsns,” J. Comput. Sci.
Technol., vol. 26, no. 6, pp. 942–953, 2011.

[24] R. Cheng, J. Chen, and X. Xie, “Cleaning uncertain data with quality
guarantees,” PVLDB, vol. 1, no. 1, pp. 722–735, 2008.

[25] R. Cheng, “Querying and cleaning uncertain data,” in QuaCon, 2009,
pp. 41–52.

[26] F. Jiang and C. K. Leung, “A data analytic algorithm for managing,
querying, and processing uncertain big data in cloud environments,”
Algorithms, vol. 8, no. 4, pp. 1175–1194, 2015.

[27] E. Adar and C. Ré, “Managing uncertainty in social networks,” IEEE
Data Eng. Bull., vol. 30, no. 2, pp. 15–22, 2007.

[28] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in SIGMOD, 2001.

[29] J. Li, B. Wang, G. Wang, and Y. Zhang, “Probabilistic threshold query
optimization based on threshold classification using ELM for uncertain
data,” Neurocomputing, vol. 174, pp. 211–219, 2016.

[30] I. F. Ilyas, G. Beskales, and M. A. Soliman, “A survey of top-k query
processing techniques in relational database systems,” ACM Comput.
Surv., vol. 40, no. 4, 2008.

www.ijacsa.thesai.org 368 | P a g e

