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Abstract—In this paper, we present a novel system to analyze
human body motions for action recognition task from two sets
of features using RGBD videos. The Bag-of-Features approach
is used for recognizing human action by extracting local spatial-
temporal features and shape invariant features from all video
frames. These feature vectors are computed in four steps: Firstly,
detecting all interest keypoints from RGB video frames using
Speed-Up Robust Features and filters motion points using Motion
History Image and Optical Flow, then aligned these motion points
to the depth frame sequences. Secondly, using a Histogram of
orientation gradient descriptor for computing the features vector
around these points from both RGB and depth channels, then
combined these feature values in one RGBD feature vector.
Thirdly, computing Hu-Moment shape features from RGBD
frames, fourthly, combining the HOG features with Hu-moments
features in one feature vector for each video action. Finally, the
k-means clustering and the multi-class K-Nearest Neighbor is
used for the classification task. This system is invariant to scale,
rotation, translation, and illumination. All tested are utilized
on a dataset that is available to the public and used often in
the community. By using this new feature combination method
improves performance on actions with low movement and reach
recognition rates superior to other publications of the dataset.

Keywords—RGBD Videos; Feature Extraction; k-means Clus-
tering; KNN (K-Nearest Neighbor)

I. INTRODUCTION

Human action recognition using cameras is a very ac-
tive research topic and it has been widely studied in the
computer vision and pattern recognition fields to characterize
the behavior of persons. Also, it has been used in many
applications fields like, video surveillance, robotics human-
computer interaction, and a variety of systems that involve
interactions between persons and computers [1]. Therefore,
the ability to design a machine that is capable of interacting
intelligently with a human-inhabited environment is important
in recognizing humans and activities of people from the video
frames [2].

In the last few years, research on human activity recogni-
tion essentially concentrated on recognizing human activities
from videos captured by conventional visible light cameras
[3]. But recently, the action recognition studies have entered
a new phase by technological advances and the emergence
of the low-cost depth sensor like Microsoft Kinect [4]. This

depth sensor has many advantages over RGB cameras, like
to provide 3D structural information as well as color image
sequences in real time, and can even work in total darkness
which makes it possible to explore the fundamental solution
for traditional problems in human action classification [5][6].
Of course, the depth camera also has severe limitations which
can be partially enhanced by fusion of RGB and Depth. But all
these advantages make it interesting to incorporate the RGBD
cameras into more challenging environments.

Overview of our approach: In this work, we combined
two sets of features. For the local motion and appearance
features, which are improved the method of [7][8] to categorize
the body motions on RGBD videos instead of using only RGB
video, according to how to represent the spatial and temporal
structure of actions from color and depth data together and
combining the motion features extracted from both channels
in one feature vector for each video action. And the Hu-
moments shape invariant which introduced by [9] are used for
global spatial-temporal features. The overview of the proposed
approach is illustrated in Fig. 1. In order to represent the
human activity recognition from RGBD, the two different sets
of features vector are extracted, the first set is represented as
follow:

• Detect the important interest points by extracting visu-
ally distinctive points from the spatial domain using
Speed-Up Robust Features (SURF). After that filter
these SURF points using Motion History Image (MHI)
[10][11] and Optical Flows (OF) [12] to extract only
the essential motion points from the sequences.

• HOG descriptor is applied to describe the detected
interest points. the HOG features is computed from
the frames, MHI and OF channels and represented in
one feature vector for each video action.

While the second feature set is computed as:

• Represent the spatial and temporal information about
an action in a single image. In order to do this, MHI
is used, where the pixel intensity is a function of the
recency of action.

• Hu moments [9] are used as descriptors of the motion
history image. We are using the seven translation,
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scale and orientation invariant Hu moments to get each
seven Hu moments from the motion history image.

After the two feature sets are computed, the feature vectors
are combined and encoded into a single code by using the bag
of features algorithm [13]. The unsupervised learning k-means
clustering and supervised learning K-nearest neighbor (KNN)
[2] are used for classification the different action from videos.

Fig. 1. General structure of our approach.

The rest of the paper is represented as follow, section II
describes the related work done in this area. Section III explain
in detail the system analysis of action recognition. Section IV
represent the experimentation and results, and finally in Section
V provides the conclusion.

II. RELATED WORKS

In this section, the state of the arts on human action
recognition are summarized. During the last decades, several
different approaches have been proposed to detection, rep-
resentation and recognition, and understanding video events.
Previous research on action recognition mainly focused on
RGB videos, which yielded lots of feature extraction, action
representation, and modeling methods.

In [14], the authors presented the human detection and
simultaneous behavior recognition from RGB image sequences
by using the action representation method depended on apply-
ing the clustering algorithm to the sequence of HOG descriptor
of human motion images. Other people used a hierarchical fil-
tered motion (HFM) method for recognizing the human action

in crowded videos as in [7], they used 2D Harris corners for
detection the motion interest points from motion history image
(MHI) of the recent motion (i.e. locations with high intensities
in MHI). Then applied a global spatial motion smoothing
filter to the gradients of MHI to eliminate isolated unreliable
or noisy motions. To characterize the spatial(appearance) and
temporal(motion) features they used HOG descriptor in the in-
tensity image and MHI respectively and the Gaussian Mixture
Model (GMM) classifier for action recognition performance
system. The work of [15] also used the invariant 7-Hu moments
of MEI and MHI to estimate Gaussian Mixtures models of
daily activities.

In the other hand, there are a lot of researchers presented
action recognition depending on only depth data, like in [16],
they recognized human action by projected to the depth maps
onto three orthogonal levels and collect the global activities
from entire video frames to compute the Depth Motion Maps
(DMM), after that the Histograms of Oriented Gradients
(HOG) is computed from DMM to represent an action video.

A lot of researchers improved the action recognition perfor-
mance on RGBD data by computing a local spatial-temporal
feature from RGB data, a skeleton joint feature, and a point
cloud feature in-depth data, and combined all these features
based on sparse coding features combination methods as in
[17]. While in [2], presented a comparison of several well-
known pattern recognition techniques. they used Motion His-
tory Images (MHI) to describe these activities in a qualitative
way and computed Hu-moments. And the system was tested
extracted features vectors with Support Vector Machines and
K-Nearest Neighbours classifiers. Another method that was
used for action recognition is based on features learned from
3D video data applying Independent Subspace Analysis (ISA)
technique on data collected by RGBD cameras as in [18]
and they followed the bag-of-visual-word model and an SVM
classifier to recognize the activities. The other researchers
considered a human’s activity as composed of a set of sub-
activities as in [19], they computed a set of features based
on human poses and motion, as well as based on image and
point-cloud information.

III. SYSTEM ANALYSIS OF ACTION RECOGNITION

In this section, we describe the steps for computing the
feature vectors from each video action in details. Section III-A
represents the Pre-processing to the input RGB and depth
videos. Section III-B gives a brief description about Bag of
Features Extraction. Section III-C explains the Bag of Words
Generation and in section III-D explains the classification
method used to compute the recognition accuracy. As shown in
Fig. 2, the system scheme of action recognition is represented.

A. Preprocessing Input Data

The input dataset is color and depth videos were analyzed
as a frame sequence to extract features presented in each
frame. In this work, we choose to use a lower resolution of
320 × 240 in order to reduce the computational complexity
of the system. The depth maps data captured by the Kinect
camera are often noisy due to imperfections related to the
Kinect infrared light reflections. For reducing noise and to
eliminate the unmatched edges from the depth images, we used
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Fig. 2. System analysis schematics of action recognition. Using RGB and depth stream. Pre-processing to the input data; feature extraction; and classification.

a spatial-temporal bilateral filtering to smooth depth images.
The joint-bilateral filtering proposed in [20] is formulated as
in equation (1):

D̂(P ) =
1

K(p)

∑
q∈Ωp

f(p, q)g(‖ D̂m(p)− D̂m(q) ‖)

h(‖ I(p) − I(q) ‖)
(1)

where f(p, q) refers to the domain term for measuring the
closeness of the pixels, p, and q. the function g(.) denotes
a depth range term that computes the pixel similarity of the
modeled depth map. h(.) is function represent an intensity term
to measure the intensity similarity. Moreover, Ωp represents the
spatial neighborhood of position p.

B. Bag of Features Extraction

For feature extraction, we flow the Bag-of-Features (BoFs)
method, It is the most popular technique of feature rep-
resentation for videos to learn and recognize the different
human actions. The local features have been computed from
the spatial-temporal domain by implementing the feature de-
tector and descriptor methods on 3D data. The procedure
for extracting features vectors include three steps: Interest
keypoint generation, feature vector generation, and dictionary
generation.

1) Interest Keypoints Generation: As the essential, we
finding the motion interest points (keypoints) from RGB frame
sequence using the Speed-Up Robust Features (SURF) detector
[21] as a first step to extract visually distinctive keypoints from
spatial domain. Then, these keypoints are filtered by using
temporal (motion) template approach for detecting motion and
computing its direction, this constraint from motion history
images MHI that is generated by computing the difference
between two adjacent frames as represented in [11][22]. Those
points with larger intensities in MHI representing the moving
object with more recent motion. After that compute optical
flows of those keys preserved after MHI filtering using the
Lucas-Kanade method [23]. To represent how motion the
image is moving, form a motion-history image (MHI). In an
MHI H , the pixel intensity, which is represent a function of
the temporal motion history that point. The MHI shown in
equation (2) is formally defined as in [11].

Hτ (x, y, t) =

{
τ , if D(x,y,t)=1
max(0, Hτ (x, y, t− 1)− 1) otherwise.

(2)

where D(x, y, t) is a binary image of differences between
frames and τ is the maximum duration of motion. τ is the dura-
tion which decides the temporal extent of the movement (e.g.,
in terms of frames). After Computing the motion keypoints
P (x, y, t) from RGB images, this motion points are aligned to
the related depth images Pd(x, y, z, t), where (x, y, t) denote
the coordinates and time of interest point p on RGB images
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and (x, y, z, t) refer to the 3D coordinate and time of interest
point on depth images.

2) Feature Vector Generation: In order to represent the
shape, appearance and motion information, we used two
different descriptors. HOG features descriptor [7] is applied
on both RGB and depth video frames and combined feature
vector values to generate the BoFs. This descriptor is widely
used in human detection [24] and action recognition [25].
For vector generation, the HOG descriptor was implemented
around each keypoints in video frames of RGBD images, MHI
and OF channel and also, can be well adapted to characterize
local shape information from image channel and local motion
information from MHI channel by computing distributions
of local gradients. Seven Hu-moment shape features are ex-
tracted from MHI that computed above in equation (2). For
two-dimensional (M × M ) images that has MHI function
f(x, y);x, y = 0, 1, ....,M − 1, geometric moment mpq of
f(x, y) is computed as follow [26]:

mpq =

x=M−1∑
x=0

y=M−1∑
y=0

(x)p.(y)qf(x, y), (3)

for p, q = 0, 1, 2, 3, ..,, where p, q are positive integers
and (p + q)th is called the order of the moment of a density
distribution function f(x, y).

The moments value of f(x, y) are translated by a quantity
(a, b), which is computed as:

µpq =
∑
x

∑
y

(x+ a)p.(y + b)qf(x, y), (4)

Then, to make these moments invariant to translation, the
central moment µpq can be defined from equation (4) as follow,
by changing the values a = −x̄, and b = −ȳ:

µpq =
∑
x

∑
y

(x+ x̄)p.(y + ȳ)qf(x, y), (5)

where,

x̄ =
m10

m00
, ȳ =

m01

m00

And the scaling invariance of central moment can be
computed by normalizing the moments of the scaled image by
the scaled energy of the original image to become invariant to
scale change, which can be defined as stated below.

ηpq =
µpq
µγ00

, γ =
p+ q

2
+ 1 (6)

where γ is the value of normalization factor.

The values of ηpq represented a set nonlinear function that
calculated by normalizing central moments, which are invariant
to object rotation, translation, position and scale change. The
seven Hu-moments is derived as in equation (7) [26][27]:

M1 = η20 + η02,

M2 = (η20 − η02)2 + 4η2
11,

M3 = (η30 − 3η12)2 + (3η21 − η03)2,

M4 = (η30 + η12)2 + (η21 + η03)2,

M5 = (η30 − 3η12)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)2]

+(3η21 − η03)(η21 + η03)[(η30 + η12)2 + (η21 + η03)2],

M6 = (η20 − η02)[(η30 + η12)2 − (η21 + η03)2]+

4µ11(η30 + η12)(η21 + η03),

M7 = (3η21 − η03)(η30 + η12)[(η30 + η12)2 − 3(η21 + η03)]+

(η30 − 3η12)(η21 + η03)[3(η30 + η12)2 − (η21 − η2
03]
(7)

Where the numerical values of M1 to M6 are very small.
To avoid precision problems the logarithms of the absolute
values of these six functions, i.e. log|Mi|; where, i = 1, .., 6,
are selected as features representing the action among video
frames.

Finally, the feature vectors are generated by combining the
hu-moment features with the HOG features to represent the
action information from each RGBD video.

3) Dictionary Generation: After extracting features infor-
mation from all RGBD video depending on the detector and
descriptor strategy, the dictionary is generated from these
feature vectors – this is the important step on (BoFs) method.
The Dictionary was generated by clustering using the k-means
algorithm as represented in Fig. 3. The size of the dictionary is
important for the recognition process because if the size of the
dictionary is set too small then the BoF model cannot express
all the keypoints and if it is set too high then it might lead to
over-fitting and increasing the complexity of the system [28].
The k-means clustering was applied on all BoF from training
videos, the k is represents the dictionary size. The centroids of
each cluster are combined to make a dictionary. In this method,
we got the best result with a value of k = 400 as a dictionary
size.

Fig. 3. Dictionary Generation from Feature vector for classified Action.
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C. Bag of Words Generation

In order to generate the Bag-of-Words (BoWs), each fea-
ture description of the video frame is compared with each
centroid of the cluster in the dictionary using Euclidean
distance measure e as formulated in equation (8) [29].

e =

k∑
j=1

n∑
i=1

‖Xi
(j) − Cj‖2 (8)

where ‖Xi
(j) − Cj‖2 is the selected distance measure

between the feature vector point and the clustering center
Cj . Cj is the clustering center length and n is the feature
vector size. Then, we check the difference e, if the difference
is small or features values is close to a certain cluster, the
count of that index is increased. Similarly, the other feature
description of video frames are also compared and the counts
of the respective indices are increased of which the feature
description values are closest to as in [28]. These BoWs vectors
are computed for all the videos for training and testing dataset.

D. Action Classification

In order to make performance comparison for our system,
a K-nearest neighbor (KNN) [2] is used. KNN is the simplest
and mostly used classifier. It is assigned an object to a class
according to the vote of its K-nearest neighbors, i.e. KNN is
to classify unlabeled observations by assigning them to the
class of the most similar labeled examples. Characteristics of
observations are collected for both training and test dataset.
K is an integer value and typically small and varied by the
amount of test class. If K=1, the object is directly assigned to
the class of its nearest neighbor.

In this work, the Bag of words vectors for all the videos is
computed in training stage and labels are appended according
to the class. This bag of words vectors are fed into the multi-
class KNN in order to train the model that is further used in
testing stage for human action recognition as shown in Fig. 3.

IV. EXPERIMENTATION AND EVALUATION

In this section, we present the two types of datasets used
and the experimental results on them using our approach.

A. Dataset

To evaluate the performance of our system approach, we
conducted experiments on the MSR-Daily Activity 3D Dataset
1 and Online RGBD Action dataset (ORGBD) 2.

1) MSR-Daily Activity 3D dataset: The MSR-Daily Activ-
ity 3D Dataset is a daily activity dataset captured by a Kinect
device and it is designed to cover humans daily activities in
the living room [30]. This dataset contains 16 action and 10
subjects; each subject performs each activity in two different
poses:drinking, eating, read a book, call cell phone, writing
on a paper, using laptop, using vacuum cleaner, cheer up,
sitting, still, tossing paper, playing game, laying down on sofa,
walking, playing guitar, stand up, and sit down. see Fig. 4.

1http://www.uow.edu.au/w̃anqing/#MSRAction3DDatasets
2https://sites.google.com/site/skicyyu/orgbd

2) Online RGBD action dataset: The Online RGBD Action
dataset (ORGBD) [31] are captured by the Kinect device. Each
action was performed by 16 subjects for two times. This dataset
contains seven types of actions which recorded in the living
room: drinking, eating, using a laptop, picking up a phone,
reading phone (sending SMS), reading a book, and using a
remote. as shown in Fig. 5. We compare our approach with the
state-of-the-art methods on the same environment test setting,
where half of the subjects are used as training data and the
rest of the subjects are used as test data.

Fig. 4. Sample frames of MSR-Daily Activity 3D Dataset.

Fig. 5. Sample frames of Online RGBD Action Dataset.

B. Experimental results

In our experiments, we are combined two different fea-
ture descriptor information. The local features which encode
information regarding all the available modalities and the
shape invariant moment. The local features are extracted as
follow: from RGB videos, the SURF detector is used on spatial
domains and filtered these points by MHI and OF on temporal
domains to extract the motion points all video frames and then
aligned these points to the depth sequences to get the RGBD
interest motion points as in Fig. 6, which shows the position
of interesting motion points in the video frames. After that, the
local appearance and motion features are characterized by grids
of the histogram of orientation gradient (HOG) [7] around
the motion interest points. Normalized histograms of all the
patches are concatenated into HOG (for appearance features
in the intensity image), HOG-MHI (for motion features in the
MHI) and HOG-OF (for motion features in the OF) descriptor

www.ijacsa.thesai.org 387 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 10, 2017

TABLE I. COMPRISION OF RECOGNITION ACCURACY WITH OTHER
METHODS ON MSR-DAILY ACTIVITY 3D DATASET

Methods Accuracy

CHAR [32] 54.7%
Discriminative Orderlet [31] 60.1%
Relative Trajectories 3D [33] 72.00%
Moving Pose [34] 73.80%
Proposed Method 100%

TABLE II. COMPRISION OF RECOGNITION ACCURACY WITH OTHER
METHODS ON ONLINE RGBD (ORGBD) DATASET

Methods Accuracy

HOSM [35] 49.5%
Orderlet+SVM [31] 68.7%
Orderlet+ boosting [31] 71.4%
Human-Object Interaction[36] 75.8%
Proposed Method 85.71%

vectors as the input of the classifier for action recognition. In
this test, we set x and y equal to 3 and use 6 bins for HOG in
the intensity image, HOG-MHI, and HOG-OF. These selected
values are applied on RGB and Depth channels.

Fig. 6. Motion points in RGB and depth frames of different action represented
by green points on RGB frame and white points on depth frames..

The Hu-moment features are computed from MHI channel
on both RGB and depth video frames to compute the seven
invariant features from each frame in video. The last step
in computing features vector is combined the local and hu-
moment feature to represent the feature vector. All testing
results of the experiment are described on Table I and Table II,
which shows the comparison results of recognition rate of
our system test and the other state of the art using different
methods of the MSR-Daily Activity 3D and ORGBD dataset
respectively.

V. CONCLUSION AND FUTURE WORKS

In this paper, a human action recognition on 3D video
(RGB and Depth data) is proposed. Our system starts from
processing, removing the noise from the input depth data
and aligning the RGB with the depth frames. We proposed
two sets of feature information, which are represented by the
local feature vector by extracting these features from 3D video
data using SURF, MHI, and OF for detecting motion interest
points, and for the appearance and motion features, the HOG
descriptor is applied on image, MHI and OF of each RGB and
depth video of all actions. and the other feature set is extracted
using global Hu-moments shape descriptor from MHI, then
combined all motion, shape and appearance vectors into one
vector for each RGBD video action. These feature vector
values are tested depending on the Bag-of-words method
(BoWs) by using k-means clustering and KNN classifier. The
presented approach is highly efficient and invariant to cluttered
backgrounds, illumination changes, rotation, translation and
scale.

The Experiment results showed that the proposed scheme
can effectively recognize the similar action with high move-
ment rate as walking, cleaning, etc., and improves perfor-
mance on actions with low movement rate like: reading,
using laptop, etc. It gives a 100% on MSR-Daily activity 3D
dataset and 85.71% on ORGBD dataset recognition rates. From
this method on RGBD dataset demonstrate that our approach
significantly outperforms the existing state-of-the-art methods.
The best performance is achieved because interest points are
extracted solely from the RGB channel and aligned to the
depth, then combined the RGB and depth based descriptors
values depending on this detected motion points. For the future
works, we will combine a new feature vector values like
local binary pattern (LBP). Also for the classification task, the
convolution neural networks (CNN), and random forest will
be use.
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