
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

90 | P a g e

www.ijacsa.thesai.org

Linear Prediction Model for Effort in Programming

based on User Acceptance and Revised use Case

Point Method

Fahad H. Alshammari

College of Computing and Information Technology

Shaqra University

KSA

Abstract—As long as most of the processes of verification and

validation of software to grant acceptance by the customer/user,

are subjective type, it is aimed to design a standard mathematical

model with empirical to perform an appointment with areas or

stages where development teams most fail involving large-scale

software projects. This model will be based on a survey that the

user must fill as going testing and validating the software, and

which response curve must be linear with respect to the software

development process. This paper aims to discuss the aspects

surrounding the estimation of mathematical model in the

validation and acceptance by a user through the revised Use Case

Point Method. First, an assessment of the most recent techniques

of application of the method are done, and then a simulation of

the process of acceptance and validation by a standard user (Beta

Test) will be taken as a practical example. For purposes of this

paper, revised use case point method (Re-UCP) must have a

specific weight, based on the prerequisites for the development of

large-scale software. Once obtained this weighting, the user shall

assess the finished product and then an approximation function

will be to determine the coefficients of the final model approach,

and indicating that is the efficient trend of the development team.

Keywords—Function; point; software; engineering;

mathematical; model; large-scale; programming; acceptance;

validation

I. INTRODUCTION

The evaluation of design and usability, centered on user,
has become a common practice in many organizations,
however, in most software development companies is still in its
infancy and is not used as often. Development cycles of typical
software engineering do not use these practices because they
may represent additional costs, especially those related to
governmental or educational institutions [1]. Currently,
usability, understood as an effective means for obtaining
acceptability and validation by the user, is an area that takes
strength worldwide in software engineering. Countries that are
traditionally powers in software development are concerned
more by the satisfaction and comfort that produce their
products on their customers, taking it as their top priority,
while one hand on the performance of the product. Starting
with software for personal computers, cellular and even system
for cars, they have adapted better to the type of people who
require, avoiding with this, that people take too long to use and
optimally understand the software of the equipment [2]. Lately,
there have been significant changes in the computing

revolution; changes covering all aspects of its main function:
‘To serve mankind’ changes both quantitative in nature, as
some more fundamental emerging diversity located in the
global context. It is known, moreover, that computers are
included in a wide range of aspects of our daily life, to the
point that directly influence our lifestyle. The human-computer
relationship is intensifying on a global scale that result in even
governmental, cultural and / or social tensions, issues that fall
outside the scope of this study; however, the importance of
thoroughly analyze these characteristics lies in the fact that this
relationship (human-computer) is the spearhead to generate a
vast multidisciplinary field, if willing, that is just beginning
and whose growth is exponential [3]. In conceptual terms of
human-computer relationship, the validation and acceptance of
usability refers to the process with which the interaction is
designed with a computer program. The term is also often used
in the context of products like consumer electronics or in areas
of communication. It can also refer to the efficient design of
mechanical objects such as, for example, a handle or a
hammer. As rules adopted worldwide and given the growing
importance of ensuring the proper functioning of computer
systems, emerged the need to establish parameters and
standards governing the acceptance and usability of computer
systems. This paper is based on the recommendations of the
ISO/IEC 25010 standard which establishes regulations about
quality requirements and evaluation of large-scale software
development. It is well known that the acceptance and
validation of a software depends purely on human behaviour
and preferences, based, of course, in their ability to interact
with the technology that is being presented, this is why in this
paper is established a mathematical model with linear trend and
empirical basis, as a reference between the work of a
development team, estimated effort of development by the
Rev-UCP method and preferences of a user. Here, will be used
the experiences of software development of operational
management of a private hospital, which is considered large-
scale and small modules will break down in this way to be able
to use this proposed model. As a case study, this article will
discuss the acceptance and validation of an operational
management software in a private hospital, as it can give a
tangible perspective of the advantages or disadvantages of the
software to analyze the acceptance by the user.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

91 | P a g e

www.ijacsa.thesai.org

II. THEORETICAL BASIS

A. Requirements Engineering, Assuring the Product Quality

Properly Application of Requirements Engineering
increases the chances of producing software that meets the
needs of users, many errors in the requirements stage are
rooted in the ambiguity presented between end users and
developers.

On his book, Pohl [4] suggest that the ’vision’ defines the
change the reality of any system. In other words, a vision states
the goal of making any change on any system. When a client
have a vision we have to mind on the goal to change the reality
of that client. However, Pohl also talks that the vision must be
supplemented with the context of the system, in fact, they are
taken as the two main inputs of the engineering requirement.

Much of the problems that arise during the process of
software development, due to the lack of a proper process of
definition and understanding of the requirements and the
problem to solve, and the unclear interpretation of customer
needs. That is why requirements management, in software
engineering, is one of the main strategies to ensure the quality
of applications from the earliest stages of software
development [5].

B. Understanding the Software Complexity and Its Relation

with Acceptance

The complexity of the software is, by tradition, a linearly
direct indicator of software quality and, especially, the cost.
While the complexity is greater, so the cost will be. In recent
years they have invested large amounts of money and effort in
the development of techniques and metrics to "measure" the
complexity of software modules all dimensions. Obviously,
many of these measures are correlated with each other.
Understanding these relationships is important metrics to
assess themselves and ultimately reducing software
development efforts and maintenance [6].

Jay et al. [6] found a statistical method to establish the
linearity between the lines of program code and McCabe
cyclomatic complexity of using empirical inferences and
refuting earlier studies had conflicting results. It also suggests
that there is some instability in the predictions based on
empirical collinear factors, in any case, dependent on language
and the complexity inherent in it. In principle, to establish a
relationship between the complexity of software and
acceptance by the customer is quite difficult as acceptance
depends solely on human behavior which can not be modeled
linearly as suggested by this study, is why it is done necessary
to have statistical tools with the same type and customer/user
feedback to find satisfactory results of our interest.

Following the scheme proposed by Bentley [7] in which the
software should follow three basic stages:

Verification: where it is confirmed that the software meets
all technical specifications.

Validation: that software should meet all business
requirements.

Find Defects: Any variation between the output of software
and expected.

The true value of software testing go beyond pure test the
code. It also examines the behavior of the software from the
premise that the code is not necessarily bad if the behavior is
too [7].

Meanwhile, Cristia [8] raises two questions regarding
verification and validation.

Verification: Are we building the right product?

Validation: Are we building the product correctly?

In this sense, verification is an activity carried out by
engineers having at hand a model of the program, while
validation is carried by the user and must make taking into
account what is expected by the program. Cristia, at his work
proposes the existence of various techniques for validation and
verification, ranging from the most informal and empirical to
the formal involving calculation refinement, etc. [8].

Jones in his work of 2012 [9], gives an economic to the
third stage of the previously proposed scheme approach. He
mentions that the industry spends about 50% of the cost of
development, finding and fixing software defects. It indicates,
moreover, that a synergistic combination of defect prevention,
removal of defects in prototyping and formal test can
dramatically reduce costs by more than 50% compared with the
results of 2012 [9].

C. Objects Oriented Programming and use Case Points

As Glasser [10] suggests, object-oriented programming
makes programs organized as a collection of interactive objects
with their own data and functions. One of the advantages of
this paradigm is that objects can be reusable and configurable.
Separating concerns and focusing on each object separately
makes oriented objects very attractive, especially for large-
scale software programming.

This facilitates, in the best, identification and classification
of the use cases.

Wirfs [11] on her presentation describes the action to
determine the use cases as a full script, and makes it an art,
calling it ’The art of writing use cases’. There she mentions,
step by step, philosophy of establishing a use case ranging
from understanding the case models, including actors,
diagrams and glossaries, to a detailed and accurate description
of the prototype to develop. There is highlighted the fact that
each use case consists of a reference and a different perspective
that involves, of course, the actors considered in the step. The
mention of the requirements is a ‘point of honor’ in her
presentation because it is repeatedly diagram as an essential
basis for all work of lifting use cases.

On his book, Software Engineering, Marsic [12] indicates
that projects with many complicated requirements take more
effort to design and implement than projects with few simple
requirements. In addition, the effort depends specially on what
tools the developers employ and how skilled the developers
are. The factors that determine the time to complete a project
include:

 Functional requirements: The complexity of use cases,
in turn, depends on the number and complexity of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

92 | P a g e

www.ijacsa.thesai.org

actors and the number of steps (transactions) to execute
each use case.

 Nonfunctional requirements: These describe the system
nonfunctional properties, known as FURPS+, such as
security, usability, and performance. These are also
known as the technical complexity factors.

 Environmental factors: Various factors such as the
experience and knowledge of the development team,
and how sophisticated tools they will be using for the
development.

An estimation method that took into account the above
factors early in a project life cycle, and produced a reasonable
accurate estimate, say within 20% of the actual completion
time, would be very helpful for project scheduling, cost, and
resource allocation [12].

However, Jones said that more than 80% of software
applications are not new because they were developed in past.
Because of this, most applications today are replacements for
older and obsolete applications. Because these applications are
obsolete and also in spite of the lack of information documents,
the older applications contain hundreds or thousands of
business rules and algorithms that need to be transferred to the
new application. This is a different paradigm in the
development of the list of requirements for large-scale software
[13].

Jones also refers to the vital importance of the intervention
of software engineer in raising the requirements for the
application, because it is a serious mistake to think that the
user, who is not a software engineer, is able to express,
optimally, 100% of these requirements, and this lies in the fact
that precisely these requirements represent the state of the art
of engineering applicable to software. He mentioned, in any
case, that one of the ways in which we can base this symbiotic
relationship is data mining for business rules and appropriate
algorithms. And while this happens, data mining is also used
for sizing through function points and lines of code [13].

D. Revised use Case Point Method as Extension of Function

Point Method

In addition to his work of 2012, Jones emphasizes, among
other things, that there are two very useful metrics to show
both the economic value and the quality of software. These
metrics are:

- Function points for normalization of results.

- Defect removal efficiency [14].

In the work of Manzoor et.al [15], is indicated that the UCP
method is originated, in principle, from the method of Function
Point except that the UCP makes an analysis of requirements in
the object-oriented process. It begins with the system
functionality measurement based on the Use Case Model on a
count called Unadjusted Use Case Point (UUCP). The
technical factors in which UCP is based are equal to those of
function points. The UCP estimates the total size of the system
that leads to the goals of acceptability and user validation [15].
In other work, Mazoor et.al, suggests that the validation
process involving Re-UCP should be carried out for different
large scale software projects in order to increase and perform a

better acceptability. Future research should be conducted to
enhance the benefits of Re-UCP for large-scale software
projects through vertical and horizontals [16].

 Transactions of Re-UCP:

The calculation process involved in UCP need case
diagrams and descriptions. To understand the logic of UCP
utilization, it must be known that there are several steps for
implementing a use case. These steps are so called
‘transactions’ [17].

 Steps for an effective Re-UCP:

Step 1: Classification of Actors trough calculation of its
weights UAW (Unadjusted Actor Weight) [18]. Table 1 referes
to classification of actors:

TABLE I. CLASSIFICATION OF ACTOR

Actor Category Description Actor Weight

Simple Actor use API’s 1

Medium Actor use Protocol 2

Complex Actor use GUI’s 3

UAW has an equation:

i

n

i

AWUAW 
1=

= (1)

Where:

n= Number of Actor.

AW= Weight of each Actor Category (Table 1).

Step 2: Classification of Unadjusted Use Case Weight
(UUCW) through its calculation. Table 2 represents the
number of transactions in a use case.

TABLE II. CLASSIFICATION OF USE CASE

Use Case Category Description
Use Case

Weight

Simple A use case has 3 or less transactions 5

Medium A use case has 3 to 7 transactions 10

Complex
A use case has more than 7
transactions

 15

From this classification, the study can synthesize the
equation that allows the study to calculate the UUCW:

i

n

i

UCWUUCW 
1=

= (2)

Where:

n= Number of Use Case.

UCW= Weight of each Use Case Category (Table 2).

Step 3: Calculating Unadjusted Use Case Point (UUCP).

UAWUUCWUUCP = (3)

Step 4: Calculating Technical Complexity Factor (TCF).
TCF is involved with the software size, considering the
technical aspects of the system. This is ranged from 0 (non-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

93 | P a g e

www.ijacsa.thesai.org

relevant) to 5 (important factor) [18]. Table 3 summerizes the
technical factor weight.

TABLE III. TECHNICAL FACTOR WEIGHT

Ti
Technical Factor

Weight

T1 Required Distributed Systems 2

T2 Response Time Is Important 1

T3 End User Efficiency 1

T4 Required Complex Internal Processing 1

T5 Reusable code to Focus 1

T6 Installation Easy 0.5

T7 Usability 0.5

T8 Cross-Platform Support 2

T9 Easy To Change 1

T10 Highly Concurrent 1

T11 Custom Security 1

T12 Dependence On Third-Part Code 1

T13 User Training 1

TF is obtained as the sum of multiplying score and weight
nad the following is the equation [18]

ii WeightScoreTF *=
13

1

 (4)

And TCF is obtained using TF

TFTCF *(0.01)0.6=  (5)

Step 5: Environmental Complexity Factor. It is determined
through a score of between 0 (no experience) to 5 (expert) for
each of the 8 environmental factors [17], as referred in Table 4.

TABLE IV. ENVIRONMENTAL FACTOR WEIGHT

Ei
 Environmental Factor

 Weight

E1 Knowledge of the Project 1.5

E2 Application Experience 0.5

E3 OO Programming Experience 1

E4 Lead Analyst Capability 0.5

E5 Motivation 1

E6 Stable Requirements 2

E7 Part Time Staff -1

E8 Difficulty Programming Language -1

First, the study should calculate the prevous EF
(Environmental Factor) and then calculate the ECF.

ii WeightScoreEF *=
8

1

 (6)

and ECF:

)*0.03(1.4= EFECF  (7)

Step 6: UCP (Use Case Point) [17].

ECFTCFUUCPUCP **= (8)

Step 7: Calculating the effort. For the purpose of this
investigation, the latter factor Effort is used to determine how
much time/hours/staff was invested in the development of the
application and thereby effectively determine quantitatively if

the expectations and requirements of users are met and if the
development team is working efficiently. The value of effort is
obtained by multiplying the value of UCP and the constant ER
in staff hours/UCP. Sholiq suggest that a value of ER equal to
20 staff hours/UCP can be used. Following this proposal, for
small and medium-scale business applications the ER can be
8.2 or 4.4 in the case of development of websites using a
template or component [17].

ERUCPEffort *= (9)

E. Linear Model for Mathematical Characterization, using

Least Square Model

When a linear pattern is formed from a graph of scattered
data, the relationship between the two variables is often
modeled by a straight line [20].

The Statistical Models traditionally are used to predict the
response of a dependent variable on the observed values of the
independent variables. The independent variables are known
better as predictor variables. Using linear models as predictor
for phenomena can be very straightforward [19].

Because of the relation between the score and production
effort of software, obtained via the method of Re-UCP, and the
score given by the user, upon completion of the software, is
linear where the desired value is a slope equal 1, was chosen
for purposes of this research a model scheme with quadratic
approximation or least squares.

Van der Geer in 2005 associated with the statistical
approach, behavioral science through the use of least squares.
The method of least squares is about estimating parameters by
Minimizing the squared discrepancies Between Observed data,
on the one hand, and Their expected values on the other [21].

Schmidt, in his 2005 project [22] proposes a parameter
estimation based on linear regression of least squares with an
L1 penalty in the regression coefficients. Indicating the special
interest in this issue given the appeal that may be able to create
fairly accurate prediction models with the simplicity of a well-
known mathematical methodology.

The main work of Schmidt, beyond focusing directly on the
properties of the model was the assessment of a variety of
previous approaches to the estimation of these parameters.

 The Regression Problem

The most frequent use of LS was linear regression, which
corresponds to the problem of finding a line (or curve) that best
fits a set of data points. In the standard formulation, a set of N
pairs of observations (Yi,Xi) is used to find a function relating
the value of the dependent variable (Y) to the values of an
independent variable (X)[23].

The prediction is given by:

bXaY =ˆ
 (10)

Where:

a: Intercept with Y axis.

b: the slope of the function.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

94 | P a g e

www.ijacsa.thesai.org

The least square method involve the estimate of these last
parameters as the values which minimize the sum of the
squares between the real measurements and the theoretical
model [23].

The minimizing expression is:

22)]([=)ˆ(= ii

i

ii

i

bXaYYY  
 (11)

Where:

: Error to be minimized

Using the property that derivating a quadratic expression
the study can achieve its minimum value. Calculating the
derivative of  with respect to a and b and making them to

zero, gives the following set of equations:

Derivative respect to a

0=222= ii YXbNa
a

 




 (12)

Derivative respect to b

0=222= 2

iiii XYXaXb
b

 




 (13)

Solving these equations results the following least square
estimates of a and b as:

XY bMMa =
 (14)

Where:

:YM
 Mean of Y

:XM
 Mean of X

And:

2)(

))((
=

Xi

XiYi

MX

MXMY
b








 (15)

[24].

F. Method for Linear Adjustment using Average Line

Based on the well known Line Equation [25]

bmxy = (16)

The study would have two lines with
121 ,, bmm and

2b ,

these are the parameters which define the straight average, if

the study does the semi-sum of the coefficients
121 ,, bmm and

2b , the study obtains m and b of the average line. While semi-

difference give us the range of uncertainty, m and b .

So, the semi-sum:

)/2(=)/2;(= 2121 bbbmmm  (17)

and the semi-difference:

)/2(=)/2;(= 2121 bbbmmm  (18)

Considering that
21 > mm Therefore the best set of lines

that inform us within what range the study expects to drop a
new measure is given by the expression:

)()(= bbxmmy  (19)

To graph the lines of maximum and minimum slope should

mark the centroid, in other words, the P(yx,) point that

emerges from the average of the coordinates from the data:

N

y

y
N

x

x
i

N

i

i

N

i


1=1= =;= (20)

Where:

N is the number of data.

(ii yx ,) are the experimental data.

Once located the centroid, draw the line with maximum and

minimum slope passing through this point P(yx,) [26].

G. Human Behaviour in Software Technology

Today the changes generated by technological advances,
affect the behavior and actions of the individual, leading to
approach new rules or disciplines to address and provide
answers to the problems generated by the Information and
Communication Technologies.

Kusumari et al. [28] said that capability of using software
development and collaboration tools would increase the quality
of resulting software and, this way, may incide in acceptance
and validation. Some calculated tools and/or models would
make the development phase easier to do.

Humans are an integral part of a more complex systems. If
the study wants to describe a system of this type with good
accuracy, it is necessary to model the human components with
the same precision as the technical components. Human
behavior is structurally very complex. As human behavior is
influenced by physical, emotional, cognitive and social factors,
it is very intricate [29].

Ghezzi et al. [30] in their work of 2014 emphasizes the
importance of knowing and predicting the different behaviors
of users for successful software application, which, the fact,
dismiss these factors can lead almost always failures of type
techniques and even non-technical that in the end entail
significant loss of economic order. However, it takes into
account when the number of users grows as it is clear that the
behavior will vary greatly; in any case, a population of users of
the same application can be handled uniformly, in both, the
respective corrective training and knowledge in the application
itself is true.

Part of these corrections should be made in the software
development stage involving users in the same [30].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

95 | P a g e

www.ijacsa.thesai.org

III. CALCULATIONS DEVELOPMENT

To start the calculations, the paper proposes the following
block diagram which will guide the reader step by step analysis
of the study as shown in Fig. 1:

Fig. 1. Block diagram of the steps in the development of study.

This algorithm is repeated with each module or use case,
and would be adjusted as software development advances.

This linear algorithm was chosen because its scalability is
better to those with feedback, ie, the response times are much
better and more tailored to customer needs.

In this study, it has three possible scenarios:

 Existing conditions given by labor and programming
resources.

 Ideal conditions given by the Rev-UCP and
requirements analysis

 The final conditions of the product are given by

acceptance testing by the customer / user.

Being the analysis of software programming of large scale,
it was decided to segment the application in modules which

will show to the user for evaluation through a form which will
have a weighting on each stage of software development.
Evaluating the results provided by the user on the results
obtained by the programming team can establish a linear
relationship which comes from the method of average line
adjustment.

H. Calculating Rev-UCP for each use Case as Ideal

Conditions

To start the investigation, the study takes as reference
various methodologies which were tested with different
scenarios associated with the same large-scale software
development, which is a system for operational management of
a clinical laboratory based in the cloud. Was chosen the
method of Rev-UCP which throws the study with great
accuracy which is the effort required to develop such software,
the first step was to identify, from customer requirements, what
are the use cases on each module as an integral part of the
system. The following format was used to identify and classify
each use case, as assigned in Table 5:

TABLE V. USE CASE FORMAT

 Catalog Information

 Project Operative System for Private Hospitals

 Author Fahad

Version 0.1 Status Development

 Use Case Definition

 Code Use Case 01

 Title Enter patient data

 Objective

 Enter name, identity card number, date of birth,

address, height, weight, medical history,

photography.

 Description
 Entering via the keyboard, the data mentioned

above.

 Actors Client/user

 Prior

Conditions

 Client/user must be authorized for this action,

database is able to accept this data.

 Main Scenario

 (A) The user opens the patients form. (B)

Entering patient details. (C) Check that

everything is correct before accepting. (D)

Accept the entered data. (E)The system checks if

exists previous data related to the identity card.

(F) The system drops a message with satisfactory

transaction.

 Alternative

Scenario

 (A) The system tells the user that the identity

card already exists and gives the possibility to

modify any data if required. (B) The user

modifies some data and accepts. (C) The user

closes the form.

 Exception

Scenario

 (A) The system tells the user that the identity

card already exists and gives the possibility to

modify any data if required. (B) The user delete

all the information. (C) The user closes the form.

 Success

Condition

 All data entered is saved and organized

successfully and displayed through a flat pdf

format.

 Hypotheses

 When you delete data from a patient, what

happens with the clinical history done in the

laboratory?

Using this format, and meeting customer requirements,
there were 85 cases of use identified and listed below with their
respective calculations based on the Rev-UCP method, note the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

96 | P a g e

www.ijacsa.thesai.org

study decided to break down each use case and apply the
methodology for a more accurate perspective of the curve of
effort required by the software to develop, as assigned in
Table 6:

 Use Case 1: Enter Patient Data

TABLE VI. USE CASE 1: ENTER PATIENT DATA

Enter Patient Data

UAW 3

UUCW 5

UUCP 8

TF 37

TCF 0.97

EF 29.5

ECF 0.515

UCP 3.99

Effort 79.8

The above calculation yields the following segmentation in
terms of timely dedication of the use case, as assigned in
Table 7:

TABLE VII. DISTRIBUTION IN PROJECT STAGES OF USE CASE POINTS

Enter Patient Data

Stage Percentage H/M

Analysis 10 7.98

Design 15 11.97

Programming 40 31.92

Tests (Functionality) 5 3.99

Tests (Errors) 5 3.99

Tests (Efficiency based in

exec time)
 5 3.99

Benchmarking (PC’s

Resources)
 5 3.99

Tests (Database) 5 3.99

Tests (Overload and

Tuning)
 5 3.99

Tests (Running) 5 3.99

Total 100 79.8

I. Existing Conditions of Labour Resources and Delivery

Time

The workforce of the group under study in this paper
consists of one project leader, one quality expert, two
programmers analysts, one GUI designer and two senior
programmers. Clearly each module, section or segment of the
software has its own characteristics and the team to develop
them may vary over time. However organizational behavior
can be modeled linearly under the requirements of effort given
by the Rev-UCP method. The following Table 8 shows the
time available for the project for each position:

TABLE VIII. WORK TEAM

Code Quantity Description
 Years of

Experience

 Hours/

Day

PL1 1 Project Leader 15 2

QE1 1 Quality Expert 12 1

PA1 2 Programmer Analysts 3 4

GD1 1 GUI Designer 8 3

SP1 2 Senior Programmer 10 4

Using the following formula the study can obtain the total
hours/man available for the project:

)*(= HDCodeHM Quantity (21)

Where:

HM= Hours/man a day.

Code: Type of staff.

Quantity: The number of people of a type available for the
project.

HD: Hours a day.

For example, for a time span of 40 days for delivery of the
product it has a total of:

manHoursTotalHM /880=22*40= (22)

The total work of the development team for Use Case 1 is
reflected in the following Table 9:

TABLE IX. DISTRIBUTION IN PROJECT STAGES OF REAL PROGRAMMING

PROGRESS

Enter Patient Data

Stage Time per Stage 

Analysis 6 6

Design 9 15

Programming 55 70

Tests (Functionality) 5 75

Tests (Errors) 2 77

Tests (Efficiency based in

exec time)
 4 81

Benchmarking (PC’s

Resources)
 8 89

Tests (Database) 6 95

Tests (Overload and
Tuning)

 12 107

Tests (Running) 1 108

Clearly, if the team requires more time than stipulated by
the Rev-UCP method may impact on the real costs of software
and should optimize this feature through a linear regression for
a series of standardized points on a plot where the horizontal
axis are values estimated by the Rev-UCP method and the
vertical axis are the actual values provided by the development
team.

Fig. 2. Estimated HM Vs. Real HM in scattered form.

Because the data are scattered as shown in Fig. 2, must do a
linear quadratic regression approach explained in the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

97 | P a g e

www.ijacsa.thesai.org

theoretical basis for finding the best line that fits the data. If
properly apply linear regression equations, then yields the
following result:

9.4721.474=)(xxFreal (23)

And the plot is shown in Fig. 3:

Fig. 3. Estimated HM Vs. Real HM With linear approximation.

J. Conditions of Evaluation and Acceptance by the

Customer/User

While it is true that the calculation of the estimated effort
through the Rev-UCP method is a fairly accurate
approximation, the study finds that user or client preferences
differ somewhat from those estimates, even may differ medium
or largely from real effort applied to the development of the
module to be evaluated. In the case study of this research, the
study find this feature because it is obvious that is very difficult
to model accurately and precisely the behavior, tastes and
human preferences.

In this section, Fogg says that can be used to design
technological channels influence the behavior of a user over
the use of software, however, people do not understand what
factors lead to change behavior and that’s why some persuasive
design fails [27].

In order to rate the acceptance and validation of client/user,
the study used a table that automatically weighs each stage of
the process, one by one, and thus can establish a linear
relationship to the effort estimated by the Rev-UCP method.

As was discussed above in the introduction, to this applies
an alpha test type by the customer in development site. The
user naturally observing and recording errors and problems of
use. This test was conducted in a controlled environment, as
summarized in Table 10.

TABLE X. SURVEY THAT THE USER MUST FILL OUT WHEN TO ALPHA

TEST

 Description

 Value

Given By

User

 Is the prototype performing the agreed and expected functions

correctly?
 85

 Is the prototype achieving specific goals? 93

 Does the prototype has the appropriate set of functions for

specified tasks?
 95

 Does the system showing actual transaction? 98

 Does the user can interrupt an operation without affecting the
normal operation of the prototype?

 75

 In case an error occurs, the prototype is still functioning

normally?
 85

 Is the prototype able to return to a stable state after an error
occurred?

 65

 Do users perform their tasks properly in the shortest possible

time?
 90

 Is it appropriate the size of the text? 80

 Does the physical space used is appropriate? 85

 The amount of information is well distributed? 95

 Does the application enables the user to feel comfortable? 100

 Is there default values? 88

 Do the actions can be performed simply in a few steps? 92

 Is there clarity of the elements of the interface? 78

 Are the messages properly notifies the action that the user is

going to carry out?
 66

 Are the controls properly selected for each function? 79

 Is it easy to recognize quickly and clearly what actions the user
can perform on an interface?

 91

 Are there elements that show the progress of a transaction? 93

 Are the controls interfaces, provide help or information from

its use?
 87

 Do the data is displayed complete and easily? 100

 Can You easily perform actions on the data? 100

 Can you search and access data quickly? 99

 Is it editable the content entered by the user? 78

 Is the correction of errors in input data allowed? 86

 Do actions can be canceled without detrimental effects to
normal operation?

 86

 Is the prototype can be adapted to the needs of different users? 88

 Does the design is consistent across all screens of the

prototype?
 92

 Are the controls of the same type maintain the same behavior? 99

 Are the controls always kept in the same position of the

interface?
 100

 There are mechanisms for validating input data provided? 94

 There are mechanisms that facilitate the user to input data
provided?

 95

 Do error messages represent clearly and concisely the error

occurred?
 85

 Do error messages suggest a solution to the problem occurred? 68

 Do help messages are clear and concise? 79

 Do background colors used in the elements of the user

interfaces are always the same?
 78

 Can foreground elements (either text or images) easily
distinguished background?

 85

 Are there non-aligned or disorderly elements? 86

 Are the sections where the interface is divided, remain uniform

throughout the application (prototype)?
 87

 Are the actions and tasks designed to perform as fast and
intuitive as possible?

 96

The value given by the user corresponds to the following
classification, as demonstrated in Table 11:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

98 | P a g e

www.ijacsa.thesai.org

TABLE XI. WEIGHTING GIVEN BY THE USER

 Not fulfilled
 Poorly

Fulfilled

 Mildly

Fulfilled
 Fulfilled Totally Fulfilled

to 20 21 to 40 41 to 60 61 to 80 81 to 100

Each question has a direct impact based on percentage on
some stages of development. Tables 12 and 13 below are
shown an example of how the weighting is calculated, the
study must add that these tables are entirely empirical and
developed based on field experience of authors.

TABLE XII. WEIGHTING GIVEN BY THE USER PART 1

 Question
 Value Given By

User
 Analysis Design Programming

 85 17 34

 93 9,3 37,2

 95 9,5 9,5 19

 98 9,8 19,6 9,8

TABLE XIII. WEIGHTING GIVEN BY THE USER PART 2

Functionality Errors Efficiency
 PC

Resources
 Database Tuning Running

25.5 8,5

27.9 18,6

38 9,5 9,5

29.4 9,8 9,8 9,8

Once the survey is completed weight / total value of each
stage of the process is calculated using the following formula:

j

n

j

i WValueStage = (24)

Thus, the forty questions involved in the survey have their
weightings in each stage of the process until the following total
weight, as summarized in Table 14:

TABLE XIV. TOTAL WEIGHTING FOR STAGE OF THE PROCESS

 Values

Obtained

 Expected

Values
 Rate

 Analysis 301,9 330 91,48%

 Design 617,7 710 87,00%

 Programming 425,8 480 88,71%

 Functionality 448,7 510 87,98%

 Errors 245,2 300 81,73%

 Efficiency 236,3 270 87,52%

 PC Resources 341,2 400 85,30%

 Database 305,7 330 92,64%

 Tuning 282,6 320 88,31%

 Running 295,9 350 84,54%

Once the relationship between Obtained Values and
Expected, proceed to establish a new relationship, now,
between user perception and the real effort used for the
development team in programming the module, using the
following Table 15:

TABLE XV. RATE USER EVAL VS. ESTIMATED HM

 Real
 User Perception

%
 Rate from real

 Analysis 6 91,48% 5,49

 Design 9 87,00% 7,83

 Programming 55 88,71% 48,79

 Tests

(Functionality)
 5 87,98% 4,40

 Tests (Errors) 2 81,73% 1,63

 Tests (Efficiency

based in exec time)
 4 87,52% 3,50

 Benchmarking

(PC’s Resources)
 8 85,30% 6,82

 Tests (Database) 6 92,64% 5,56

 Tests (Overload &

Tuning)
 12 88,31% 10,60

 Tests (Running) 1 84,54% 0,85

And then the study proceedees to represent these values, by
way of summation in a graph whose horizontal axis (X axis) is
the values obtained through the use of Rev-UCP method, as is
shown in Fig. 4:

Fig. 4. Estimated HM Vs. User Perception.

And this data optimization depicted in a scattered way is
also given by a linear regression based on the method of least
squares, and whose equation is:

8.1741.301=)(xxFuser (25)

And the plot is shown in Fig. 5:

Fig. 5. Estimated HM Vs. User Perception.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

99 | P a g e

www.ijacsa.thesai.org

K. Prediction of Required Programming Effort using a Linear

Mathematical Model

The average linear equation (excluding errors) is as
follows:

2

8.174)9.472(

2

1.301)(1.474
=)(





xxFaverage (26)

However, the study must now consider the error produced
by the semidifference:

0.649)8.823(0.0865)(1.3875=)( xxFaverage
(27)

To graph the lines of maximum and minimum slope need to
calculate the centroid using equation (20), Fig. 6 shows it.

5925)(7.5069,1.=Cent (28)

Fig. 6. Maximun and minimun slope.

IV. DISCUSSION OF RESULTS, CONCLUSIONS AND

RECOMMENDATIONS

With the results obtained in this study, produced a model of
linear approximation to determine the effort required in large-
scale software programming, this was done thanks to the
modularization and segmentation of all software and as they
develop the different modules it can be applied and, in fact,
adjusting the linear model very accurately.

The main reasons for the development of this model is to
consider the validation and acceptance of the software by the
user without impacting significantly on the costs of
programming. As is known that, excessive application of
hours/man in an activity directly affects the final cost of the
software obtaining virtually the same result, thereby decreasing
the efficiency of the development team.

While it is extremely difficult to model the tastes and
preferences of a user regarding a software, the linear
approximation even dependent requirements, fits quite well
with the objectives of this study.

However it should be noted that in the development of
software, especially large scale, both teams programming and
users can vary greatly throughout the life of the project, which
implies that adjustments must be made provided when
necessary or at least the start of the programming of each
module.

A way to future studies might include further aspects such
as organizational behavior, psychology client/user and design
persuasive way to minimize errors in the calculation of the
linear model.

The software studied in this study is still in development
stage approximately 70% complete. Below is Table 16 with the
percentages of global acceptance by the user of some modules
and estimated by the proposed model calculation:

TABLE XVI. RESULTS OF APLLIED MODEL IN SOME MODULES

Inserting

Clinical

Analysis

Daily performance

report
Billing

Analysis 92,00% 89,00% 97,00%

Design 93,00% 98,00% 94,00%

Programming 89,00% 98,00% 96,00%

Tests (Functionality) 95,00% 99,00% 95,00%

Tests (Errors) 94,00% 96,00% 89,00%

Tests (Efficiency

based in exec time)
88,00% 97,00% 89,00%

Benchmarking (PC’s

Resources)
96,00% 85,00% 90,00%

Tests (Database) 97,00% 98,00% 93,00%

Tests (Overload &

Tuning)
92,00% 93,00% 92,00%

Tests (Running) 95,00% 89,00% 95,00%

As its clear that the results are quite satisfactory
considering that it is taking into account the same user that was
used to calculate the model.

It is also necessary to analyze this result from the pragmatic
point of view because for non-productive modules prototypes
were used, however, they were basis for developing the final
module required by the client.

ACKNOWLEDGEMENTS

My deepest acknowledgements to the University of Shaqra
for the support received during the preparation of this study,
and that made possible its successful completion. Thank you
for promoting this study, which is part of my growth as a
professional and that in turn, such research will contribute to
the overall knowledge of software engineering.

REFERENCES

[1] J. Scholtz, B. Shneiderman, Introduction to Special Issue on Usability
Engineering, Boston, United States: Kluwer Academic Publishers,
1999.

[2] J. Cabrera and E. Contreras, Usabilidad: Factor importante para hacer
atractivos y comprensibles los sitios Web. Caso de estudio: Sitio de la
UTM, Oaxaca, Mexico: Universidad TecnolÃ³gica de la Mixteca, 2009.

[3] R. Harper, T. Rodden, Y. Rogers, A. Sellen, Being Human: Human-
Computer Interaction in the year 2020, Cambridge, England: Microsoft
Research Ltd, 2008.

[4] K. Pohl, Requirements Engineering, Berlin, Germany: Springer-Verlag
Heidelberg, 2010.

[5] G. Espinoza, Metodo de validacion de requisitos funcionales de software
a partir de prototipos de interfaces de usuario basados en patrones RIA,
Barquisimeto, Venezuela: Universidad Centro-Occidental Lisandro
Alvarado, 2012.

[6] G. Jay, J. Hale, R. Smith, D. Hale, N. Kraft, C. Ward , Cyclomatic
Complexity and Lines of Code: Empirical Evidence of a Stable Linear
Relationship, Tuscaloosa, United States: Software Engineering &
Applications, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

100 | P a g e

www.ijacsa.thesai.org

[7] J. Bentley, Software Testing Fundamentals-Concepts, Roles, and
Terminology, Charlotte, United States: Wachovia Bank, 2005.

[8] M. Cristia, Introduccion al Testing de Software, Rosario, Argentina:
Universidad Nacional de Rosario, 2009.

[9] C. Jones, Software defect origins and removal methods, Sydney,
Australia: Namcook Analytics LLC, 2012.

[10] M. Glasser, Open Verification Methodology Cookbook, Wilsonville,
United States: Mentor Graphics Corporation, 2009.

[11] R Wirfs-Brock, The Art of Writing Use Cases, Wirfs-Brock Associates,
2001.

[12] I. Marsic, Software Engineering, 1em plus 0.5em minus 0.4em New
Brunswick, New Jersey: Rutgers University, 2012.

[13] C. Jones, Software Engineering Best Practices, Australia: Mc Graw
Hill, 2010.

[14] Capers Jones, Software Quality Metrics:Three Harmful Metrics and
Two Helpful Metrics, Australia: Namcook Analytics LLC, 2012.

[15] M. Manzoor K. and A. Wahid, Revised Use Case Point (Re-UCP)
Model for Software Effort Estimation, Hyderabad, India: International
Journal of Advanced Computer Science and Applications, 2015.

[16] M. Manzoor K. and A. Wahid, Impact of Modification Made in Re-UCP
on Software Effort Estimation, Hyderabad, India: International Journal
of Advanced Computer Science and Applications, 2015.

[17] Sholiq, A.P. Widodo, T. Sutanto and A.P. Subriadi, A Model to
determine cost estimation for software development projects of small
and medium scales using Case Points, Surabaya, Indonesia: Journal of
Theoretical and Applied Information Technology, 2016.

[18] M. Ochodek, J. Nawrocki, and K. Kwarciak, Simplifying effort
estimation based on Use Case Points. Information and Software
Technology, Poznan, Poland: Poznan University of Technology, 2010.

[19] O. Burke, Statistical Methods - Linear Models, Oxford, England:
University of Oxford, 2013.

[20] A. Arnholt, Least Squares Regression, North Carolina, United States:
Appalachian State University, 2008.

[21] S. van der Geer, Least Squares Estimation, Chichester, England:
Encyclopedia of Statistics in Behavioral Science, 2005.

[22] M. Schmidt, Least Squares Optimization with L1-Norm Regularization,
Vancouver, Canada: University of British Columbia, 2005.

[23] H. Abdi, The Method of Least Squares, Dallas, United States:
Encyclopedia of Measurement and Statistics, 2007.

[24] S. Chartier and A. Faulkner, General Linear Models: An Integrated
Approach to Statistics Ottawa, Canada: Tutorial in Quantitative
Methods for Psychology, University of Ottawa, 2008.

[25] C. Lehmann, Analytic Geometry, New York, United States: John Wiley
and Sons, 2005.

[26] G. Molina and M. Rodrigo, Estadistica Descriptiva en Psicologia,
Valencia, Spain: University of Valencia, 2010.

[27] B.J. Fogg, A Behavior Model for Persuasive Design, Palo Alto, United
States: Stanford University, 2009.

[28] T. Kusumari, K. Surendro, I. Supriana, Human Behavior Conceptual
Model in Collaborative Software Development Product Quality,
Bandung, Indonesia: ICACSIS, 2013.

[29] B. Schmidt, Human Factors in Complex Systems The Modelling of
Human Behaviour, Riga, Latvia: ECMS, 2005.

[30] C. Ghezzi, M. Pezze, M. Sama and G. Tamburrelli, Mining Behavior
Models from User-Intensive Web Applications, Hyderabad, India: ICSE
2014,2014.

