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Abstract—Two-layered neural networks are well known as 

autoencoders (AEs) in order to reduce the dimensionality of data. 

AEs are successfully employed as pre-trained layers of neural 

networks for classification tasks. Most of the existing studies 

conceived real-valued AEs in real-valued neural networks. This 

study investigated complex- and quaternion-valued AEs for 

complex- and quaternion-valued neural networks. Inputs, 

weights, biases, and outputs in complex-valued AE (CAE) are 

complex variables, whereas those in quaternion-valued AE 

(QAE) are quaternions. In both methods, a split-type activation 

function is used in the hidden and output units. To deal with the 

images using the proposed methods, pairs of pixels are allotted to 

complex-valued inputs in the CAE and quartets of pixels are 

allotted to quaternion-valued inputs in the QAE. Proposed 

autoencoders are tested and performance compared with 

conventional AE for several tasks which are encoding/decoding, 

handwritten numeral recognition and large-scale multi-class 

classification. Proposed CAE and QAE revealed as good 

recognition methods for the tasks and outperformed 

conventional AE with significance performance in case of large-

scale multi-class images recognition. 

Keywords—Autoencoder; classification; complex-valued 

autoencoder; quaternion-valued autoencoder; recognition 

I. INTRODUCTION 

Autoencoding refers the automatic learning of encoding 
and decoding functions from examples without engineered by 
an expert or a human. A two-layered neural network is well 
known as an autoencoder (AE) in order to reduce the 
dimensionality of data. Recent studies proposed many types of 
AEs [1]-[6] which are composed of input, hidden, and output 
units, and are based on the gradient descent method. AEs 
generally deal with image data. If a network is trained with 
image data, some features of the input image appear in the 
learned weights. These parameters can be used as the initial 
parameters to train neural networks for classification tasks. 
Most of the existing studies conceived real-valued AEs in real-
valued neural networks [1]-[6]. 

Artificial neural networks involve in a large number of 
applications with significant varieties and recent multi-valued 
version is found efficient for higher-dimension data. 
Nowadays, real-world data contain higher-dimensional 

information; examples include image, medical, and web data. 
In conventional real-valued neural networks (RNNs), a multi-
dimension values are often treated by using multiple real-
valued neurons. The use of these multi-valued quantities is 
now spreading to artificial neural networks in the form of 
complex-valued neural networks (CVNNs) and quaternion 
neural networks (QNNs). 

Complex and quaternion numbers are widely used in 
various areas of engineering. Complex numbers are used to 
deal with two-dimensional vectors and wave information, 
whereas quaternions are used for three-dimensional graphics 
and computer vision. The gradient descent method to tune 
complex-valued weights in CVNNs [7] and quaternion-valued 
weights in QNNs [8] made efficient to tackle such high 
dimensional problems efficiently. With the advent of CVNNs 
and QNNs, multi-valued data can now be used as complex and 
quaternion signals. The convergence of CVNNs and QNNs is 
found better than that of RVNNs to solve such higher 
dimension problems. The study of CVNNs has been 
developing widely in various areas [9]-[20]. Applications of 
CVNNs include those in radar image processing [17], real-
time image recognition [19], and traffic and power systems 
[20]. There have also been active studies of QNNs [21]-[24] in, 
for example, color image compression [21] and color night 
vision [22]. 

This study proposed two multi-valued autoencoders 
extending conventional AE which are complex-valued AE 
(CAE) and quaternion-valued AE (QAE). The CAE is a 
complex-valued neural network with input, hidden, and output 
units; its learning is based on the complex gradient descent 
method. The QAE is a quaternion neural network with input, 
hidden, and output units; its learning is based on the 
quaternion gradient descent method. The signal flows in the 
networks are almost the same as those of the AE. In order to 
simplify the network calculations, easy-to-use split-type 
activation functions are considered in the hidden and output 
units of the CAE and QAE. Proficiency of the proposed AEs 
are identified comparing with the conventional AE for 
encoding/decoding and classification of image objects. 

Although CAE and QAE have been outlined in our 
previous study [25], the present study is extended and 
complete presentation in both theoretical analysis and 
experimental results. In this study, proposed methods are 
tested for two different activation functions (sigmoid and 

This work was supported by the Grants-in-Aid from JSPS; Nos. 

15K00333 for KM and 16J11219 for RH. The funding source had no role in 

study design; in the collection, analysis and interpretation of data; in the 

writing of the report; and in the decision to submit the article for publication. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 11, 2017 

20 | P a g e  

www.ijacsa.thesai.org 

rectified linear unit). Recognition of handwritten numerals and 
large-scale multi-class objects is the main significance of the 
present study. In another study, complex-valued are 
investigated for linear autoencoders [26]; the algorithm is 
different from those of our methods. The autoencoders have 
considered in this study are nonlinear in category based on 
neural network with nonlinear activation function and have 
focused on the classification task. 

The remainder of this paper is structured as follows. 
Conventional AE and proposed multi-valued autoencoders 
(i.e., CAE and QAE) are explained in Section II. This section 
also demonstrates autoencoder based classification. In 
Section III, performance of proposed autoencoders are 
investigated for several tasks which are encoding/decoding, 
handwritten numeral recognition and a large-scale multi-class 
classification. Finally, the study is concluded in Section IV 
with future research directions. 

II. MULTI-VALUED AUTOENCODERS AND CLASSIFICATION 

WITH THOSE 

This section first explains conventional autoencoder (AE) 
with a sample architecture for better understanding of 
proposed multi-valued autoencoders. It then presents proposed 
complex-valued autoencoder (CAE) and quaternion-valued 
autoencoder (QAE) extending conventional AE. Finally, 
classification based on autoencoders is demonstrated. 

A. Conventional Autoencoder(Ae) 

An AE is a two-layered neural network that is based on the 
gradient descent method. In an AE, the number of outputs is 
the same as the number of inputs, and common weights are 
used in the first and second layers (weight sharing). To 
describe the network architecture clearly, consider a network 
with four-input, three-hidden, four-output units as shown in 
Fig. 1. 

 
Fig. 1. Network structure of an autoencoder with four-input, three-hidden 

and four-output units. In conventional case the inputs and outputs are real 

number. 

Here, the input vector is    [     ] , and the bias 
vectors in the first and second layers are   [     ] 
and   ̃  [ ̃   ̃ ] , respectively. The weight matrix   is 

represented as: 

  (

       
   
       

) .   (1) 

The hidden-unit output vector   [     ] is obtained 
as 

   (    )      (2) 

where  ( ) is an activation function such as the sigmoid 
or rectified linear unit (ReLU) function. The output vector 
  [     ] is computed as 

   (     ̃) .    (3) 

Here,    is the transpose of  . When training data are 
given to this network, the weights and biases are tuned by 
back propagation to minimize the error between inputs and 
outputs. The squared error given by (4) is applied as the error 
function: 

  ‖   ‖  .     (4) 

The tuning equations of the network parameters    ,  ̃ , 

and     are as follows: 
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Where,   is the learning rate and    ∑        ̃ 
 
    

and    ∑         
 
    are the net inputs to the p

th
 output 

and q
th

 hidden unit, respectively. The learning process is 
performed by giving initial values to the parameters and 
iterating (5)–(7). 

Autoencoders can generate some features in learned 
parameters by training with data. For example, if an AE is 
trained on a dataset of cat images, features such as silhouettes, 
eyes, and ears appear in the learned weights. Furthermore, 
AEs can be employed for pre-training weights of different 
layers of deep neural networks and hence perform 
classification tasks (e.g., image classification). By stacking 
AEs, deep neural networks are shown better convergence than 
in the case without pre-training of AEs [2]. 

B. Complex-Valued Autoencoder(CAE) 

Proposed CAE is an extension of conventional AE to the 
complex domain with complex-valued neurons. To consider 
network structure of Fig. 1 for CAE, inputs, weights, biases, 
and outputs are all complex valued. CAE operation steps are 
similar to AE but perform in complex domain. Input signals 
are given to the network through the input units; then, the 
weighted sum of the inputs is given to some activation 
function in each of the hidden units. Finally, in the output 
units, the weighted sums of the hidden outputs are passed 
through some activation function. 

A complex value contains a real and an imaginary parts 
and CAE learning algorithm is based on the complex-valued 
gradient descent method. For network structure with Fig. 1, 
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the input vector is   [     ], the bias vector in the first 
layer    [     ] , the bias vector in the second layers 

 ̃  [ ̃   ̃ ] and the weight matrix   (represented by the 

same form as (1)) are all complex-valued numbers in CAE. To 
describe the real and imaginary parts of the parameters,    
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Here, the hidden output is generated by a split-type 
activation function [27]. The net input      

     
  and 

output      
     

  of the p
th

 output unit are calculated 

similarly as 

   ∑      
 
     ̃            (10) 

    (  
 )    (  

 )           (11) 

The error function to be minimized is the same formula as 
(4). For the training, we update the weights and biases by 
using (12)–(14): 
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Where,   is the learning rate and  ̅  is the complex 

conjugate of   . The following equations are for the partial 

derivatives within (12)–(14): 
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The learning process is performed by giving initial values 
to the parameters and iterating (12)–(14). 

C. Quaternion-Valued Autoencoder(QAE) 

Proposed QAE is an extension of conventional AE to the 
quaternion domain with quaternion-valued neurons. To 
consider network structure of Fig. 1 for QAE, inputs, weights, 
biases, and outputs are all quaternion valued. The signal flow 

in a QAE network is the same as that in an AE or CAE but 
perform in quaternion domain. 

A quaternion value contains one real and three imaginary 
parts and QAE learning algorithm is based quaternion-valued 
gradient descent method [21]. For network structure with 
Fig. 1, the input vector is   [     ], the bias vector in the 
first layer   [     ], the bias vector in the second layers 

 ̃  [ ̃   ̃ ] and the weight matrix   (represented by the 

same form as (1)) are all quaternion-valued numbers in QAE. 
To describe the real and imaginary parts of the 
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Here, a split-type activation function is adopted to generate 

the hidden output. The net input      
     

     
     

  

and output      
     

     
     

  of the p
th

 output unit 

are also calculated as 
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     ̃             (21) 
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The same formula as (4) is used as the error function. For 
the training, the weights and biases are updated using the 
following equations: 

  ̃    
  

  ̃ 
    

  

  ̃ 
    

  

  ̃ 
    

  

  ̃ 
   

   ̃ 
     ̃ 

     ̃ 
     ̃ 

                  (23) 

      
  

   
    

  

   
    

  

   
    

  

   
   

    
      

      
      

            (24) 

       
  

    
    

  

    
    

  

    
    

  

    
   

     
       

       
       

   

  ̅     ,            (25) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 11, 2017 

22 | P a g e  

www.ijacsa.thesai.org 

Where,   is the learning rate and  ̅  is the quaternion 

conjugate of   . The following equations are for the partial 

derivatives within (23)–(25): 
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The learning process is performed by giving initial values 
to the parameters and iterating (23)–(25). 

D. Classification using Autoencoder 

Conventional AEs are found effective to build networks 
for classification task. Proposed CAE and QAE based 
networks also might perform well in classification; which is 
the main intuition of this study. Size of output layer (i.e., 
nodes in the layer) of the network depends on number of 
classes to be identified; and size of input layer depends on 
data and how it process. Hidden layer numbers and sizes are 
user defined parameters. Autoencoder(s) is used to pre-train 
hidden layer(s). Output layer is trained only in fine tuning 
with backpropagation in supervised mode. 

 

Fig. 2. Network structure using conventional autoencoder for handwritten 

numeral recognition from 28×28 (=784) size images. 

For better understanding of classification using 
autoencoder, Fig. 2 is the network structure based on 
conventional AE for MNIST handwritten numeral recognition 
[28]. MNIST contains handwritten numeral images of 28×28 
pixels. Therefore, total input nodes IAE is 784 (=28×28) 
considering an individual node for an individual pixel value. 
To classify the digit images, 10 outputs (corresponding to the 
class labels from 0 to 9) are considered in the output layer. If 
number of nodes in the hidden layer is defined as HAE, hidden 
layer weights (W) and biases (B) are size of HAE ×IAE and HAE, 

respectively.   and    are pre-trained through conventional 
AE.    and     are the weight and bias vectors of output 
layer, respectively, that have to be tuned by back propagation. 
In the output units, signals from the hidden units are processed 
by the sigmoid function. 

The networks for classification using CAE and QAE are 
complex and quaternion-valued, respectively. In CAE based 
network, the complex-valued input neuron manipulate two 
conjugative pixel values in real and imaginary parts of it. 
Therefore, number of input in CAE based network (ICAE) will 
be half of conventional AE based network of Fig. 2. Similarly, 
number of input in QAE based network (IQAE) will be one 
fourth of conventional AE based network. At a glance, IAE = 
2ICAE = 4IQAE. Due to higher dimension operation, relatively 
less number of hidden neurons in CAE and QAE might be 
sufficient. However, real valued output neuron is necessary to 
classify in both the cases. In order to generate real-valued 
outputs from the CAE output units, activation functions for 
CAE and QAE are shown in (34) and (35), respectively. 

    ( )  ( ( 
 )   (  ))

 
               (34) 

    ( )  ( ( 
 )   (  ))

 
 ( (  )   (  ))

 
     (35) 

In both the equations,  ( )   (     )⁄   i.e., sigmoid 
function. Equation (34) has been investigated for complex-
valued neural networks to solve real-valued classification 
problems [27]. Equation (35) is the proposed activation 
function for QAE to convert quaternions to real numbers. The 
methods used back propagation to tune the weights and biases 
between the hidden and output units. 

III. EXPERIMENTAL STUDIES 

This section investigates effectiveness of proposed 
multivalued AEs (i.e., CAE and QAE) in encoding/decoding 
and classification of image objects. The outcome of the 
proposed methods compared with conventional AE. 
Encoding/decoding ability is observed on handwritten numeral 
images. Recognition of handwritten numeral is also 
considered to observe classification ability. Finally, 
recognition on large-scale objects with many classes is 
performed. Following individual sections explain 
experimental setup and compare outcomes of the 
encoding/decoding and both classification tasks. The 
algorithms are implemented in PGI® Accelerator C 
Workstation. Experiments of this study have been conducted 
on HP Z440 Workstation having CPU Intel(R) Xeon (R) CPU 
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E5-1603 @ 2.80GHz and RAM 32.0GB in Windows 10 Pro 
(64 bit) environment. 

A. Encoding/Decoding 

Performance of encoding/decoding is observed on MNIST 
database [28]. MNIST database comprises 28×28-pixel gray-
scale images of handwritten digits from 0 to 9. From the 
available samples, 2500 samples are considered as training set 
and different 2500 samples are used as test set. In each set 
(training/test) 250 of each digit from 0 to 9 are considered. 
Same training and test set are used for all three networks 
(conventional AE, proposed CAE and QAE). 

In training/testing, a pattern is represented in different 
forms in AE, CAE and QAE. Each individual pixel value is an 
input in AE; therefore, AE required total 784 input neurons. 
On the other hand, number of input is less in CAE and QAE 
due to multi-valued neurons. Fig. 3 shows pattern construction 
for CAE and QAE from a sample numeral image. CAE treated 
each pair of pixels as one complex number, and QAE 
considered each quartet of pixels as one quaternion number. 
Therefore, CAE and QAE required input neurons 392 
(=784/2) and 196 (=784/4), respectively. 

Two popular activation functions sigmoid and ReLU were 
considered to the hidden units of each method. On the other 
hand, only the sigmoid function was applied to the output 
units of each method. The number of hidden nodes were 
considered less than input of a method as of many previous 
studies. Experiments conducted for two different number of 
hidden units. Table 1 shows the parameters for all the three 
methods. Here, the notation AE784-272 signifies the method 
name “AE” as conventional method; and the number of input 
and hidden units are 784 and 272, respectively. Due to less 
number of inputs as well as much less number of hidden units 
considered in proposed multi-valued autoencoders, total 
parameters were much less than conventional AE. 

To assess the learning abilities of the proposed methods, 
mean squared error (MSE) for the test set and the execution 
time required for the training were compared. The test error 
was calculated by 

    
 

  
∑ ‖     ‖

  
             (36) 

Where, n is the pattern number and N is the total number 
of test samples. Furthermore, we discuss the features appeared 
in the learned weights of each method. 

 
Fig. 3. Pattern construction from a sample MNIST image for CAE and QAE. 

TABLE I. NUMBER OF PARAMETERS FOR ENCODER/DECODER TEST ON 

MNIST IMAGES 

Method 

Number of parameters 

Input 

unit 

Hidden 

unit 

Output 

unit 
Totala 

AE784-272 784 272 784 214,304 

AE784-392 784 392 784 308,504 

CAE392-136 392 136 392 107,680 

CAE392-196 392 196 392 154,840 

QAE196-68 196 68 196 54,368 

QAE196-98 196 98 196 78,008 
a Total number of parameters includes real and imaginary parts of weights and biases in the CAE and 

QAE. 

Fig. 4 depicts MSE for three methods (AE784-392, CAE392-

196, and QAE196-98) for both sigmoid and ReLU functions in 
hidden units on a sample run. It is observed from the figure 
that the nature of the MSE curve almost same for all the three 
methods for a particular activation function. The significance 
observation from the figure is that all the methods with the 
ReLU function (Fig. 4(b)) converged much faster than the 
methods with the sigmoid function (Fig. 4(a)). For ReLU 
function, MSE reached steady state position for 5000 epochs; 
whereas, steady state position with similar MSE value for 
sigmoid was shown to reach for 50000 epochs. Therefore, in 
further expereiments, 5000 and 50000 epochs are considered 
for ReLU and sigmoid functions, respectively. 

 
(a) Sigmoid function 

 
(b) ReLU function 

Fig. 4. Training process of AE784-392, CAE392-196, and QAE196-98 methods with 

sigmoid and ReLU activation functions in the hidden units. 
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TABLE II. AVERAGE TEST ERROR ON AE, CAE AND QAE WITH 

DIFFERENT ARCHITECTURE AND ACTIVATION FUNCTIONS 

Method 
Hidden unit 

act. function Epoch MSE (×10-3) Time (s) 

AE784-272 
Sigmoid 50000 10.62 ± 0.14 1356 

ReLU 5000 6.41 ± 0.16 154 

AE784-392 
Sigmoid 50000 7.39 ± 0.08 2048 

ReLU 5000 6.08 ± 0.12 228 

CAE392-136 
Sigmoid 50000 9.17 ± 0.07 376 

ReLU 5000 10.53 ± 0.35 43 

CAE392-196 
Sigmoid 50000 6.23 ± 0.08 579 

ReLU 5000 8.60 ± 0.35 63 

QAE196-68 
Sigmoid 50000 8.88 ± 0.19 206 

ReLU 5000 7.39 ± 0.18 24 

QAE196-98 
Sigmoid 50000 6.33 ± 0.09 306 

ReLU 5000 6.10 ± 0.15 35 

Averages are taken over 5 independent runs. 

Table 2 shows test error and required time for each method 
after fixed number epoch. In relation to the test error, the AE 
and the QAE with the ReLU function showed better results 
than those of the methods with the sigmoid function even 
training epoch is much less in case of ReLU. However, the 
error of the CAE with the sigmoid function was better than 
that with the ReLU function. Furthermore, each of the 
methods showed better convergence as the number of 
parameters increased. As an example, MSE value of QAE196-98 
(heaving 98 hidden units) was less than QAE196-68 (heaving 68 

hidden units) for both sigmoid and ReLU. In terms of the 
execution time, the period for QAE was much shorter than 
period for the other two methods as seen from Table 2. This is 
because the execution time is related to the number of 
parameters and the computational complexity of the methods. 
For better understanding, Fig. 5 shows sample output images 
of AE784-392, CAE392-196, and QAE196-98 with the ReLU function 
in the hidden units. Comparing with the output images, the 
proposed methods showed almost the same qualities as that of 
the conventional AE. 

 

Fig. 5. Sample output images of the conventional and proposed methods. 

The images were obtained using AE784-392, CAE392-196, and QAE196-98 with 
ReLU function in the hidden units. The bottom images are the desired outputs 

of the test set. 

B. Handwritten Numeral Recognition (HNR) 

HNR is a complex classification task and MNIST database 
is well studied for this purpose. Classification performance 
using proposed CAE and QAE is observed and compared with 
conventional AE on MNIST database [28]. Autoencoder based 
network construction for classification task is already 

explained in Section II-D. The learned parameters that were 
obtained from the encoding/decoding problem in previous 
section are used as pre-trained hidden layer. To classify the 
digit images, output layer heaving 10 output nodes 
(corresponding to the class labels from 0 to 9) is added. In the 
output units, signals from the hidden units are processed by 
the sigmoid function. Finally, back propagation is used to tune 
the weights and biases between the hidden and output units. 
Fine tuning performed on fixed iteration to compare execution 
time among the methods. The methods with the ReLU 
function converged faster than the methods with the sigmoid 
function; therefore the epochs for fine tuning were 5000 and 
10000 for ReLU and sigmoid, respectively. 

Table 3 compares the methods in relation to the test set 
accuracy and the execution time for both sigmoid and ReLU 
as activation function in hidden units. The method AE784-392-10 

indicates AE784-392 autoencoder from previous section is used 
and output layer weight (W

BP
) size is 10×392 which are 

trained in fine tuning. In relation to the accuracy rate, ReLU 
achieved better results for AE and QAE; but sigmoid showed 
better for CAE. However, both proposed methods is found 
better than conventional AE regardless the activation function. 
As an example, accuracy for AE784-392-10 with ReLU was 
81.0%; one the other hand, CAE392-196-10 and QAE196-98-10 
achieved 85.5% and 85.4 %, respectively, for same activation 
function. Although both CAE and QAE showed competitive 
accuracy; in relation to the execution time, the QAE was faster 
than CAE and much faster than AE. For 5000 epochs with 
ReLU, QAE196-98-10 took 18 seconds; whereas, CAE392-196-10 

and AE784-392-10 took 31 and 139 seconds, respectively. 

TABLE III. AVERAGE TEST SET ACCURACY ON MNIST HANDWRITTEN 

NUMERAL RECOGNITION 

Method 
Hidden unit 

act. function Epoch 
Accuracy 

rate (%) 
Time (s) 

AE784-392-10 
Sigmoid 10000 76.1 280 

ReLU 5000 81.0 139 

CAE392-196-10 
Sigmoid 10000 85.6 64 

ReLU 5000 85.5 31 

QAE196-98-10 
Sigmoid 10000 85.2 38 

ReLU 5000 85.4 18 

Averages are taken over 5 independent runs. 

C. Pokémon Character Recognition (PCR) 

In this section, proposed CAE and QAE are evaluated and 
compared with AE on Pokémon dataset

1
 which is relatively 

much complex problem. Pokémon is the registered trademark 
of Nintendo /Creatures Inc. /GAME FREAK Inc. The dataset 
is a collection of RGB images of 151 Pokémons where each 
character image is 32×32 pixels. A gray-scaled dataset is 
considered in this study to perform experiments. Fig. 6 shows 
few samples from of the dataset. A single character has eight 
patterns: two for each of the front, back, right, and left sides as 
shown in Fig. 6(b). Therefore, the dataset is a collection of 
1208 (=151×8) images; and the task is to recognize the images 
into 151 character classes. Depending on the characters, the 
images have quite different patterns. Due to large number of 
classes, PCR is much complex than MNIST recognition task. 

                                                           
1 http://hikochans.com/pixelart/ 
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Network structure and total parameters for AE, CAE and 
QAE are shown in Table 4. An image with 32×32 pixels is 
feed to AE network as 1024 (=32×32) inputs. Pattern 
construction for CAE and QAE is similar to pattern 
construction from MNIST image data:  one CAE neuron 
processes a pair of pixels as a complex number and one QAE 
processes four conjugative pixels values as one quaternion 
number. Therefore, in the experiments, inputs of CAE and 
QAE networks were 512 (=1024/2) and 256 (1024/4), 
respectively. Hidden nodes of the networks were also selected 
in similar fashion. Total parameter of a method depends on 
nodes in the input and hidden layers. Due to quaternion 
presentation and less number of hidden neurons, total 
parameters in QAE is less than CAE and AE. The activation 
function in hidden units was the ReLU function for each 
method. 75% of available objects were considered as training 
set and rest 25% were used for test purpose. In two different 
selections, two different data sets (training and test sets) were 
prepared. 

 
(a) Some image samples of the characters. 

 
(b) Each of eight pattern images of two characters (classes). 

Fig. 6. Image samples of the Pokémon characters. 

TABLE IV. PARAMETERS FOR POKÉMON CHARACTER RECOGNITION 

Method 

Number of parameters 

Input 

unit 

Hidden 

unit 

Output 

unit 
Totala 

AE1024-400-151 1024 400 151 470,551 

CAE512-350-151 512 350 151 465,102 

QAE256-200-151 256 200 151 327,004 

a Total number of parameters includes real and imaginary parts of weights and biases in the CAE and 
QAE. 

Similar to other autoencoder based classification, training 
performs in two different phases: autoencoder based pre-
training of hidden layer and fine tuning of output layer. More 
specifically, in AE1024-400-151, the hidden layer is conventional 
AE with size 400×1024 and output layer weight (W

BP
) with 

size 151×400 are trained in fine tuning through back 
propagation. Training epochs in first phase (autoencoder) were 
10000 for all three methods. On the other hand, training 

epochs of a method in second phase (fine tuning) were 5000 
with mini batch of 151. 

Fig. 7 shows sample output images of the methods for 
training set of data set 1 in the first phase. It is noticeable from 
the figure that all the methods were able to learn the training 
images. Table 5 compares test set recognition accuracy as well 
as required times in both phases for the three methods. It is 
noticeable that conventional AE method showed the worst 
recognition accuracy for both the data sets which were only 
11.4% and 11.9% for data set 1 and 2, respectively. Besides 
better encoding in first phase (as seen in Fig. 7), the worst 
recognition performance of AE revealed the limitation of real 
valued network for a problem to classify objects in such a 
large number of classes. Number of hidden node enlargement 
might improve performance but not significant level. In such a 
case number of parameters and hence computation complexity 
will increase much. With similar number of parameters, CAE 
showed very good recognition accuracy which were 94.1% 
and 96.2% for data set 1 and 2, respectively. On the other 
hand, with less number of parameters, QAE showed 
competitive performance to CAE and which were 92.1% for 
both the data sets. In relation to training time, QAE took less 
time in both the phases with resect CAE and AE. Finally, 
proposed CAE and QAE revealed as good recognition 
methods for such large-scale multi-class images. 

 

Fig. 7. Sample output images of the conventional and proposed methods for 

training set 1 in the first phase. The bottom images are the desired outputs. 

TABLE V. TEST SET ACCURACY ON POKÉMON CHARACTER 

RECOGNITION 

Method 
Data 

Set 

Accuracy 

Rate (%) 

Time (s) 

First 

Phase 

Second 

Phase 

AE1024-400-151 
1 11.4 349 1211 

2 11.9 350 1183 

CAE512-350-151 
1 94.1 196 685 

2 96.2 196 637 

QAE256-200-151 
1 92.1 115 595 

2 92.1 115 560 

Averages are taken over 5 independent runs. 

IV. CONCLUSIONS 

This paper investigated two multi-valued autoencoders by 
extending the conventional AE to complex and quaternion 
domains which are complex-valued autoencoder (CAE) and 
quaternion-valued autoencoder (QAE). Proposed CAE is a 
two-layered neural network with inputs, outputs, weights, and 
biases in complex domain. The tuning equations of the 
weights and biases are based on the complex gradient descent 
method. We adopted an easy-to-use split-type activation 
function in the hidden and output units. On the other hand, 
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proposed QAE is also a two-layered neural network but with 
inputs, outputs, weights, and biases in quaternion domain. The 
tuning equations of the parameters are based on the quaternion 
gradient descent method. The split-type activation function is 
also applied to the QAE. Although computational 
complexities become higher in the proposed multi-valued 
encoders relatively small sized architecture is found worthy to 
handle a given task. 

Proposed multi-valued autoencoders outperformed 
conventional AE while tested for encoding/decoding and 
classification tasks. In encoding/decoding task, proposed CAE 
and QAE showed better convergence than AE for fixed 
number of epochs. In terms of the execution time, QAE took 
the shortest time and CAE also took less time than AE. In case 
of MNIST handwritten numeral recognition based on the 
individual autoencoders, proposed CAE and QAE was better 
than conventional AE. The most significant outcomes of the 
proposed methods are observed on Pokémon Character 
Recognition (PCR) which is a large-scaled multi-class 
problem having 151 classes. In PCR, CAE and QAE achieved 
more than 90% accuracy; whereas accuracy for AE was below 
20%. Moreover, proposed methods took less time than 
convention AE. Experimental studies with different settings 
identified the proficiency of the proposed multi-valued 
autoencoders. 

A number of future researches are opened from this study. 
In the present study, split-type activation functions were 
considered for the proposed autoencoders. Complex-valued 
and quaternion neural networks with fully complex- and 
quaternion-valued activation functions have been studied 
recently [29], [30]. Thus, such activation functions into CAE 
and QAE might improve their performance and remained as 
future work. Furthermore, only gray-scale image data is used 
in the experiments. In a previous study, a QNN was used to 
treat color image data [22]. It dealt with RGB color values as 
quaternion numbers and showed good performance. 
Applications of the QAE to such color image data would be 
desired. Moreover, deep neural networks based on the 
proposed autoencoders might perform well and remain as 
future study. 
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