
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

19 | P a g e

www.ijacsa.thesai.org

Multi-Valued Autoencoders and Classification of

Large-Scale Multi-Class Problem

Ryusuke Hata

Graduate School of Engineering

University of Fukui

Fukui 910-8507, Japan

M. A. H. Akhand

Dept. of Computer Science and

Engineering

Khulna University of Engineering &

Technology

Kazuyuki Murase

Graduate School of Engineering

University of Fukui

 Fukui 910-8507, Japan

Abstract—Two-layered neural networks are well known as

autoencoders (AEs) in order to reduce the dimensionality of data.

AEs are successfully employed as pre-trained layers of neural

networks for classification tasks. Most of the existing studies

conceived real-valued AEs in real-valued neural networks. This

study investigated complex- and quaternion-valued AEs for

complex- and quaternion-valued neural networks. Inputs,

weights, biases, and outputs in complex-valued AE (CAE) are

complex variables, whereas those in quaternion-valued AE

(QAE) are quaternions. In both methods, a split-type activation

function is used in the hidden and output units. To deal with the

images using the proposed methods, pairs of pixels are allotted to

complex-valued inputs in the CAE and quartets of pixels are

allotted to quaternion-valued inputs in the QAE. Proposed

autoencoders are tested and performance compared with

conventional AE for several tasks which are encoding/decoding,

handwritten numeral recognition and large-scale multi-class

classification. Proposed CAE and QAE revealed as good

recognition methods for the tasks and outperformed

conventional AE with significance performance in case of large-

scale multi-class images recognition.

Keywords—Autoencoder; classification; complex-valued

autoencoder; quaternion-valued autoencoder; recognition

I. INTRODUCTION

Autoencoding refers the automatic learning of encoding
and decoding functions from examples without engineered by
an expert or a human. A two-layered neural network is well
known as an autoencoder (AE) in order to reduce the
dimensionality of data. Recent studies proposed many types of
AEs [1]-[6] which are composed of input, hidden, and output
units, and are based on the gradient descent method. AEs
generally deal with image data. If a network is trained with
image data, some features of the input image appear in the
learned weights. These parameters can be used as the initial
parameters to train neural networks for classification tasks.
Most of the existing studies conceived real-valued AEs in real-
valued neural networks [1]-[6].

Artificial neural networks involve in a large number of
applications with significant varieties and recent multi-valued
version is found efficient for higher-dimension data.
Nowadays, real-world data contain higher-dimensional

information; examples include image, medical, and web data.
In conventional real-valued neural networks (RNNs), a multi-
dimension values are often treated by using multiple real-
valued neurons. The use of these multi-valued quantities is
now spreading to artificial neural networks in the form of
complex-valued neural networks (CVNNs) and quaternion
neural networks (QNNs).

Complex and quaternion numbers are widely used in
various areas of engineering. Complex numbers are used to
deal with two-dimensional vectors and wave information,
whereas quaternions are used for three-dimensional graphics
and computer vision. The gradient descent method to tune
complex-valued weights in CVNNs [7] and quaternion-valued
weights in QNNs [8] made efficient to tackle such high
dimensional problems efficiently. With the advent of CVNNs
and QNNs, multi-valued data can now be used as complex and
quaternion signals. The convergence of CVNNs and QNNs is
found better than that of RVNNs to solve such higher
dimension problems. The study of CVNNs has been
developing widely in various areas [9]-[20]. Applications of
CVNNs include those in radar image processing [17], real-
time image recognition [19], and traffic and power systems
[20]. There have also been active studies of QNNs [21]-[24] in,
for example, color image compression [21] and color night
vision [22].

This study proposed two multi-valued autoencoders
extending conventional AE which are complex-valued AE
(CAE) and quaternion-valued AE (QAE). The CAE is a
complex-valued neural network with input, hidden, and output
units; its learning is based on the complex gradient descent
method. The QAE is a quaternion neural network with input,
hidden, and output units; its learning is based on the
quaternion gradient descent method. The signal flows in the
networks are almost the same as those of the AE. In order to
simplify the network calculations, easy-to-use split-type
activation functions are considered in the hidden and output
units of the CAE and QAE. Proficiency of the proposed AEs
are identified comparing with the conventional AE for
encoding/decoding and classification of image objects.

Although CAE and QAE have been outlined in our
previous study [25], the present study is extended and
complete presentation in both theoretical analysis and
experimental results. In this study, proposed methods are
tested for two different activation functions (sigmoid and

This work was supported by the Grants-in-Aid from JSPS; Nos.

15K00333 for KM and 16J11219 for RH. The funding source had no role in

study design; in the collection, analysis and interpretation of data; in the

writing of the report; and in the decision to submit the article for publication.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

20 | P a g e

www.ijacsa.thesai.org

rectified linear unit). Recognition of handwritten numerals and
large-scale multi-class objects is the main significance of the
present study. In another study, complex-valued are
investigated for linear autoencoders [26]; the algorithm is
different from those of our methods. The autoencoders have
considered in this study are nonlinear in category based on
neural network with nonlinear activation function and have
focused on the classification task.

The remainder of this paper is structured as follows.
Conventional AE and proposed multi-valued autoencoders
(i.e., CAE and QAE) are explained in Section II. This section
also demonstrates autoencoder based classification. In
Section III, performance of proposed autoencoders are
investigated for several tasks which are encoding/decoding,
handwritten numeral recognition and a large-scale multi-class
classification. Finally, the study is concluded in Section IV
with future research directions.

II. MULTI-VALUED AUTOENCODERS AND CLASSIFICATION

WITH THOSE

This section first explains conventional autoencoder (AE)
with a sample architecture for better understanding of
proposed multi-valued autoencoders. It then presents proposed
complex-valued autoencoder (CAE) and quaternion-valued
autoencoder (QAE) extending conventional AE. Finally,
classification based on autoencoders is demonstrated.

A. Conventional Autoencoder(Ae)

An AE is a two-layered neural network that is based on the
gradient descent method. In an AE, the number of outputs is
the same as the number of inputs, and common weights are
used in the first and second layers (weight sharing). To
describe the network architecture clearly, consider a network
with four-input, three-hidden, four-output units as shown in
Fig. 1.

Fig. 1. Network structure of an autoencoder with four-input, three-hidden

and four-output units. In conventional case the inputs and outputs are real

number.

Here, the input vector is [] , and the bias
vectors in the first and second layers are []
and ̃ [̃ ̃] , respectively. The weight matrix is

represented as:

 (

) . (1)

The hidden-unit output vector [] is obtained
as

 () (2)

where () is an activation function such as the sigmoid
or rectified linear unit (ReLU) function. The output vector
 [] is computed as

 (̃) . (3)

Here, is the transpose of . When training data are
given to this network, the weights and biases are tuned by
back propagation to minimize the error between inputs and
outputs. The squared error given by (4) is applied as the error
function:

 ‖ ‖ . (4)

The tuning equations of the network parameters , ̃ ,

and are as follows:

 ̃

 ̃
 () () (5)

 ∑ { ̃ }

 () (6)

 ̃ , (7)

Where, is the learning rate and ∑ ̃

and ∑

 are the net inputs to the p

th
 output

and q
th

 hidden unit, respectively. The learning process is
performed by giving initial values to the parameters and
iterating (5)–(7).

Autoencoders can generate some features in learned
parameters by training with data. For example, if an AE is
trained on a dataset of cat images, features such as silhouettes,
eyes, and ears appear in the learned weights. Furthermore,
AEs can be employed for pre-training weights of different
layers of deep neural networks and hence perform
classification tasks (e.g., image classification). By stacking
AEs, deep neural networks are shown better convergence than
in the case without pre-training of AEs [2].

B. Complex-Valued Autoencoder(CAE)

Proposed CAE is an extension of conventional AE to the
complex domain with complex-valued neurons. To consider
network structure of Fig. 1 for CAE, inputs, weights, biases,
and outputs are all complex valued. CAE operation steps are
similar to AE but perform in complex domain. Input signals
are given to the network through the input units; then, the
weighted sum of the inputs is given to some activation
function in each of the hidden units. Finally, in the output
units, the weighted sums of the hidden outputs are passed
through some activation function.

A complex value contains a real and an imaginary parts
and CAE learning algorithm is based on the complex-valued
gradient descent method. For network structure with Fig. 1,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

21 | P a g e

www.ijacsa.thesai.org

the input vector is [], the bias vector in the first
layer [] , the bias vector in the second layers

 ̃ [̃ ̃] and the weight matrix (represented by the

same form as (1)) are all complex-valued numbers in CAE. To
describe the real and imaginary parts of the parameters,

 ,

 ,

 , and ̃ ̃

 ̃
 (). The net input

 and output

 of the q
th

 hidden unit are calculated as

 ∑

 {∑ (

)

 }

 {∑ (

)

 } (8)

 (
) (

) (9)

Here, the hidden output is generated by a split-type
activation function [27]. The net input

 and

output

 of the p
th

 output unit are calculated

similarly as

 ∑

 ̃ (10)

 (
) (

) (11)

The error function to be minimized is the same formula as
(4). For the training, we update the weights and biases by
using (12)–(14):

 ̃

 ̃

 ̃
 ̃

 ̃
 (12)

 (13)

 ̅ , (14)

Where, is the learning rate and ̅ is the complex

conjugate of . The following equations are for the partial

derivatives within (12)–(14):

 ̃
 (

) (

) (15)

 ̃
 (

) (

) (16)

 (∑ ̃

 ∑ ̃

) (

) (17)

 (∑ ̃

 ∑ ̃

) (

) (18)

The learning process is performed by giving initial values
to the parameters and iterating (12)–(14).

C. Quaternion-Valued Autoencoder(QAE)

Proposed QAE is an extension of conventional AE to the
quaternion domain with quaternion-valued neurons. To
consider network structure of Fig. 1 for QAE, inputs, weights,
biases, and outputs are all quaternion valued. The signal flow

in a QAE network is the same as that in an AE or CAE but
perform in quaternion domain.

A quaternion value contains one real and three imaginary
parts and QAE learning algorithm is based quaternion-valued
gradient descent method [21]. For network structure with
Fig. 1, the input vector is [], the bias vector in the
first layer [], the bias vector in the second layers

 ̃ [̃ ̃] and the weight matrix (represented by the

same form as (1)) are all quaternion-valued numbers in QAE.
To describe the real and imaginary parts of the

parameters

 ,

 ,

 , and ̃ ̃

 ̃
 ̃

 ̃
 (). The net input

 and output

 of the q

th
 hidden unit are calculated as:

 ∑

 {∑ (

)

 }

 {∑ (

)

 }

 {∑ (

)

 }

 {∑ (

)

 } (19)

 (
) (

) (
) (

) . (20)

Here, a split-type activation function is adopted to generate

the hidden output. The net input

and output

 of the p
th

 output unit

are also calculated as

 ∑

 ̃ (21)

 (
) (

) (
) (

) . (22)

The same formula as (4) is used as the error function. For
the training, the weights and biases are updated using the
following equations:

 ̃

 ̃

 ̃

 ̃

 ̃

 ̃
 ̃

 ̃
 ̃

 (23)

 (24)

 ̅ , (25)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

22 | P a g e

www.ijacsa.thesai.org

Where, is the learning rate and ̅ is the quaternion

conjugate of . The following equations are for the partial

derivatives within (23)–(25):

 ̃
 (

) (

) (26)

 ̃
 (

) (

) (27)

 ̃
 (

) (

) (28)

 ̃
 (

) (

) (29)

 (

∑ ̃

 ∑ ̃

 ∑ ̃

 ∑ ̃

) (
) (30)

 (

∑ ̃

 ∑ ̃

 ∑ ̃

 ∑ ̃

) (
) (31)

 (

∑ ̃

 ∑ ̃

 ∑ ̃

 ∑ ̃

) (
) (32)

 (

∑ ̃

 ∑ ̃

 ∑ ̃

 ∑ ̃

) (
). (33)

The learning process is performed by giving initial values
to the parameters and iterating (23)–(25).

D. Classification using Autoencoder

Conventional AEs are found effective to build networks
for classification task. Proposed CAE and QAE based
networks also might perform well in classification; which is
the main intuition of this study. Size of output layer (i.e.,
nodes in the layer) of the network depends on number of
classes to be identified; and size of input layer depends on
data and how it process. Hidden layer numbers and sizes are
user defined parameters. Autoencoder(s) is used to pre-train
hidden layer(s). Output layer is trained only in fine tuning
with backpropagation in supervised mode.

Fig. 2. Network structure using conventional autoencoder for handwritten

numeral recognition from 28×28 (=784) size images.

For better understanding of classification using
autoencoder, Fig. 2 is the network structure based on
conventional AE for MNIST handwritten numeral recognition
[28]. MNIST contains handwritten numeral images of 28×28
pixels. Therefore, total input nodes IAE is 784 (=28×28)
considering an individual node for an individual pixel value.
To classify the digit images, 10 outputs (corresponding to the
class labels from 0 to 9) are considered in the output layer. If
number of nodes in the hidden layer is defined as HAE, hidden
layer weights (W) and biases (B) are size of HAE ×IAE and HAE,

respectively. and are pre-trained through conventional
AE. and are the weight and bias vectors of output
layer, respectively, that have to be tuned by back propagation.
In the output units, signals from the hidden units are processed
by the sigmoid function.

The networks for classification using CAE and QAE are
complex and quaternion-valued, respectively. In CAE based
network, the complex-valued input neuron manipulate two
conjugative pixel values in real and imaginary parts of it.
Therefore, number of input in CAE based network (ICAE) will
be half of conventional AE based network of Fig. 2. Similarly,
number of input in QAE based network (IQAE) will be one
fourth of conventional AE based network. At a glance, IAE =
2ICAE = 4IQAE. Due to higher dimension operation, relatively
less number of hidden neurons in CAE and QAE might be
sufficient. However, real valued output neuron is necessary to
classify in both the cases. In order to generate real-valued
outputs from the CAE output units, activation functions for
CAE and QAE are shown in (34) and (35), respectively.

 () ((
) ())

 (34)

 () ((
) ())

 (() ())

 (35)

In both the equations, () ()⁄ i.e., sigmoid
function. Equation (34) has been investigated for complex-
valued neural networks to solve real-valued classification
problems [27]. Equation (35) is the proposed activation
function for QAE to convert quaternions to real numbers. The
methods used back propagation to tune the weights and biases
between the hidden and output units.

III. EXPERIMENTAL STUDIES

This section investigates effectiveness of proposed
multivalued AEs (i.e., CAE and QAE) in encoding/decoding
and classification of image objects. The outcome of the
proposed methods compared with conventional AE.
Encoding/decoding ability is observed on handwritten numeral
images. Recognition of handwritten numeral is also
considered to observe classification ability. Finally,
recognition on large-scale objects with many classes is
performed. Following individual sections explain
experimental setup and compare outcomes of the
encoding/decoding and both classification tasks. The
algorithms are implemented in PGI® Accelerator C
Workstation. Experiments of this study have been conducted
on HP Z440 Workstation having CPU Intel(R) Xeon (R) CPU

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

23 | P a g e

www.ijacsa.thesai.org

E5-1603 @ 2.80GHz and RAM 32.0GB in Windows 10 Pro
(64 bit) environment.

A. Encoding/Decoding

Performance of encoding/decoding is observed on MNIST
database [28]. MNIST database comprises 28×28-pixel gray-
scale images of handwritten digits from 0 to 9. From the
available samples, 2500 samples are considered as training set
and different 2500 samples are used as test set. In each set
(training/test) 250 of each digit from 0 to 9 are considered.
Same training and test set are used for all three networks
(conventional AE, proposed CAE and QAE).

In training/testing, a pattern is represented in different
forms in AE, CAE and QAE. Each individual pixel value is an
input in AE; therefore, AE required total 784 input neurons.
On the other hand, number of input is less in CAE and QAE
due to multi-valued neurons. Fig. 3 shows pattern construction
for CAE and QAE from a sample numeral image. CAE treated
each pair of pixels as one complex number, and QAE
considered each quartet of pixels as one quaternion number.
Therefore, CAE and QAE required input neurons 392
(=784/2) and 196 (=784/4), respectively.

Two popular activation functions sigmoid and ReLU were
considered to the hidden units of each method. On the other
hand, only the sigmoid function was applied to the output
units of each method. The number of hidden nodes were
considered less than input of a method as of many previous
studies. Experiments conducted for two different number of
hidden units. Table 1 shows the parameters for all the three
methods. Here, the notation AE784-272 signifies the method
name “AE” as conventional method; and the number of input
and hidden units are 784 and 272, respectively. Due to less
number of inputs as well as much less number of hidden units
considered in proposed multi-valued autoencoders, total
parameters were much less than conventional AE.

To assess the learning abilities of the proposed methods,
mean squared error (MSE) for the test set and the execution
time required for the training were compared. The test error
was calculated by

∑ ‖ ‖

 (36)

Where, n is the pattern number and N is the total number
of test samples. Furthermore, we discuss the features appeared
in the learned weights of each method.

Fig. 3. Pattern construction from a sample MNIST image for CAE and QAE.

TABLE I. NUMBER OF PARAMETERS FOR ENCODER/DECODER TEST ON

MNIST IMAGES

Method

Number of parameters

Input

unit

Hidden

unit

Output

unit
Totala

AE784-272 784 272 784 214,304

AE784-392 784 392 784 308,504

CAE392-136 392 136 392 107,680

CAE392-196 392 196 392 154,840

QAE196-68 196 68 196 54,368

QAE196-98 196 98 196 78,008
a Total number of parameters includes real and imaginary parts of weights and biases in the CAE and

QAE.

Fig. 4 depicts MSE for three methods (AE784-392, CAE392-

196, and QAE196-98) for both sigmoid and ReLU functions in
hidden units on a sample run. It is observed from the figure
that the nature of the MSE curve almost same for all the three
methods for a particular activation function. The significance
observation from the figure is that all the methods with the
ReLU function (Fig. 4(b)) converged much faster than the
methods with the sigmoid function (Fig. 4(a)). For ReLU
function, MSE reached steady state position for 5000 epochs;
whereas, steady state position with similar MSE value for
sigmoid was shown to reach for 50000 epochs. Therefore, in
further expereiments, 5000 and 50000 epochs are considered
for ReLU and sigmoid functions, respectively.

(a) Sigmoid function

(b) ReLU function

Fig. 4. Training process of AE784-392, CAE392-196, and QAE196-98 methods with

sigmoid and ReLU activation functions in the hidden units.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

24 | P a g e

www.ijacsa.thesai.org

TABLE II. AVERAGE TEST ERROR ON AE, CAE AND QAE WITH

DIFFERENT ARCHITECTURE AND ACTIVATION FUNCTIONS

Method
Hidden unit

act. function Epoch MSE (×10-3) Time (s)

AE784-272
Sigmoid 50000 10.62 ± 0.14 1356

ReLU 5000 6.41 ± 0.16 154

AE784-392
Sigmoid 50000 7.39 ± 0.08 2048

ReLU 5000 6.08 ± 0.12 228

CAE392-136
Sigmoid 50000 9.17 ± 0.07 376

ReLU 5000 10.53 ± 0.35 43

CAE392-196
Sigmoid 50000 6.23 ± 0.08 579

ReLU 5000 8.60 ± 0.35 63

QAE196-68
Sigmoid 50000 8.88 ± 0.19 206

ReLU 5000 7.39 ± 0.18 24

QAE196-98
Sigmoid 50000 6.33 ± 0.09 306

ReLU 5000 6.10 ± 0.15 35

Averages are taken over 5 independent runs.

Table 2 shows test error and required time for each method
after fixed number epoch. In relation to the test error, the AE
and the QAE with the ReLU function showed better results
than those of the methods with the sigmoid function even
training epoch is much less in case of ReLU. However, the
error of the CAE with the sigmoid function was better than
that with the ReLU function. Furthermore, each of the
methods showed better convergence as the number of
parameters increased. As an example, MSE value of QAE196-98
(heaving 98 hidden units) was less than QAE196-68 (heaving 68

hidden units) for both sigmoid and ReLU. In terms of the
execution time, the period for QAE was much shorter than
period for the other two methods as seen from Table 2. This is
because the execution time is related to the number of
parameters and the computational complexity of the methods.
For better understanding, Fig. 5 shows sample output images
of AE784-392, CAE392-196, and QAE196-98 with the ReLU function
in the hidden units. Comparing with the output images, the
proposed methods showed almost the same qualities as that of
the conventional AE.

Fig. 5. Sample output images of the conventional and proposed methods.

The images were obtained using AE784-392, CAE392-196, and QAE196-98 with
ReLU function in the hidden units. The bottom images are the desired outputs

of the test set.

B. Handwritten Numeral Recognition (HNR)

HNR is a complex classification task and MNIST database
is well studied for this purpose. Classification performance
using proposed CAE and QAE is observed and compared with
conventional AE on MNIST database [28]. Autoencoder based
network construction for classification task is already

explained in Section II-D. The learned parameters that were
obtained from the encoding/decoding problem in previous
section are used as pre-trained hidden layer. To classify the
digit images, output layer heaving 10 output nodes
(corresponding to the class labels from 0 to 9) is added. In the
output units, signals from the hidden units are processed by
the sigmoid function. Finally, back propagation is used to tune
the weights and biases between the hidden and output units.
Fine tuning performed on fixed iteration to compare execution
time among the methods. The methods with the ReLU
function converged faster than the methods with the sigmoid
function; therefore the epochs for fine tuning were 5000 and
10000 for ReLU and sigmoid, respectively.

Table 3 compares the methods in relation to the test set
accuracy and the execution time for both sigmoid and ReLU
as activation function in hidden units. The method AE784-392-10

indicates AE784-392 autoencoder from previous section is used
and output layer weight (W

BP
) size is 10×392 which are

trained in fine tuning. In relation to the accuracy rate, ReLU
achieved better results for AE and QAE; but sigmoid showed
better for CAE. However, both proposed methods is found
better than conventional AE regardless the activation function.
As an example, accuracy for AE784-392-10 with ReLU was
81.0%; one the other hand, CAE392-196-10 and QAE196-98-10
achieved 85.5% and 85.4 %, respectively, for same activation
function. Although both CAE and QAE showed competitive
accuracy; in relation to the execution time, the QAE was faster
than CAE and much faster than AE. For 5000 epochs with
ReLU, QAE196-98-10 took 18 seconds; whereas, CAE392-196-10

and AE784-392-10 took 31 and 139 seconds, respectively.

TABLE III. AVERAGE TEST SET ACCURACY ON MNIST HANDWRITTEN

NUMERAL RECOGNITION

Method
Hidden unit

act. function Epoch
Accuracy

rate (%)
Time (s)

AE784-392-10
Sigmoid 10000 76.1 280

ReLU 5000 81.0 139

CAE392-196-10
Sigmoid 10000 85.6 64

ReLU 5000 85.5 31

QAE196-98-10
Sigmoid 10000 85.2 38

ReLU 5000 85.4 18

Averages are taken over 5 independent runs.

C. Pokémon Character Recognition (PCR)

In this section, proposed CAE and QAE are evaluated and
compared with AE on Pokémon dataset

1
 which is relatively

much complex problem. Pokémon is the registered trademark
of Nintendo /Creatures Inc. /GAME FREAK Inc. The dataset
is a collection of RGB images of 151 Pokémons where each
character image is 32×32 pixels. A gray-scaled dataset is
considered in this study to perform experiments. Fig. 6 shows
few samples from of the dataset. A single character has eight
patterns: two for each of the front, back, right, and left sides as
shown in Fig. 6(b). Therefore, the dataset is a collection of
1208 (=151×8) images; and the task is to recognize the images
into 151 character classes. Depending on the characters, the
images have quite different patterns. Due to large number of
classes, PCR is much complex than MNIST recognition task.

1 http://hikochans.com/pixelart/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

25 | P a g e

www.ijacsa.thesai.org

Network structure and total parameters for AE, CAE and
QAE are shown in Table 4. An image with 32×32 pixels is
feed to AE network as 1024 (=32×32) inputs. Pattern
construction for CAE and QAE is similar to pattern
construction from MNIST image data: one CAE neuron
processes a pair of pixels as a complex number and one QAE
processes four conjugative pixels values as one quaternion
number. Therefore, in the experiments, inputs of CAE and
QAE networks were 512 (=1024/2) and 256 (1024/4),
respectively. Hidden nodes of the networks were also selected
in similar fashion. Total parameter of a method depends on
nodes in the input and hidden layers. Due to quaternion
presentation and less number of hidden neurons, total
parameters in QAE is less than CAE and AE. The activation
function in hidden units was the ReLU function for each
method. 75% of available objects were considered as training
set and rest 25% were used for test purpose. In two different
selections, two different data sets (training and test sets) were
prepared.

(a) Some image samples of the characters.

(b) Each of eight pattern images of two characters (classes).

Fig. 6. Image samples of the Pokémon characters.

TABLE IV. PARAMETERS FOR POKÉMON CHARACTER RECOGNITION

Method

Number of parameters

Input

unit

Hidden

unit

Output

unit
Totala

AE1024-400-151 1024 400 151 470,551

CAE512-350-151 512 350 151 465,102

QAE256-200-151 256 200 151 327,004

a Total number of parameters includes real and imaginary parts of weights and biases in the CAE and
QAE.

Similar to other autoencoder based classification, training
performs in two different phases: autoencoder based pre-
training of hidden layer and fine tuning of output layer. More
specifically, in AE1024-400-151, the hidden layer is conventional
AE with size 400×1024 and output layer weight (W

BP
) with

size 151×400 are trained in fine tuning through back
propagation. Training epochs in first phase (autoencoder) were
10000 for all three methods. On the other hand, training

epochs of a method in second phase (fine tuning) were 5000
with mini batch of 151.

Fig. 7 shows sample output images of the methods for
training set of data set 1 in the first phase. It is noticeable from
the figure that all the methods were able to learn the training
images. Table 5 compares test set recognition accuracy as well
as required times in both phases for the three methods. It is
noticeable that conventional AE method showed the worst
recognition accuracy for both the data sets which were only
11.4% and 11.9% for data set 1 and 2, respectively. Besides
better encoding in first phase (as seen in Fig. 7), the worst
recognition performance of AE revealed the limitation of real
valued network for a problem to classify objects in such a
large number of classes. Number of hidden node enlargement
might improve performance but not significant level. In such a
case number of parameters and hence computation complexity
will increase much. With similar number of parameters, CAE
showed very good recognition accuracy which were 94.1%
and 96.2% for data set 1 and 2, respectively. On the other
hand, with less number of parameters, QAE showed
competitive performance to CAE and which were 92.1% for
both the data sets. In relation to training time, QAE took less
time in both the phases with resect CAE and AE. Finally,
proposed CAE and QAE revealed as good recognition
methods for such large-scale multi-class images.

Fig. 7. Sample output images of the conventional and proposed methods for

training set 1 in the first phase. The bottom images are the desired outputs.

TABLE V. TEST SET ACCURACY ON POKÉMON CHARACTER

RECOGNITION

Method
Data

Set

Accuracy

Rate (%)

Time (s)

First

Phase

Second

Phase

AE1024-400-151
1 11.4 349 1211

2 11.9 350 1183

CAE512-350-151
1 94.1 196 685

2 96.2 196 637

QAE256-200-151
1 92.1 115 595

2 92.1 115 560

Averages are taken over 5 independent runs.

IV. CONCLUSIONS

This paper investigated two multi-valued autoencoders by
extending the conventional AE to complex and quaternion
domains which are complex-valued autoencoder (CAE) and
quaternion-valued autoencoder (QAE). Proposed CAE is a
two-layered neural network with inputs, outputs, weights, and
biases in complex domain. The tuning equations of the
weights and biases are based on the complex gradient descent
method. We adopted an easy-to-use split-type activation
function in the hidden and output units. On the other hand,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 11, 2017

26 | P a g e

www.ijacsa.thesai.org

proposed QAE is also a two-layered neural network but with
inputs, outputs, weights, and biases in quaternion domain. The
tuning equations of the parameters are based on the quaternion
gradient descent method. The split-type activation function is
also applied to the QAE. Although computational
complexities become higher in the proposed multi-valued
encoders relatively small sized architecture is found worthy to
handle a given task.

Proposed multi-valued autoencoders outperformed
conventional AE while tested for encoding/decoding and
classification tasks. In encoding/decoding task, proposed CAE
and QAE showed better convergence than AE for fixed
number of epochs. In terms of the execution time, QAE took
the shortest time and CAE also took less time than AE. In case
of MNIST handwritten numeral recognition based on the
individual autoencoders, proposed CAE and QAE was better
than conventional AE. The most significant outcomes of the
proposed methods are observed on Pokémon Character
Recognition (PCR) which is a large-scaled multi-class
problem having 151 classes. In PCR, CAE and QAE achieved
more than 90% accuracy; whereas accuracy for AE was below
20%. Moreover, proposed methods took less time than
convention AE. Experimental studies with different settings
identified the proficiency of the proposed multi-valued
autoencoders.

A number of future researches are opened from this study.
In the present study, split-type activation functions were
considered for the proposed autoencoders. Complex-valued
and quaternion neural networks with fully complex- and
quaternion-valued activation functions have been studied
recently [29], [30]. Thus, such activation functions into CAE
and QAE might improve their performance and remained as
future work. Furthermore, only gray-scale image data is used
in the experiments. In a previous study, a QNN was used to
treat color image data [22]. It dealt with RGB color values as
quaternion numbers and showed good performance.
Applications of the QAE to such color image data would be
desired. Moreover, deep neural networks based on the
proposed autoencoders might perform well and remain as
future study.

REFERENCES

[1] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, pp.504–507, 2006.

[2] Y. Bengio, P. Lamblin, D. Popovici and H. Larochelle, “Greedy layer-
wise training of deep networks,” Adv. Neural Inf. Process. Syst., vol. 19,
pp. 153–160, 2007.

[3] P. Vincent, H. Larochelle, Y. Bengio and P. A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proc.
25th Int. Conf. Machine Learning, ACM, pp. 1096–1103, 2008.

[4] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio and P. A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in a
deep network with a local denoising criterion,” J. Machine Learning
Research, vol. 11, pp. 3371–3408, 2010.

[5] R. Socher, E. H. Huang, J. Pennin, C. D. Manning and A. Y. Ng,
“Dynamic pooling and unfolding recursive autoencoders for paraphrase
detection,” in Advances in Neural Information Processing Systems, pp.
801–809, 2011.

[6] M. Längkvist and A. Loutfi, “Learning feature representations with a
cost-relevant sparse autoencoder,” Int. J. Neural Syst., vol. 25(01),
1450034, 2015.

[7] T. Nitta, “An extension of the back-propagation algorithm to complex
numbers,” Neural Networks, vol. 10(8), pp. 1391–1415, 1997.

[8] T. Nitta, “A quaternary version of the back-propagation algorithm,” in
Proc. IEEE Int. Conf. Neural Networks, pp. 2753–2756, 1995.

[9] A. Hirose, “Complex-Valued Neural Networks: theories and
applications,” World Scientific, vol. 5, 2003.

[10] A. Hirose, “Complex-Valued Neural Networks,” Springer Science &
Business Media, vol. 400, 2006.

[11] A. Hirose, “Complex-Valued Neural Networks: Advances and
Applications,” IEEE Press, 2013.

[12] I. Aizenberg, “Complex-Valued Neural Networks with Multi-Valued
Neurons,” Heidelberg: Springer 353, 2011.

[13] T. Nitta, “Complex-Valued Neural Networks: Utilizing High-
Dimensional Parameters,” IGI Global, 2009.

[14] X. Chen, Z. Tang, C. Variappan, S. Li and T. Okada, “A modified error
backpropagation algorithm for complex-value neural networks,” Int. J.
Neural Syst., vol. 15(06), pp. 435–443, 2005.

[15] T. Nitta, “The uniqueness theorem for complex-valued neural networks
with threshold parameters and the redundancy of the parameters,” Int. J.
Neural Syst., vol. 18(02), pp. 123–134, 2008.

[16] H. Aoki, “Applications of Complex-Valued Neural Networks for Image
Processing,” in Complex-Valued Neural Networks: Theories and
Applications, World Scientific Publishing, Singapore, vol. 5, pp. 181–
204, 2003.

[17] A. B. Suksmono and A. Hirose, “Adaptive interferometric radar image
processing by complex-valued neural networks,” in Complex-Valued
Neural Networks: Theories and Applications, World Scientific
Publishing, Singapore, vol. 5, pp. 277–301, 2003.

[18] S. Buchholz and N. Le Bihan, “Polarized signal classification by
complex and quaternionic multi-layer perceptrons,” Int. J. Neural Syst.,
vol. 18(02), pp. 75–85, 2008.

[19] A. R. Hafiz, M. F. Amin and K. Murase, “Real-time hand gesture
recognition using complex-valued neural network (CVNN),” in Int.
Conf. Neural Information Processing, Springer Berlin Heidelberg, pp.
541–549. 2011.

[20] I. Nishikawa, T. Iritani, K. Sakakibara and Y. Kuroe, “Phase dynamics
of complex-valued neural networks and its application to traffic signal
control,” Int. J. Neural Systems, vol. 15(01n02), pp. 111–120, 2005.

[21] N. Matsui and T. Isokawa, “Quaternion neural network with geometrical
operators,” Intelligent and Fuzzy Systems, vol. 15(3), pp. 149–164,
2004.

[22] H. Kusamichi, T. Isokawa, N. Matsui, Y. Ogawa and K. Maeda, “A new
scheme for color night vision by quaternion neural network,” in 2nd Int.
Conf. Autonomous Robots and Agents, pp. 101–106, 2004.

[23] M. Yoshida, Y. Kuroe and T. Mori, “Models of Hopfield-type
quaternion neural networks and their energy functions,” Int. J. Neural
Systems, vol. 15(01n02), pp. 129–135, 2005.

[24] T. Isokawa, H. Nishimura, N. Kamiura and N. Matsui, “Associative
memory in quaternionic hopfield neural network,” Int. J. Neural Syst.,
vol. 18(02), pp. 135–145, 2008.

[25] R. Hata and K. Murase, “Multi-valued autoencoders for multi-valued
neural networks,” in IEEE Int. Joint Conf. Neural Networks (IEEE
World Congress on Computational Intelligence), pp. 4412–4417, 2016.

[26] P. Baldi and Z. Lu, “Complex-valued autoencoders,” Neural Networks,
vol. 33, pp. 136–147, 2012.

[27] M. F. Amin and K. Murase, “Single-layered complex-valued neural
network for real-valued classification problems,” Neurocomputing, vol.
72(4), pp. 945–955, 2009.

[28] Y. LeCun, C. Cortes and C. J. Burges, The MNIST database of
handwritten digits, 1989.

[29] T. Kim and T. Adali, “Approximation by fully complex multilayer
perceptrons,” Neural Computation, vol. 15(7), pp. 1641–1666, 2003.

[30] T. Isokawa and H. Nishimura, “Quaternionic multilayer perceptron with
local analyticity,” Information, vol. 3(4), pp. 756–770, 2003.

