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Abstract—Plant sensitivity and its bio-effects on non-thermal
weak radio-frequency electromagnetic fields (RF-EMF) iden-
tifying key parameters that affect plant sensitivity that can
change/unchange by using big data analytics and machine learn-
ing concepts are quite significant. Despite its benefits, there is no
single study that adequately covers machine learning concept in
Bioelectromagnetics domain yet. This study aims to demonstrate
the usefulness of Machine Learning algorithms for predicting
the possible damages of electromagnetic radiations from mobile
phones and base station on plants and consequently, develops a
prediction model of plant sensitivity to RF-EMF. We used raw-
data of plant exposure from our previous review study (extracted
data from 45 peer-reviewed scientific publications published
between 1996-2016 with 169 experimental case studies carried out
in the scientific literature) that predicts the potential effects of
RF-EMF on plants. We also used values of six different attributes
or parameters for this study: frequency, specific absorption rate
(SAR), power flux density, electric field strength, exposure time
and plant type (species). The results demonstrated that the
adaptation of machine learning algorithms (classification and
clustering) to predict 1) what conditions will RF-EMF exposure
to a plant of a given species may not produce an effect; 2) what
frequency and electric field strength values are safer; and 3)
which plant species are affected by RF-EMF. Moreover, this paper
also illustrates the development of optimal attribute selection
protocol to identify key parameters that are highly significant
when designing the in-vitro practical standardized experimental
protocols. Our analysis also illustrates that Random Forest
classification algorithm outperforms with highest classification
accuracy by 95.26% (0.084 error) with only 4% of fluctuation
among algorithm measured. The results clearly show that us-
ing K-Means clustering algorithm, demonstrated that the Pea,
Mungbean and Duckweeds plants are more sensitive to RF-EMF
(p ≤ 0.0001). The sample size of reported 169 experimental case
studies, perhaps low significant in a statistical sense, nonetheless,
this analysis still provides useful insight of exploiting Machine
Learning in Bioelectromagnetics domain. As a direct outcome of
this research, more efficient RF-EMF exposure prediction tools
can be developed to improve the quality of epidemiological studies
and the long-term experiments using whole organisms.
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I. INTRODUCTION

Mobile phone technology has exhibited remarkable growth
in recent years, heightening the debates on the changes in
plant growth due to non-thermal weak radio-frequency electro-
magnetic fields (RF-EMF). In order to preserve green living

and biodiversity, one of the major ground-level concerns is
environmental damage and its effects on plants. Modeling plant
sensitivity due to RF-EMF is an important task for both agri-
culture sector and for epidemiologist, on the other hand, it is a
useful tool to assist a better understanding of this phenomenon
and eventually advance it. Reported studies showed significant
effects on plants that exposed to the radiofrequency radiation
or plant sensitivity to the RF-EMF [1].

The fields of machine learning and big data analytics helps
to extract high-levels of knowledge from raw data and improve
automated tools that can aid the health domain. Machine
learning is a key tool in analytics, where algorithms iteratively
learn from data to discover hidden insights [2]. It is quite
challenging for experts to overlook the important details of
billions of data, hence, alternatively, use of automated tools to
analyze raw data and extract stimulating high-level information
is exceptionally important for the decision-makers [3].

Machine learning techniques have been used in big data
analysis; nonetheless, the challenge is to build a prediction
model for the data with multiple variables. The raw-data grasps
crucial information, such as patterns and trends, which can be
used to advance decision-making and optimize achievements.
This paper uses machine learning in bioelectromagnetics; that
consequently, develops a prediction model of plant sensitivity
to RF-EMF.

The controversy or the contention exists about the physi-
ological and morphological changes that affect sensitivity in
plants due to the non-thermal weak radio-frequency electro-
magnetic fields (RF-EMF) effects from mobile phones and
base station radiation. On the other hand, the world has been
challenged with recent environmental concerns and the loss
of green living that has caused dilemma and re-evaluation
of implications, especially in agriculture. While developing
the country economically, citizens expect political measures
to be taken for a greener environment. Nonetheless, one of
the major ground-level concerns is external environmental
effects on plants. There is a need to understand the trends and
patterns that occur in the non-thermal weak radio-frequency
electromagnetic field (RF-EMF) and its effects caused by
mobile phones and base station radiation activities on plants
and trees. Also, it is important to understand the significance of
environmental attributes which have impacted the classification
algorithm for better prediction. There is no single study that
sufficiently covers machine learning concept in bioelectromag-
netics domain yet.
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This study tries to demonstrate the usefulness of Machine
Learning algorithms for predicting the possible damages of
electromagnetic radiations on plants and consequently, de-
velops a prediction model of plant sensitivity to RF-EMF.
hence, this proposes a novel solution to apply machine learning
concepts and techniques by using raw data from our previous
review study. Similarly, this study will replicate the former
study to validate former study and to perform predictions
extracting high-levels of knowledge from raw data using
different classifications and clustering algorithms. This study
will also presents and outline the following: 1) development of
optimal attribute selection protocol to identify key parameters
that should be used in in-vitro laboratory experiments; 2) K-
mean clustering algorithms to analyze and predict what condi-
tions will RF-EMF exposure impacts plant of a given species
may not produce an effect; 3) which frequency and electric
field strength values are safer; 4) classification algorithms
for prediction of RF-EMF effect on plants species; and 5)
the verification of the performance of the classification and
clustering algorithms.

II. CLASSIFICATION ALGORITHMS, CLUSTERING
ALGORITHMS AND PERFORMANCE EVALUATION METHODS

This section discusses 1) classification framework; 2) clas-
sification algorithms (Bayesian Network Classifiers, Naive
Bayesian Model Classifier, Decision Table, JRip, OneR, J48,
Random Forest, Random Tree); 3) test modes (k-fold Cross-
validation, Data Percentage Split Criteria); 4) performance
evaluation of classification algorithms (Percentage of Correct
Classifications, Root-mean-square error, Confusion Matrix,
Time Performance); 5) clustering algorithms (K-Means Clus-
tering, Cannopy Clustering, Expectation Maximization (EM)
Clustering, Filtered Clustering, Hierarchical Clustering); 6)
performance evaluation of clustering algorithms (Cluster Sum
of Squared Error, Silhouette coefficient); 7) data collection;
and 8) data analysis, that we used for our analysis.

A. Classification Algorithms

A classification algorithm is used to train a data sets to
build a model that can be used to assign unclassified records
into one of the defined classes. Classification algorithms are
most appropriate for predicting or labeling new data sets (test
data) with numeric, binary or nominal categories (nominal data
types that represent the text data and ordinal data types that
represent the data with pre-defined options). The classification
algorithms or techniques are used in this study to predict
the expected outcomes are Bayes Net, Nave Bayes, Decision
Table, JRip, OneR, J48, Random Forest and Random Tree.

The list of symbols are defined in Table 1. Consider n-
dimensional attribute vector ~X = (X1, X2, . . . , Xn). Let there
be m classes variables C = {c1, c2, . . . , cj , . . . , cm}.

1) Bayesian Network Classifiers (Bayes Net): The learn-
ing task consists of finding an appropriate Bayesian network
[4] given a data set D over ~X .

Using the Bayes theorem (P (cj | ~X) =

P (cj)p( ~X|cj |)/
[∑

j P (cj)p( ~X|cj |)
]
, Bayesian classification,

CBN or (hb) is given by

CBN = hb( ~X) = arg max
j=1,...,m

P (cj)p( ~X|Cj) (1)

TABLE 1. LIST OF SYMBOLS AND DESCRIPTIONS

Symbol Description

D Dataset

N Number of labels

C Number of class variables, i.e., C = (changed, unchanged)

~X Attribute vector {F, SAR,P,E, T, p}

~X1 {F1, SAR1, P1, E1, T1, p1}, First instance

~X2 {F2, SAR2, P2, E2, T2, p2}, Second instance

Ωx Map xth instance (data point)

Ωc Value of cth classifier (class label)

hc Hypothesis that correctly predict classification

cj jth classifier

Dt
i Training data set

s Cross-validation number (e.g. S ∈ 5, 10, 20)

Di ith data partition for cross validation

ai Actual value of ith instance

pi Predicted value of ith instance

F F-measure or harmonic mean

r Recall or sensitivity

p Precision

K The number of clusters

Ess Cluster sum of squared error

clK Centroid off the Kth cluster

si Set of objects in the ith cluster

xi An object or ith attribute vector

µi Center point of the ith cluster

M Maximization step

E Expectation step

where P (cj) is “a priori” or prior probability distribution and
p( ~X|Cj) is the conditional probability density. For example,
for 2 class problem (c1, c2) Bayes rule is given by:

CBN =

{
c1 P (c1| ~X) > P (c2| ~X)
c2 otherwise.

2) Naive Bayesian Model Classifier (Naive Bayes): This
is based on the Bayesian theorem and uses the method of maxi-
mum likelihood for attribute estimation. Naive Bayesian Model
classifier (Naive Bayes) [5] requires a small amount of training
data to predict the data attributes. The Naive Bayes classifier
predicts whether ~X belongs to class ci, if p(ci| ~X) > p(cj | ~X)
for 1 ≤ j ≤ m. Using Bayes’ theorem, the maximum pos-
teriori hypothesis is given by p(ci| ~X = p(ci)p( ~X|ci)/p( ~X).
This maximize p(ci)p( ~X|ci) and p( ~X) is a constant. If we
have many attributes, it is computationally costly to evaluate
p( ~X|ci). Hence, Naive assumption of “class conditional inde-
pendence” is given by p( ~X|ci) =

∏
k=1n p(Xk|ci).

3) Decision Table: Decision table classification algorithm
can be efficiently used to decide the most important attributes
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in a given dataset [6]. This evaluates feature of subsets by using
best-first search and cross-validation mode that can be used for
evaluation. In this method, attributes are not considered as an
independent that is differentiated, from a verified model.

4) JRip: This classification algorithm implements a propo-
sitional rule, “Incremental Pruning is to Produce Error Reduc-
tion” (RIPPER), which uses sequential covering algorithms for
creating ordered rule lists [7]. The algorithm goes through
a few stages: building (growing, pruning), optimization and
selection [7].

5) OneR: A simple classification algorithm that produces
one rule for each predictor in the data and uses the minimum-
error attribute for prediction [8].

6) J48: The J48 is a classification algorithm generates
decision tree which generates a pruned or unpruned C4.5
decision tree [9] and is used for the classification of the data.

7) Random Forest: Random forests classification algo-
rithm considers amalgamation of tree predictors (each tree
depends on the independent values of a random vector sam-
pled) and uses similar distribution for all trees in the forest
[10]. When a number of trees in the forest become large,
the generalization error for forests converges to a limit. This
error of the forest tree classifiers depends on the vigour of the
individual trees as well as the correlation between them [11].

8) Random Tree: Random Tree classification algorithm
[12] uses a class for building a tree, which considers x
randomly chosen attributes at each node and it does not
perform pruning. Furthermore, it has an option to estimate the
class probabilities established on a hold-out set or back-fitting.

B. Test Modes

Cross-validation is a technique used for estimating the error
(accuracy) of the algorithm. This works by splitting the data
into k subsets of approximately equal size. The performance
evaluation method of eight classifiers or classification algo-
rithms (described above) were obtained by using two different
test modes: k-fold cross-validation and percentage split. Hence,
for this paper, 10-fold cross validation and data percentage split
criteria are used for model assessment.

1) K-fold cross-validation (k − foldcv): The k − foldcv
splits the data set D in s equal parts D1, . . . , Ds, where typical
values for s are 5, 10 and 20. Here training data set Dt

i is
given by removing ith data portion, Di from D with s = N ,
k−fold cross-validation. Each data point used once for testing
and s − 1 times for training. When s = N , k − fold cross-
validation becomes loo − cv. For an example, in this work,
we use k-fold cross-validation (k =10) method. Hence, these
splits the data into 10 equal parts then uses first 9 parts for
training and the final fold is for testing purposes.

2) Data percentage split criteria: The data percentage split
mode is a mode that splits the dataset into training data and
testing it with different percentage ratios. In this test mode,
the identified percentage of the train data: test data split ratio,
e.g., 90%:10%, 80%:20%, etc.

C. Performance Evaluation Methods of Classification Algo-
rithms

Outputs are then compared to understand the classifier
performances using: 1) percentages of correctly classified
instances (PCC); 2) mean absolute error (MAE); 3) root-
mean-squared error (RMSE); 4) confusion matrix; and 5)
computational time or CPU time (sec). For the confusion
matrix we considered True Positive (TP ) Rate, False Positive
(FP ) Rate, Precision (p), Recall (r) and F-measure (F ).

1) Percentage of correct classifications (PCC): The
classification algorithms are frequently evaluated using the
percentage of correct classifications (PCC) and this is denoted
as:

Ψ(i) =

{
1 if ai = pi
0 else

where ai denotes the actual value and pi denotes the predicted
value for the ith instance. Using Ψ(i), PCC is defined,

PCC =
n∑
i=1

Ψ(i)/N × 100%. (2)

2) Mean absolute error (MAE): In this analysis, we
calculated the average of the absolute errors: MAE, where is
the prediction forecasts and the true value. If the prediction in-
stances are p1, p2, . . . , pn and actual values are a1, a2, . . . , an.
Mean absolute error of testing data value is given by (pi −
ai)+, . . . ,+(pn − an)/n for n different predictions.

3) Root-mean-square error (RMSE): The root mean
squared error (RMSE) is a popular metric [13]. A large PCC
(i.e. near 100%) suggests a suitable classifier, while a regressor
should exist a low global error (i.e. RMSE close to zero).
Root-mean-square error (RMSE) =

√∑n
i=1(pi − ai)2/n for

n different predictions.

4) Confusion matrix: We also calculated the rate of each
classifier that we used to predict the actual plant sensitivity
and see if it changes using test data. Moreover, the weighted
average of precision (p), recall (r) and F-Measure (harmonic
mean) are obtained by using the 10-fold cross-validation
approach.

Prediction model is defined using Confusion Matrix [14]
as, 1) true positive, TP or correct hit (actual plant sensitivity
changes in instances that were correctly classified), 2) true
negative, TN or correct rejection (non-sensitivity changes in
instances that were not classified as changes), 3) false positive,
FP or the false alarm (non-sensitivity changes instances that
were classified as changes, Type II error), and 4) false negative,
FN or a miss (actual plant sensitivity changes in instances that
were not classified as changes, Type II error). For prediction,
in this paper, we also calculated other measures: 1) precision, p
is the percentage of predictive items that are correct where p =
TP/(TP+FP ); and 2) recall or sensitivity, r is the percentage
of correct items that are predicted where r = TP/(TP +
FN). The F -measure, the harmonic mean of p and r, can be
calculated as F = 2pr/(p+ r).

5) Time performance (CPU time): CPU time, in this case,
the time taken to build a model [14], was calculated for every
algorithm (both clustering and classification). Time taken to
build model was observed to identify their characteristics in
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the tool. Classification algorithms are used to train a data set
to build a model, and then the model can be used to allocate
unclassified records into one of the well-defined classes. A test
set is used to decide the accuracy of the model. Usually, the
given data set is divided into the training data and tests data
sets. The training set is used to build the model and test sets
are then used to validate it.

D. Clustering Algorithms

Clustering is the task of grouping a set of data instances
in a way that it assigns the data instances to the same group
(intra-cluster) that is more alike to each other than to those in
other groups (inter-clusters) [15]. Clustering is a common form
of unsupervised learning, where no human expert who has
assigned data to clusters ever before. Moreover, unsupervised
learning methods do not construct a hypothesis prior to this
analysis [16]. The clustering algorithms or techniques used in
this study are: Simple K-Means, Cannopy, EM , FathestFirst,
Filtered Clusterer and Hierarchical Clutterer. These are to
create clusters with a set of similar behavioral points that are
consistent internally.

1) K-Means Clustering: Here we use K-Means clustering
algorithm to discover sensitive plants to RF-EMF. Consider a
set of instances (attribute vector) x1, x2, . . . , xn and K clusters
where ~K = (K1,K2, . . . ,Kr). Denote the centre of the
clusters (centroids) as cl1, cl2, . . . , clK , where clK is centroid
of Kth cluster. Initially, each centroid will be randomly placed.
The Euclidean distance between ith data point, xi, in cluster
and cluster centre clj is arg minj ||xi−clj || to calculate nearest
centroid where xi is the ith data instance (attribute vector) in
Kth cluster. For each cluster j = 1, . . . ,K we calculate cluster
centre

clj(a) =
1

nj

∑
xi→cj

xi(a)

for a = 1, 2, . . . , d. Hence, each instance (e.g. attribute vector
X1) will be assigned to a cluster with the nearest centroid.
Each centroid will be moved to the mean of the instances as-
signed to it. The K-Means clustering algorithm [17] continues
until no data point changed the cluster membership, and then
we stop the algorithm as it has converged. After the clustering
is completed, we calculate the distance between a data point
and a cluster centroid.

2) Cannopy clustering: The canopy clustering algorithm
is an unsupervised pre-clustering algorithm that is usually
used as the pre-processing step for the Hierarchical clustering
algorithm or K-Means algorithm. This algorithm speeds up
clustering procedures on large data sets [18].

3) Expectation Maximization (EM) clustering: The EM
iteration swaps between performing an expectation (E) step
and a maximization (M ) step. During the step E it constructs a
function for the expectation of the log-likelihood using the cur-
rent estimate for the attributes. During the step M it calculates
attributes maximizing the expected log-likelihood discovered
during the step E [19]. This expectation maximization is used
to establish the distribution of variables and continues until it
gets the optimal value.

4) Filtered clustering: This clustering method uses an
arbitrary clusterer on data that has been approved through an
arbitrary filter. The structure of the filter is totally based on the
training data points and test data points that will be managed
by the filter without changing their structures [14].

5) Hierarchical clustering: This method [20] follows a
collection of closely related clustering algorithms that produce
a hierarchical clustering by merging two closest clusters until it
becomes a single set. This divides a data set into the sequence
of nested partitions.

E. Performance Evaluation Methods of Clustering Algorithms

We then evaluate the performance of how well each data
point places within its cluster using each clustering algorithm
by using three methods: 1) Cluster Sum of Squared Error
(Ess); and 2) Silhouette coefficient; and 3) Time performance
(CPU time). The evaluation is based on log-likelihood, if
clustering scheme creates a probability distribution [21].

1) Cluster Sum of Squared Error (Ess): Given a set of
data points, cluster sum of squared error (Ess) is given by

Ess =

K∑
i=1

∑
β∈si

||β − µi||2

where si set of objects in the ith cluster (i = 1, 2, · · · ,K) and
µi is the center point of the ith cluster, β is a data instances
in cluster si.

2) Calculate Optimal Number of Clustering using Sil-
houette Coefficient: Silhouette signifies to a method of ex-
planation and justification of consistency within clusters of
data and it is a quantitative method to evaluate the quality
of a clustering. The algorithm provides a concise graphical
representation of how well each data point places within
its cluster [22]. Data points to a high silhouette value are
considered satisfactory clustered, oppose to, the data points
with a low value could be outliers. This method works well
with K-Means clustering, and it is also used to define the
optimal number of clusters, hence, we use this method for
cluster evaluation.

III. MATERIALS AND METHODS

This section discusses materials and methods used for this
study: 1) classification framework; 2) data collection; 3) data
analysis; and 4) statistical analysis. Fig. 1 shows the steps by
step procedure to analyze the dataset (Algorithms 2 and 3), and
how machine learning could implement in Bioelectromagnetics
that are used. This is further explained in Algorithm 2 (an
adaptation of classification algorithm) and Algorithm 3 (an
adaptation of clustering Algorithm) for plant sensitivity to RF-
EMF. The list of symbols is defined in Table 1 and attributes
that we used for this analysis are shown in Table 2.

As explained in our previous review study (Halgamuge,
2016), in this study, physiological or morphological effects
of plants (bio-effects) or plant response (changed/unchanged
or effect/no effect) due to exposure to weak radiofrequency
radiation from mobile phones and base station is defined as
the changes in 1) plant growth rate; 2) seed germination rate
(primary shoot and root length); 3) thermographic imaging;
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4) carbohydrate metabolism; 5) oxidative damage/stress; 6)
gene expression; 7) DNA damage; 8) reactive oxygen species
(ROS); 9) cell function, enzyme activities; 10) mitotic index
and mitotic abnormalities; 11) mutation rates and genomic
stability; 12) pigmentation (chlorophyll concentration); and 13)
chromosomal aberrations and micronuclei.

TABLE 2. ATTRIBUTE DESCRIPTION USED FOR ANALYSIS

Attribute Symbol Type Description (Domain)
Plant p Nominal 29 different plant types

Frequency F Numeric 00 - 8000 (MHz)

SAR SAR Numeric 0 - 50 (W/kg)

Power Flux Density P Numeric 0 - 50 (W/m2)

Electric Field
Strength

E Numeric 0 - 100 (V/m)

Exposure Time T Numeric 0 - 6 years

Response R Binary Changed or Unchanged

The list of symbols is defined in Table 1 and attributes that
we used for this analysis are shown in Table 2.

A. Classification Framework

One of the key machine learning tasks is classification. The
main task of classification is learning a target function f which
maps each attribute sets and mapping an input attribute set Ωx
into its appropriate class label Ωc. Although the classification is
made by generating a predictive model of data, interpreting the
model normally offers information for distinguishing labeled
classes in data [13]. In this paper, we used 2 class variables:
plants growth responses that are changed or unchanged due to
non-thermal weak RF-EMFs.

Consider a data set D with N labeled and C classifiers.
Then the data split into two parts: training data (used to
train the classifier) and test data (used to estimate the error
rate of the trained classifier). Train data is used to learn the
algorithm and to test data set that will only be accessible
during the classifier prediction. Classifier is a mapping method
from unlabeled instances (new data points) to classes (in
our case, 2 class variables: changed or unchanged). Hence,
define a classifier as a function (f ) assigns a class variables
C ∈ Ωc = {c1, c2, . . . , cm} to objects described by a set of
attribute variables such that ~X ∈ Ωx = {X1, X2, . . . , Xn} (n
dimensional attribute vector), then map f : Ωx → Ωc, (xth
instance to cth classifier). The classification can be divided
into two phases: learning phase to train data and classification
phase for test data. A classifier h : Ωx → Ωc is a function that
maps an instance of Ωx to a value of Ωc. Now consider the
classifier or the hypothesis (hc) that can correctly predict the
classification of the new scenario and its a function that maps
an instance hc : Ωx → Ωc ( ~X → y).

The classifier is learned or becomes proficient from a data
set D consisting of samples, (Ωx,Ωc). Given the probability
P (cj | ~X) where x belongs to a certain class rather than a simple
classification. Here ~X is a n-dimensional attribute vector. Then
we map ~X → P (C| ~X), j = 1, . . . ,m

lim
j=1,...,m

P (cj | ~X)

where cj is the jth classifier. Finally, classification is defined
as

C = hc( ~X) = arg max
j=1,...,m

P (cj | ~X). (3)

Example: Consider attributes: frequency (f1), specific ab-
sorption rate (SAR1), power flux density (p1), electric
field strength (E1), exposure time (T1), biological material
(m1). So, consider two new data attributes vectors: ~X1 =
{f1, SAR1, p1, E1, T1,m1} and is the first instance and ~X2 =
{f2, SAR2, p2, E2, T2,m2} in the second instance. The binary
type of class variables, i.e., C = changed, unchanged will be
used. Now, considering the classifier that can correctly predict
the classification of the new scenario then the classification
could be selected as one of the two class variables (changed,
unchanged) to allocate to each instances ~X1 and ~X2, based
on how classification algorithm calculates the probabilities of
predicting that option.

B. Data Collection

The raw-data holds crucial information, such as patterns
and trends, that can be used to improve decision-making and
optimize the achievements. This paper used raw-data of plant
exposure from our previous review study [1] (extracted data
set from 45 peer-reviewed scientific publications (1996-2016)
with 169 experimental observations carried out in the scientific
literature, e.g. [23] and performed prediction extracting high
levels of knowledge from raw data using different classification
algorithms and performance evaluation methods. Moreover, we
used these data sets for clustering algorithms. The collected
dataset comprises of 8 attributes and 169 experimental case
studies or instances.

C. Data Analysis

In our analysis, we considered the class variables, attributes
(characteristics), classification algorithms, performance eval-
uation methods of classification algorithms, clustering algo-
rithms, performance evaluation methods of clustering algo-
rithms, as shown in Table 3.

D. Statistical Analysis

The statistical significance is a technique that does not
vary in outcome when applying it to the same dataset. All
studies require a statistically significant method to analyze
their data to come up with the final analysis of whether the
hypothesis of the radio frequency radiation affects the plants or
not. In order to detect whether or not a frequency may have an
effect on plant sensitivity, we performed clustering algorithms,
as outlined in Section II. We perform cluster analysis tests
to observe whether intra-cluster-variance (Vintra) of some
data points are smaller compared to inter-cluster-variance
(Vinter). We consider variability among mean of the sum
of squared distances within groups which are smaller than
distances between the groups. Hence, the null hypothesis (H0)
in this analysis is that there are no subsets of observed data
that are more alike to each other than the rest of the data,
in other words, cluster analysis tests whether intra-cluster-
variance (Vintra) of some data points are small compared
to inter-cluster-variance (Vinter). The alternative hypothesis
(HA) is that the probabilities are statistically different. In
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Fig. 1. Plant sensitivity to RF-EMF analysis and prediction tool (Tables 2, 3, and 4)

TABLE 3. LIST OF PARAMETERS USED IN THE PROPOSED RF-EMF
DATA ANALYSIS

Type Number Description

Data Instances 169 Data from 169 published studies
gathered in our previous work [1]

Class variables 2 Changed, Unchanged

Attributes 6 Plant, frequency, SAR, power flux
density, electric field strength, expo-
sure time

Classification
algorithms

8 Bayes net, NaiveBayes, Decision
Table, JRip, OneR, J48, Random
Forest and Random Tree

Performance evalua-
tion methods of clas-
sification algorithms

5 Percentage of Correct Classifica-
tions (PCC), Mean absolute er-
ror (MAE), Root-mean-square error
(RMSE), Confusion Matrix, Time
performance (CPU time)

Clustering algorithms 6 Simple K Mean, Cannopy, EM ,
FathestFirst, Filtered Clusterer, Hi-
erarchical Clutterer

Performance evalua-
tion methods of clus-
tering algorithms

2 Cluster Sum of Squared Error
(Ess), Time performance (CPU
time)

Algorithm 1 : Optimal Attribute Selection
1: Load raw Dataset D
2: Split Data into ⇒ Training : Test
3: Load ~X ∈ Ωx = {f, SAR,P,E, T, p} (complete attribute

vector)
4: Find all compulsory attributes ⇒ in-vitro experiments
5: Select sub-set of attribute vector ~xj < ~X (e.g. Case A,

Case B)
6: Select classification algorithm
7: Perform attribute selection protocol to select subgroups

of attributes
8: for ∀ ~xj do
9: Run classification algorithm

10: Evaluate both test modes do
11: Select Test mode: K-fold cross-validation
12: Select Test mode: Data Percentage Split Criteria
13: end for
14: Select attribute set ⇒ Training : Test score is minimized
15: Allocate model type (Case A, Case B) for each attribute

vector, ~X
16: End
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TABLE 4. EXPERIMENTAL PROTOCOL FOR SELECTION OF SUBGROUPS OF APPROPRIATE ATTRIBUTES (ALGORITHM 1): THE VARIOUS SCENARIOS OF
ATTRIBUTES SELECTION (PARAMETER) FOR CLASSIFICATION AND CLUSTERING ANALYSIS

Model
Type

Plant Frequency SAR Power
Flux
Density

Electric
Field
Strength

Exposure
Time

Case A Yes Yes Yes Yes Yes Yes

Case B Yes Yes Yes Yes Yes Yes

Case C - Yes Yes Yes Yes Yes

Case D Yes Yes - Yes Yes Yes

Case E Yes Yes Yes Yes - Yes

Case F - Yes - Yes - Yes

Case G - Yes Yes Yes Yes Yes

Case E Yes Yes - Yes Yes Yes

Case I Yes Yes Yes Yes - Yes

Case J Yes Yes - Yes Yes Yes

this analysis, 95% of confidence level (p < 0.05) to estimate
statistical significance. The null hypothesis is rejected if y <
0.05 i.e. at confidence level (p < 0.05). This study we use
cluster sum of squared error (Ess), hence, the hypothesis is
given as

H =

{
Ho if Vintra of Ess >> Vinter of Ess
HA otherwise.

The MATLAB (MathWorks Inc., Natick, MA, USA) R2015b,
one-way ANOVA procedure in SPSS Statistics (Version 23)
and Weka tool (Waikato Environment for Knowledge Analysis,
Version 3.9) have been used to carry out analysis on a computer
with an Intel Core Intel Core i7 CPU.

IV. RESULTS

This section briefly explains the results and the aim of
this study to develop a tool using machine learning to analyze
data in bioelectromagnetics domains. In order to measure
plant sensitivity to non-thermal weak RF-EMF, the different
classification and clustering algorithms are used. We have used
extracted data from the 45 peer-reviewed scientific publications
published between 1996-2016 with 169 experimental case
studies carried out in the scientific literature with 6 attributes
and 2 class variables to analyze the prediction performance
of algorithms. For our evaluation, we used 8 classification
algorithms specifically using 2 test modes, 5 performance
evaluation methods of classification algorithms, 6 clustering
algorithms, 2 performance evaluation methods of clustering
algorithms.

A. Attribute Selection

Our proposed attribute selection protocol (ten different
cases, as shown in Table 4) and performed it under 10 dif-
ferent scenarios to observe the highest important attribute that
demonstrates certain aspects of the proposed method. Tables
4 and 5 demonstrates Case C (frequency, SAR, power flux
density or electric field strength and exposure time) attribute
group is the more appropriate parameter group to predict most
correctly classified instances. The optimal attribute selection
protocol is beneficial to identify key parameters that should be
used in in-vitro laboratory experiments.

Algorithm 2 : Adaptation of Classification Algorithm for Plant
Sensitivity to RF-EMF

1: Collect raw dataset D with C classifiers
2: Select attribute vector, ~X ∈ Ωx = {f, SAR,P,E, T, p}
3: Select class variables C ∈ Ωc = {c1, c2, . . . , cm}
4: Select classification algorithms, a1
5: Perform attribute selection protocol to select subgroups of

attributes
6: Repeat
7: for all attribute selection protocols Class A to Class J do
8: for classification algorithms a1 = 1, 2, 3, . . . , p do
9: for both test modes do

10: Select Test mode: K-fold cross-validation
11: Select Test mode: Data Percentage Split Criteria
12: for all dataset D do
13: Split Data into ⇒ Training : Test
14: Perform classification algorithm
15: Assign class variable using classifier to each attribute

vector, h : Ωx → Ωc
16: end for
17: end for
18: Compute Percentage of Correct Classifications (PCC)
19: Compute Mean absolute error (MAE)
20: Compute Confusion Matrix
21: Compute Time Performance (CPU time)
22: if PCC < 80%
23: else if MAE > 1
24: else if CPU Time > 1 sec then
25: stop
26: end for
27: Select next attribute set
28: end for
29: until there is attribute selection protocol to test

B. Classification

In this subsection, we further analyze RF-EMF sensitivity
it caused on the plants using classification algorithms. Ten test
cases (as in Table 4) were designed to demonstrate certain
aspects of the proposed method. After carrying out the Multi-
variate Analysis of plants, six classification algorithms (Bayes
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Algorithm 3 : Adaptation of Clustering Algorithm for Plant
Sensitivity to RF-EMF

1: Collect raw dataset D
2: Select attribute vector, ~X ∈ Ωx = {f, SAR,P,E, T, p}
3: Select clustering algorithms, a2
4: Perform attribute selection protocol to select subgroups of

attributes
5: Repeat
6: for all attribute selection protocols Class A to Class J do
7: for classification algorithms a1 = 1, 2, 3, . . . , q do
8: Compute optimal number of clusters using silhouette

coefficient
9: Calculate cluster centroid, cl1, cl2, . . . , clK where

arg minj ||xi − clj ||
10: Calculate distances between data points and a cluster

centroid
11: for No of Clusters K = 1, 2, . . . ,K do
12: Compute Cluster Sum of Squared Error (Ess)
13: Compute Time Performance (CPU time)
14: if Vintra of Ess >> Vinter of Ess then
15: H0

16: else HA

17: end if
18: end for
19: end for
20: Select next attribute set
21: end for
22: until there is attribute selection protocol to test

Network, J48, JRIP, Naive Bayes, OneR and PART) were used
to make the best predictions for the given dataset. In order to
test each algorithm, mainly three different testing techniques
were used: using 1) full training set; 2) cross-validation with
10 folds; and 3) percentage split. Table 5 shows the correctly
classified percentages of each classification algorithm.

This study has found that the Random Forest algorithm
shows a high percentage of accuracy by 95.26% (0.084 error)
with only 4% of fluctuation among algorithm measured. We
also used Nave Bayes algorithm and found the least classifi-
cation percentage. Hence, we removed it from tables. We de-
veloped an optimal attribute selection protocol and performed
it under 10 different scenarios to observe the most important
attribute (parameter) for classification and clustering. This is
vital to identify key parameters that are highly significant in
the in-vitro laboratory experiments. The protocol of various
scenarios is described in Table 4. The optimal attribute selec-
tion protocol is vital to identify key parameters that are highly
significant when designing the in-vitro practical standardized
experimental protocols.

1) Changed or unchanged prediction: k-fold cross-
validation of raw data method: This work has used k-fold
cross-validation (k =10) method. This method splits the data
into 10 equal parts and then uses the first 9 parts for training,
and final fold is for testing purposes. The classification model
performance uses a confusion matrix-10-folds cross-validation
method (Table 6) shows a comparative study between the
classifiers to obtain which classifier is the best for the given
dataset. Computational time seems to be low due to the
smaller sample size. The obtained results reveal that (Table

5) the Random Forest algorithm is the most accurate and most
suitable classification algorithm to be used in effect of the plant
for their further data analysis and predictions. Random Forest
classification algorithm outperforms with highest classification
accuracy by 95.26% (0.084 error) followed by JRip with
94.08% (0.235 error) and Bayes Net with 94.08% (0.2349
error) (Table 5). Table 6 shows a comparative study between
the classifiers. The weighted average values of changed or
unchanged prediction were considered by using “Case C”
parameter selection, as shown in Table 4.

2) Changed or unchanged prediction: percentage split
of raw data method: The dataset was verified by splitting
the data into different percentages whereas Train%: Test%.
In this technique, the model will be trained and constructed
with a certain percentage of data and then tested with the
rest of the percentage. Table 7 shows the correctly classified
percentage of each classification algorithm. The bold values are
marked as the best within the classification type. According
to this analysis, Bayes net and Random Forest algorithms
show the high percentage of accuracy. Our results suggest to
disregard differentiating plant type (i.e. tomato, soybean) then
the classification prediction accuracy is the highest (Table 5).
The classification results (PCC values (%) and RMSE values
are in the bracket, underline is the best model, bold values are
the best within the classification type (Table 7). The “Case C”
data set has been used for this analysis (Test mode: Percentage
Split test method (Train Data: Test Data)).

Considering the classification of algorithms, Random For-
est gives the best results with a strong connection among
attributes. Nevertheless, the overall of all eight algorithms
demonstrates good results. For instance, results show that
the fluctuation among the correctly classified percentages of
algorithms is less than 4%.

C. Clustering

In this sub-section, we try to find data points from our
datasets with similar behaviors in groups. Six clustering algo-
rithms were used to cluster the data sets from 169 experimental
records. Evaluation of different clustering algorithms is shown
in Table 8. It is visually clear that there are three distinct
clusters. Moreover, we visualized the potential clusters using
Simple K-Means clustering algorithm. The K-Means is the
simplest clustering algorithm among all the clustering methods.
Hence, we used it for visualizing the clusters. Table 8
shows 1) the cluster instances and percentages of 2 clusters;
2) CPU time, a number of iterations, log-likelihood value, and
cluster sum of squared error (Ess) for the different clustering
algorithms. The optimal number of clusters were obtained
using Silhouette value. Our analysis gives optimal results
when K = 3 (Fig. 2 and 3). Cluster sum of squared error
(Ess) for K-Means clustering was 148.08 and Filtered cluster
method also shows the same error. Log-likelihood value for
Expectation Maximization clustering (EM) method was -37.42.

Table 9 shows Duckweed is the most common plant species
that is very sensitive to RF-EMFs in any given number of
clusters. We also observed that when K = 4, Duckweed
species repeatedly shows the sensitivity to RF-EMF in more
than one cluster. Using optimal clustering (K = 3, silhouette
plots (Fig. 2 and 3), our data showed Duckweeds, Mungbean,
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TABLE 5. CLASSIFICATION RESULTS (PCC VALUES (%) AND RMSE VALUES ARE IN BRACKET, UNDERLINE IS THE BEST MODEL, BOLD VALUES
ARE THE BEST WITHIN THE INPUT SETUP. TEST MODE: 10-FOLD CROSS VALIDATION METHOD)

Classification
Type

Case A Case B Case C Case D Case E Case F Case G Case H Case I Case J

Bayes net 93.49% 92.89% 94.08% 93.49% 94.08% 93.49 % 87.57% 92.89% 92.89% 92.89%
(0.2370) (0.2447) (0.2349) (0.237) (0.2298) (0.2295) (0.2587) (0.2447) (0.2385) (0.2447)

NaiveBayes 73.96% 55.62% 59.17% 77.51% 92.89% 88.16% 44.37% 54.43% 90.53% 54.43%
(0.4204) (0.5216) (0.5201) (0.408) (0.2654) (0.3300) (0.6212) (0.5188) (0.2947) (0.5188)

Decision Table 92.31% 92.89% 93.49% 92.30% 92.30% 94.08% 94.08% 92.899% 92.89% 92.89%
(0.2522) (0.2431) (0.2465) (0.2522) (0.2524) (0.2377) (0.2375) (0.2431) (0.2433) (0.2431)

JRip 94.08% 94.08% 94.08% 92.89% 94.67% 94.67 % 94.08% 94.08% 94.08% 94.08%
(0.2345) (0.2347) (0.235) (0.2525) (0.2224) (0.2234) (0.2355) (0.2347) (0.2351) (0.2347)

OneR 88.16% 88.16% 93.49% 88.16% 88.16% 94.67 % 94.67% 88.16% 88.16% 88.16%
(0.344) (0.344) (0.2551) (0.3440) (0.3440) (0.2308) (0.2308) (0.344) (0.3440) (0.344)

J48 93.49% 94.67% 92.30% 93.49% 93.49% 94.67 % 94.67% 94.67% 93.49% 94.67%
(0.2457) (0.2233) (0.2686) (0.2457) (0.2469) (0.2224) (0.2224) (0.2233) (0.2461) (0.2233)

Random Forest 94.08% 94.08% 95.26% 94.08% 94.08 % 94.67 % 94.67% 93.49% 94.08% 93.49%
(0.2222) (0.2243) (0.084) (0.2251) (0.2232) (0.2291) (0.2272) (0.2269) (0.2263) (0.2269)

Random Tree 93.49% 92.89% 92.89% 94.08% 94.67 % 91.12 % 91.12% 93.49% 94.08% 93.49%
(0.2478) (0.2595) (0.2556) (0.2382) (0.2249) (0.2858) (0.2908) (0.2475) (0.2374) (0.2475)

TABLE 6. CLASSIFICATION MODEL PERFORMANCE USING CONFUSION MATRIX (WEIGHTED AVERAGE). TEST MODE: 10-FOLD CROSS VALIDATION
METHOD USING CASE C DATA SET

Classifier PCC (%) MAE RMSE TP Rate FP Rate Precision
(p)

Recall (r) F-
Measure
(F )

CPU
Time
(sec)

Bayes net 93.49% 0.0725 0.2345 94.1% 37.3% 93.6% 94.1% 93.7% 0.02

NaiveBayes 76.33% 0.2681 0.4068 59.2% 30.7% 86.7% 59.2% 67.2% 0.00

Decision Table 92.30% 0.1263 0.2521 93.5% 47.7% 92.9% 93.5% 92.7% 0.05

JRip 94.08% 0.0980 0.2345 94.1% 42.5% 93.6% 94.1% 93.5% 0.01

OneR 89.94% 0.1006 0.3172 93.5% 47.7% 92.9% 93.5% 92.7% 0.00

J48 93.49% 0.1092 0.2458 92.3% 47.9% 91.5% 92.3% 91.7% 0.02

Random Forest 94.08% 0.0824 0.2242 95.3% 31.9% 95.0% 95.3% 95.0% 0.20

Random Tree 91.71% 0.0841 0.2786 92.9% 37.4% 92.6% 92.9% 92.7% 0.00

TABLE 7. CLASSIFICATION RESULTS (PCC VALUES (%) AND RMSE VALUES ARE IN BRACKET, UNDERLINE IS THE BEST MODEL, BOLD VALUES
ARE THE BEST WITHIN THE CLASSIFICATION TYPE. TEST MODE: PERCENTAGE SPLIT TEST METHOD (TRAIN DATA: TEST DATA) USING CASE C

DATASET)

Classification
Type

Train
90%:
Test 10%

Train
80%:
Test 20%

Train
70%:
Test 30%

Train
60%:
Test 40%

Train
50%:
Test 50%

Train
40%:
Test 60%

Train
30%:
Test 70%

Train
20%:
Test 80%

Train
10%:
Test 90%

Bayes net 88.23% 94.12% 94.12% 94.12% 94.04% 94.05% 94.91% 95.55% 94.07%
(0.2971) (0.2801) (0.2631) (0.2503) (0.2454) (0.2422) (0.2249) (0.2260) (0.2341)

NaiveBayes 64.70% 73.52% 72.54% 70.58% 72.61% 76.23% 94.06% 93.33% 94.07%
(0.4487) (0.4641) (0.5082) (0.4849) (0.4568) (0.4351) (0.2489) (0.237) (0.2428)

Decision Table 94.11% 94.11% 94.11% 94.11% 92.85% 93.06% 94.06% 94.07% 90.13%
(0.2473) (0.2480) (0.2473) (0.2379) (0.2570) (0.2543) (0.2351) (0.2326) (0.3059)

JRip 94.11% 94.11% 94.11% 92.64% 92.85% 93.06% 94.06% 94.07% 94.07%
(0.2359) (0.2407) (0.2363) (0.2690) (0.2584) (0.2565) (0.2369) (0.2395) (0.2433)

OneR 94.11% 94.11% 94.11% 94.11% 92.85% 93.06% 94.06% 94.07% 94.07%
(0.2425) (0.2425) (0.2425) (0.2425) (0.2673) (0.2633) (0.2436) (0.2434) (0.2433)

J48 94.11% 94.11% 94.11% 92.64% 94.04% 94.05% 92.37% 94.07% 86.18%
(0.2353) (0.2358) (0.2351) (0.2466) (0.2390) (0.2417) (0.2762) (0.2395) (0.3717)

Random Forest 94.11% 94.11% 94.11% 92.64% 92.85% 93.06% 93.22% 94.07% 95.39%
(0.2469) (0.2471) (0.2390) (0.2349) (0.2375) (0.2448) (0.2322) (0.2209) (0.2245)

Random Tree 88.23% 94.11% 88.23% 92.64% 90.47% 92.07% 94.06% 93.33% 93.42%
(0.2953) (0.2425) (0.3430) (0.2716) (0.3124) (0.2743) (0.2473) (0.2553) (0.2484)
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TABLE 8. CLUSTERING RESULTS (PERCENTAGE OF INSTANCES IN EACH CLUSTER, CPU TIME, LOG LIKELIHOOD, CLUSTER SUM OF SQUARED
ERROR (Ess) USING CASE C DATA SET)

Clustering Algorithm Cluster 1 Cluster 2 Cluster 3 CPU
Time

Log
Likelihood

Ess

Simple K Mean 55 (33%) 65 (38%) 49 (29%) 0.05 - 148.08

Cannopy 66 (39%) 70 (41%) 33 (20%) 0.01 - -

EM 17 (10%) 62 (40%) 85 (50%) 0.06 -37.42 -

FathestFirst 154 (91%) 13 (8%) 2 (2%) 0.01 - -

Filtered Clusterer 55 (33%) 65 (38%) 49 (29%) 0.01 - 148.08

Hierarchical Clusterer 165 (98%) 3 (2%) 1 (1%) 0.10 - -
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Fig. 2. Silhouette coefficient to determine optimal number of clusters -
Calculating the silhouette plots.
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Fig. 3. Silhouette coefficient to determine optimal number of clusters - The
optimal Silhouette value is obtained when K = 3.

TABLE 9. COMPARISON OF DATA ANALYSIS FROM OUR PREVIOUS
METHOD AND SIMPLE K-MEAN CLUSTERING USING SAME DATASET [1]

USED BY OUR PREVIOUS STUDY

Study/ No of Clusters Sensitive Plants for RF-EMF

Analysis from our previous
Study [1] where p < 0.05

Duckweeds, Mungbean, Pea,
Broadbean, Maize, Fenugreek,
Roselle, Tomato, Onions

K-Mean clustering K = 1 Duckweeds

K-Mean clustering K = 2 Duckweeds, Mungbean

K-Mean clustering K = 3,
Optimal clustering using sil-
houette plots (Fig. 2 and Fig.
3), p < 0.009

Duckweeds, Mungbean, Pea

K-Mean clustering K = 4 Duckweeds, Maize, Pea, Mung-
bean

K-Mean clustering K = 5 Duckweeds*, Mungbean, Roselle,
Onions

K-Mean clustering K = 6 Duckweeds*, Mungbean, Roselle,
Onions, Fenugreek

K-Mean clustering K = 7 Duckweeds*, Mungbean, Roselle,
Broadbean, Maize, Fenugreek

K-Mean clustering K = 8 Duckweeds*, Mungbean, Pea,
Broadbean, Maize, Fenugreek,
Roselle

Pea species are more sensitive to RF-EMFs (p < 0.0001).
These values were then compared with the results from our
previous review study [1] and observed similar behaviors. In
our previous review, we found Maize, Roselle, Pea, Fenugreek,
Duckweeds, Tomato, Onions and Mungbean plants are more
sensitive to RF-EMF (p < 0.0001). In this paper, we used
simple K-Means clustering algorithm and observed Pea, Mung-
bean, and duckweeds plants are more sensitive to RF-EMF
(p < 0.0001).

To interpret the clusters, we compared our previous anal-
ysis of electric field strength values (effect or no effect) for
different frequencies (raw data from 45 case studies) (Fig.
4(a)) [1] and clustering using K-mean algorithm (Fig. 4(b)). As
clearly shown in the figure, we observed the robust connection
using the K-mean clustering and it is clearly grouped no-effect
data instances. This proves that K-mean clustering algorithms
can be successively used in Bioelectromagnetics to observe
which frequency and which electric fields strengths are more
sensitivity (bio-effects) or more effective on plants (Fig. 4).
Hence, this paper provides the useful insights about under
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Fig. 4. K-Mean clustering algorithm to data from plants exposed to RF radiation in experiments that reported results (plant sensitivity response
(changed/unchanged or effect/no effect)) from 45 publications describing 169 experimental observations to detect the plant sensitivity changes in plants due to
the non-thermal RF-EMF effects from mobile phones and base station radiation. Please note that due to identical exposure conditions there were overlaps of data
points. This figure demonstrates the robust connection using the K-mean clustering and it is clearly grouped no-effect data instances. This shows that K-mean
clustering algorithms can be successively used to observe which frequency and which electric fields strengths are more sensitivity (bio-effects) or more effective
on plants.

what conditions will RF-EMF exposure of given plant species
may not produce an effect. Ultimately, the observational data
for this study agrees with our earlier study, and suggest that
Machine learning is an important tool, as it verifies some
unexplained correlations in bioelectromagnetics domain.

V. DISCUSSION

In order to preserve green living and biodiversity, one of
the foremost ground-level concerns is environmental damage
and its effects on plants. Modelling plant sensitivity due to RF-
EMF is an important task for both agriculture sector and for
the epidemiologist. It is also a beneficial tool to assist a better
understanding of this phenomenon and ultimately advance it.
On the other hand, mobile phone technology has exhibited
remarkable growth in recent years, heightening the debates
on the impact and changes it causes in plant growth due to
non-thermal weak radio-frequency electromagnetic fields (RF-
EMF). Nonetheless, mobile phone technology is updated and
upgraded every day. Consequently, the importance of com-
bining the importance of conserving plants, and technology,
guarantees sustainability by identifying the effects of RF-EMF
on plant species. As the diversity changes and the requirement
of its understanding increase, at the same time of technology,
it assists people to find more precise responses quicker than
ever. Hence, using the technology, machine learning algo-
rithms gives a better understanding of diversity. This study
has developed a prediction tool to investigate the effect of
RF-EMF to plant species in order to identify key variables
that affect plant sensitivity (bio-effect). This approach shows
changed/unchanged levels by using big data analytics and
machine learning concept in bioelectromagnetics domain to
reveal hidden patterns and unknown correlations. We used raw-
data of plant exposure from our previous work [1] (extracted
data from 45 peer-reviewed scientific publications published

between 1996-2016 with 169 experimental case studies carried
out in the scientific literature) and performed predictions,
obtaining high-level of knowledge from raw data.

The number of mobile phones usage boosted in a drastic
way due to the 1) decreasing communication cost; 2) excessive
usability of web services, send and receive emails; and 3) using
services from entertainment, education, banking, and medicine.
With the remarkable advancement in the use of this technology,
the controversy remains to exists about the physiological and
morphological or bio-effect in the plants due to non-thermal
weak RF-EMF effects from mobile phones and base station
radiation. Our results suggest that a good predictive accuracy
can be succeeded, if the information is provided about the
frequency, SAR, power flux density, electric field strength,
and exposure time. Hence, optimal attribute selection protocol
to identify key parameters that are highly significant when
designing the in-vitro practical standardized experimental pro-
tocols. Nevertheless, for the field of bioelectromagnetics and
medical science accuracy is the key objective as they deal with
sensitive data and a single error that can lead to the wrong
conclusion. The advancement of Information Technology, and
interest in big data analytics, machine learning has led to
exponential growth of business organizational databases. This
data holds beneficial information, such as trends and patterns,
consequently, can be utilized to improve decision making that
inadvertently optimizes success. Experts overlooked important
details from billions of data which are quite challenging, thus,
alternatively, using automated tools to analyze raw data and
obtain stimulating high-level information for the decision-
maker is quite significant [3].

Machine learning concepts have also been used in many
research communities, including medicine [24], [25], crime
prediction [26] and education [3]. However, no single study
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exists which adequately covers machine learning concept in
bioelectromagnetics domain. Due to attributes that influence
(in our case, attributes are: frequency, SAR, power flux density,
electric field strength, exposure time and plant type) to RF-
EMF effects on plant sensitivity, it is very challenging to
predict the growth of changes with high accuracy. On the
other hand, machine learning concepts have not been generally
accepted due to their inherent stochastic behavior [24]. Conse-
quently, the results may not provide a sufficient reproducibility
to adequately facilitate thoughtful scientific studies, as machine
learning techniques use the probability approach. Therefore,
it allows small fluctuation of incorrectly classified instances
in different classifiers. However, with the advancement of
technology, the reproducibility became sufficient to permit
serious scientific studies [24]. On the other hand, advancement
of the modern technology, intelligent data analysis will show a
vital role due to the vast amount of information produced and
stored [24]. To accommodate that, current machine learning
algorithms provide sophisticated tools that can considerably
help the science community to uncover new relationships in
the data and its behavior.

Results revealed attributes set selected using the developed
algorithm is consistent with in-vitro experiments. Once the raw
data is fed, using K-Means clustering algorithm, demonstrated
that the Pea, Mungbean, and Duckweeds plants are more
sensitive to RF-EMF and statistical analysis revealed the same
results evidencing precision (p < 0.0001). The cluster sum
of squared error (Ess) has been used to evaluate how well
all the data points are clustered. To support these results, our
previous research [1] found Maize, Roselle, Pea, Fenugreek,
Duckweeds, Tomato, Onions, and Mungbean plants are more
sensitive to RF-EMF (p < 0.0001). Additionally, this study
shows that K-mean clustering algorithm can be successively
used to predict what conditions will RF-EMF exposure given
to plant species produce has an effect. Another possibility to
obtain statistical significance (p-value) is using the Silhouette
coefficient. We use the Silhouette coefficient to estimate the
optimal number of clusters. Then, the ratio between intra-
cluster-distances: inter-cluster-distances should be in-between
−1 to +1. Clustering algorithms have been extensively used
by research in areas for energy minimization [27], [28] that
could also have been trained in this area as well. Similar to
our results, the findings of previous research [29], [30] show
that extensive thoughtful and computational attributes that can
be used with K-Means clustering approach using medical data
could be ideal. Their results have also suggested that K-Means
have the potential to classify medical data.

Our results show that in bioelectromagnetics domain, the
various classifiers are accomplished the same way, and the
similar outcomes were obtained by another group of physicians
in medical data obtained similar outcomes [24]. However, we
cannot generalize this as we had a small sample size. In
different classifiers who have different explanation capability
[24], suitable for each classifier which could depend on the
explanation that fits our own data. We used 7 different clas-
sification algorithms to select the best classifier for our data.
This idea was supported by a previous research. Selecting a
single best classifier that could be an option, nonetheless, the
best solution could also be to use all of them and combine
their judgment when solving a new problem [24].

In bioelectromagnetics domain, obtaining of SAR data
is generally difficult and time-consuming. Therefore, it is
appropriate to have a classifier that is able to consistently
identify with a less amount of data about some attributes. Our
results show that getting the appropriate subgroup of attributes
could play a significant role in obtaining the high percentage
of correctly classified instances. This observation was also
supported by [2], whereas, selecting an appropriate subgroup
of attributes (parameters or characteristics) is a key thing when
using machine learning algorithms [2], as the selection is
completed during the learning.

Despite its benefits, there is no single study that adequately
covers machine learning concept in bioelectromagnetics do-
main yet, nonetheless, in the future, this technique might play
a vital role to predict the potential effects of RF-EMF in
order to study the possible interaction mechanism between RF-
EMFs and living beings. Though this research was conducted
only for in-vitro studies, it can be applied to in-vivo and
epidemiology studies as well. Hence, as a direct outcome
of this research, more efficient RF-EMF exposure prediction
tools can be developed, in order to improve the quality of
epidemiological studies and the long-term laboratory experi-
ments using whole organisms (in-vivo). As a direct outcome of
this research, more efficient prediction tools can be developed,
reducing the environmental exposure and enhancing the quality
of life using more raw data. More research is essential in
order to understand whether and how some attributes (e.g.
frequency, SAR, exposure time, power flux density) affect the
prediction of effects/no-effects in plants. The difference be-
tween classification and clustering may not seem pronounced.
Nevertheless, these two algorithms are fundamentally different,
as the classification is a form of supervised learning while
clustering is a form of unsupervised learning. In general,
classification and clustering display to be a promising tool for
weak radio-frequency radiation effect prediction on plants.

Machine learning technique also could be used to in-
corporate data from field observations in which appropri-
ate variables are taken with an identical methodology (e.g.
field strength, SAR, radiation frequency, damage types found,
species affected, distance to radiation source etc.), however,
more experiment records are needed for that analysis. Even
without a thorough knowledge of plants or RF-EMF, it is
promising to use machine learning algorithm in bioelectromag-
netics domain. Nonetheless, its limitation is that it demands a
large number of data to provide adequate results [2] and the
quality of the predictions depends on the dataset. However, the
results obtained by our study shows only 4% of fluctuation
among correctly classified percentage, proving that the results
are significant. Besides, the sample size of reported 169 ex-
perimental case studies, perhaps low significant in a statistical
sense, nonetheless, this analysis still provides useful insight of
using Machine Learning in Bioelectromagnetics domain. This
investigation should be further analyzed with a bigger sample
size (more data) in the future.

VI. CONCLUSION

Using mobile phone has triumphed as it has become
a crucial part of our society, as it serves as a social and
informative tool. Big data analytics and machine learning
techniques allow a high-level extraction of awareness from

www.ijacsa.thesai.org 234 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 11, 2017

raw data which offers remarkable opportunities to predict
the future trends and outcomes of the impact of handheld
devices and its impacts on living beings. There is no single
study that adequately covers machine learning concept in
bioelectromagnetics domain. However, this paper has analyzed
prediction models and their accuracies in order to identify
the best classification algorithm to be used in analyzing data
that shows environmental effects from mobile phones and
base station radiation on plants. This analysis has helped
us understand different types of attributes that have shown
effects and impact on plants. Random Forest algorithm stands
out producing better prediction among all the classification
algorithms. Using K-Means clustering algorithm we found,
Pea, Mungbean, and Duckweeds plants are more sensitive to
RF-EMF. Moreover, this study shows that K-mean clustering
algorithms can be successively used to predict conditions will
RF-EMF exposure of given plant species are affected by
RF-EMF (bio-effects). Moreover, this paper also illustrates
the development of optimal attribute selection protocol to
identifies key parameters that should be used when designing
the in-vitro practical standardized experimental protocols. Our
results show that clustering and classification are, in general,
a promising prediction tool which can be practically used to
predict plant effect changes due to non-thermal weak RF-EMF.
Although this research was conducted only data from in-vitro
studies, it can be applied to in-vivo and epidemiology studies.
Hence, as a direct outcome of this research, more efficient
RF-EMF exposure prediction tools can be developed, in order
to improve the quality of epidemiological studies and the
long-term laboratory experiments using whole organisms (in-
vivo). Machine learning is an important tool, to validate some
mysterious occurrences in bioelectromagnetics domains, which
is not used by the community, so far, however, in the future,
this might play a fundamental role to predict the potential
effects of environment on plants and to study the possible
interaction mechanism between RF-EMF and living being.
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