
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

95 | P a g e  

www.ijacsa.thesai.org 

Model-based Pedestrian Trajectory Prediction using 

Environmental Sensor for Mobile Robots Navigation

Haruka Tonoki 

School of Science for Open and 

Environmental Systems 

Keio University 

Yokohama, Japan 

Ayanori Yorozu 

Keio Advanced Research Centers 

Keio University 

Yokohama, Japan 

Masaki Takahashi 

Department of System Design 

Engineering 

Keio University 

Yokohama, Japan

 

 
Abstract—Safety is the most important to the mobile robots 

that coexist with human. There are many studies that investigate 

obstacle detection and collision avoidance by predicting 

obstacles’ trajectories several seconds into the future using 

mounted sensors such as cameras and laser range finder (LRF) 

for the safe behavior control of robots. In environments such as 

crossing roads where blind areas occur because of visual barriers 

like walls, obstacle detection might be delayed and collisions 

might be difficult to avoid. Using environmental sensors to detect 

obstacles is effective in such environments. When crossing roads, 

there are several passages pedestrian might move and it is 

difficult to depict going each passage in the same movement 

model. Therefore, we hypothesize that a more effective way to 

predict pedestrian movement is by predicting passages 

pedestrian might move and estimating the trajectories to the 

passages. We acquire pedestrian trajectory data using an 

environmental LRF with an extended Kalman filter (EKF) and 

construct pedestrian movement models using vector auto 

regressive (VAR) models, which pedestrian state is consisting of 

the position, speed and direction. Then, we test the validity of the 

constructed pedestrian movement models using experimental 

data. We narrow down the selection of a pedestrian movement 

model by comparing the prediction error for each path between 

the estimated pedestrian state using an EKF, and the predicted 

state using each movement model. We predict the trajectory 

using the selected movement model. Finally, we confirm that an 

appropriate path model that a pedestrian can actually move 

through is selected before the crossing area and that only the 

appropriate model is selected near the crossing area. 

Keywords—Prediction of Human Movement; Service Robots; 

Vector Auto Regressive Models; Kalman Filter; Collision 

Avoidance 

I. INTRODUCTION 

Various service robots are expected to coexist with humans 
in real environments. Examples include guidance, 
communication, and assistant robots. These robots must 
approach a service user and avoid other humans according to 
the situation. Especially, for the safe behavior control of 
autonomous robots that coexist with humans, there are many 
studies that investigate obstacle detection and collision 
avoidance using mounted sensors such as cameras and laser 
range finder. For safety and collision avoidance, several 
methods have previously been proposed to allow autonomous 
robots to avoid local collisions reactively: potential field 
methods [1, 2], social force methods [3], dynamic window 
approaches [4-6], and vector field approaches [7, 8]. 

Furthermore, collision avoidance methods for dynamic 
obstacles such as pedestrian have been proposed which 
function by predicting obstacles’ trajectories several seconds 
into the future and making decisions based on these predicted 
trajectories. At present, trajectory prediction methods are 
important because of the risk of a collision between obstacles 
and the robot when the trajectory prediction is not sufficiently 
accurate. With this in mind, this study focused on predicting 
the dynamic trajectories of pedestrians. 

Several methods for predicting pedestrian trajectories 
assume that pedestrians move with constant speed [9–13]. This 
assumption may only be effective for short-term predictions 
because pedestrian trajectories can also change under the 
influence of the environment. Therefore, some pedestrian 
trajectory prediction methods considering pedestrian 
movement tendencies using pedestrian trajectory data that are 
observed in advance have been proposed. 

Those methods predict the trajectory using the current state 
(pedestrian position and velocity) or the current and previous 
states. However, a pedestrian’s trajectory changes with each 
step near crossing areas, for example when crossing roads at a 
crossing point. It may be more effective to consider the 
pedestrian’s state several steps in the past. In this study, we 
constructed pedestrian movement models based on vector auto 
regressive (VAR) models. We approximate a pedestrian’s 
position, speed, and direction of movement and predict their 
trajectory using their states several steps in the past. 

Moreover, obstacles may be detected too late to avoid 
collisions in environments with blind areas caused by visual 
barriers like walls. In such environments, pedestrian movement 
prediction methods using environmental sensors are effective 
[14]. In this study, we constructed a model and predicted the 
pedestrian’s trajectory using an environmental sensor. 

It is thought that pedestrians change their direction step by 
step near environments where multiple passages cross (e.g., 
when crossing roads). There are many paths to the destination, 
far from the crossing area. To realize safe mobile robot 
navigation in such environments, we must construct each path 
model and predict the pedestrian trajectory, and also evaluate 
each predicted trajectory and select the appropriate path model 
for the pedestrian. 

This study proposes methods that predict a pedestrian’s 
trajectory, evaluates each predicted trajectory, and selects the 
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pedestrian’s approaching path using an environmental sensor. 
We expect that a robot can more effectively avoid pedestrians 
using this method than existing methods, because it reduces the 
number of candidate paths near the crossing area. 

In concrete terms, we construct pedestrian movement 
models as follows. First, we acquire pedestrian trajectory data 
using an environmental LRF with an extended Kalman filter 
(EKF). Second, we construct VAR models of degree ranging 
from 2 to 30 for each path. Third, we compare the prediction 
accuracy for each degree. Then, we decide the pedestrian 
movement models’ degree and verify the constructed models’ 
accuracy. We narrow down the selection of a pedestrian 
movement model by comparing the prediction error for each 
path between the estimated pedestrian state using an EKF, and 
the predicted state using each movement model. Then, we 
predict the trajectory using the selected movement model. In 
this study, we verify the validity of the constructed pedestrian 
movement models using experimental data. Furthermore, we 
confirm that an appropriate path model that a pedestrian can 
actually move through is selected before the crossing area and 
that only the appropriate model is selected near the crossing 
area. 

II. RELATED WORK 

Many existing pedestrian trajectory prediction methods use 
the current state (e.g., pedestrian position and velocity) or the 
current and previous step states. Shiomi et al. proposed a 
method that predicts a pedestrian trajectory using the social 
force model [15]. Similarly, Ratsamee et al. proposed a method 
that predicts pedestrian trajectories using social force models, 
considering pedestrian’s body pose, face orientation, and 
personal space [16]. Tamura et al. proposed a method that 
predicts pedestrian trajectories by storing state transition data 
in each 1 m

2
 and predicting state transitions using the current 

pedestrian state and the stored state transition data [17]. 
Tadokoro et al. proposed a method that predicts pedestrian 
movement by estimating movement tendencies via trial and 
error when a pedestrian moves in an environmental cell [18]. 
Noguchi et al. proposed a method that predicts pedestrian 
movement paths by modeling pedestrian movement between 
cells based on a variable length Markov model [19]. Other 
researchers have proposed methods that build pedestrian 
models using machine learning. Chung et al. used Markov 
decision processes [20, 21], and Ziebart et al. used a soft-
maximum version of Markov decision processes [22]. 
Callaghan et al. proposed using a Gaussian process [23] and 
Ellis et al. used Gaussian process regression [24]. 

These methods do not consider pedestrians’ destinations 
when predicting their movement. However, several methods 
have been proposed that estimate destination and predict the 
trajectory toward that destination. Thompson et al. proposed a 
method that derives the transfer probability of each destination, 
estimates the destination using random sample consensus, and 

then predicts pedestrian movement using the derived transfer 
probability [25]. Bennewiz et al. proposed a method that 
estimates the destination using an expectation–maximization 
algorithm, and predicts the trajectory using hidden Markov 
models [26]. Foka et al. proposed a method that predicts a 
pedestrian’s position at the next step using the current and 
previous step based on a polynomial neural network. They 
estimated the destination using the tangent vector of the 
obstacle’s positions at times 1,t t  and the predicted position 

at time 1t   [27, 28]. These methods predict indoor trajectories 

toward destinations such as the TV and the refrigerator. 
However, when crossing roads where a blind area occurs 
because of walls, it is difficult to depict taking a right turn, 
going straight and then taking a left turn in the same movement 
model. Therefore, we hypothesize that a more effective way to 
predict pedestrian movement is by predicting pedestrian 
destination passages and estimating the paths to the passages. 

III. ACQUIREMENT OF PEDESTRIAN TRAJECTORY DATA 

We conducted an experiment to acquire pedestrian 
trajectory data when crossing roads using LRF (UTM-30LX, 
Hokuyo Automatic Co, Ltd., Japan) at the height of 0.22 m that 
is pedestrian thigh. Figure 1 shows the experimental 
environment and pedestrian movement direction. We observed 
the distance to the obstacles at each 0.050 s using LRF in 
advance. Then, we acquired the position of pedestrian on each 
time step and collected 157 trajectory data points in total using 
an EKF with position as the observation value. Table 1 shows 
the number of trajectory data points that we acquired. We used 
142 data points for constructing models and another 15 data 
point for verifying the models. The process of acquiring the 
trajectory data is as follows. 

To acquire the position data, we compared current LRF 
data and environmental LRF data that we acquired in advance 
without the presence of obstacles. Then, we acquired leg data 
that was different from the environmental LRF data by more 

than 0.10 m. The  l i -th observed position data point is 

  ( ) ( ) ( ),l i l i l ix yP  

and we cluster by 

 ( 1) ( )l i l i a  P P  

thus a  is 0.10 m. Figure 2 shows examples of data from 

one pair of legs, and the derived position at that time. b  is the 

width of the cluster, and the b  of the data from each pair of 

legs is less than 0.20 m. Figure 2 (a) shows the pattern with the 
legs apart. In this case, we acquire the data as one pair of legs 
when the adjacent cluster distance c  is less than 1.0 m. Figure 

2 (b) shows the pattern with the two legs together. In this case, 
we acquire the data as one pair of legs when b  is more than 

0.20 m. The position of the pedestrian is at the center of the 
pair of legs. 
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Fig. 1. Experimental environment 

 
(a) Two legs apart                    (b) Two legs together 

Fig. 2. Leg detection 

Next, we acquire the trajectory data, which consists of the 
position data at each time step. Acquired position data includes 
sensor noise stemming from the LRF accuracy, and the system 
noise stemming from the position acquisition process. So, we 
estimate the trajectory data by considering this noise using an 
EKF [29]. 

We define the pedestrian state vector kx  at current time 

step k  as: 

  
T

k k k k kx y vx  

Here, kx  and ky  is position, k  is movement direction, 

and kv  is movement speed. The state equation and observation 

equation are as follows. : 

  1 1k k kf   x x w  

 k k k z Hx v  

thus the observation value kz  is: 


T

LRF LRF
k k kx y   z  

and  kf x , H  is: 
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where kw  is the system noise and kv  is the observation 

noise. 

The prediction and correction steps of the EKF are given 
by: 

Prediction step 

  1, 0k kf


x x  

 1
T

k k k k


 P F P F Q  

where k


x  is the a priori estimation value and k


P  is the 

error covariance; and 

Correction step 

 T
k k

 S HP H R  

 1T
k k k

 K P H S  

  k k kk k

 
  x x K z H x  

 T
k k k k k

 P P K S K  

where kK  is the Kalman gain that needs to be calculated, 

kx  is the a posteriori estimate value, and kP  is the error 

covariance. We define kF , Q , R  as follows: 


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where   and v  are the variance values of the system 

noise, and x  and y  are the variance values of the 
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observation noise. Considering the LRF accuracy and the 
amount of pedestrian movement change at each time step, we 
define Q  and R  as follows: 

 
Fig. 3. Estimated human trajectories (red: right trajectory, green: straight 

trajectory, blue: left trajectory) 


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where we acquire the LRF data every 0.050 s. 

Figure 3 shows the estimated pedestrian trajectory data 
using the EKF. In the following, the estimated pedestrian state 

vector kX  is: 

 ˆˆ ˆ ˆ ˆ
T

k k k k k kx y v    X x  

IV. CONSTRUCTION OF PEDESTRIAN MOVEMENT MODELS 

We construct pedestrian movement models using VAR 
models. To predict pedestrian trajectory accurately, it is 
necessary to use high degree models. However, more time is 
needed for these models to predict trajectories than for lower 
degree models, because they have to use more time step data. 
Therefore, it is necessary to construct models in which 
prediction error is small but degree is low. The construction of 
the pedestrian movement is as follows. 

First, we construct each 2–30 degree VAR model. VAR 
models (p) enable us to predict the ( 1k  )th step in the state 

given the state at the k th step: 

 1| 0 1

1

ˆ
p

d d d
k k i k i

i

  



 X β β X  

where d  is a direction parameter that can be concretely 

right ( r ), straight ( s ), or left ( l ). 

Second, we derive the coefficient 
d

β  using the maximum 

likelihood method for each degree to compare accuracy. The 

multidimensional normal distribution of y  with mean μ , 

covariance matrix Σ  and degree D  is: 
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thus kX  is of the 4
th
 degree, the likelihood function and 

log-likelihood function of kX  that have mean ˆ d
X  and 

covariance matrix d
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

 

 

 
     

1

1

4
1

ˆ ,

| ,

1 1 ˆ ˆexp
22

d

d

d d

n
d d

i

n T
d d d

d
i

L

N











 
    

 





X Σ

X μ Σ

X X Σ X X

Σ





 

   

   1

1

ˆlog ,

1
2 log 2 log det

2

1 ˆ ˆ
2

d

d d

d d d

n T
d d

i i i i

i

L

n n





  

  

X Σ

Σ

X X Σ X X

 

where 
dn  is the number of data steps that are used to 

construct the VAR models, and the number for each direction 
is: 

 2042, 1621, 2645r s ln n n    

We estimate VAR models’ (p) coefficients 0 1, , ,d d d
pβ β β , 

which maximize the log-likelihood function, using the 
maximum likelihood method. 

Third, we compare the models of each degree and decide 
the degree of the pedestrian movement models. The center is 
approximately 1.1 m from the edge of the passage, considering 
the general width of the passage is 2.3 m. Therefore, it takes 
approximately 2.2 s until the end of the avoidance procedure 
when the speed of the robot is assumed to be 0.50 m/s. We 
consider that the robot can avoid a pedestrian with enough 
margins by predicting the pedestrian trajectory up to 3.0 s in 
the future. Therefore, we predict the pedestrian trajectory up to 
3.0 s in the future. Accordingly, we compare position 

prediction error 
d
kE  up to 3.0 s in the future and decide the 

pedestrian movement models’ degree. 

 1 1|
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where kP  and ˆ d
kP  is the position vector of kX  and ˆ d

kX . 

The state at the ( k j ) th step using the data before the k

th step is as follows: 
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Fig. 4. Prediction error 
d
kE  until 3.0 s later for each degree (red: right 

trajectory, green: straight trajectory, blue: left trajectory) 
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Figure 4 shows prediction error d
kE  until 3.0 s in the future 

for each degree. From Fig. 4, we decide that the pedestrian 
movement models’ degree 8p   because the prediction error 

decrease after this point is very small. 

Next, we verify the appropriateness of the constructed 
models. The pedestrian trajectory needs to be predicted with 
about 0.50 m accuracy considering the relative sizes of 
pedestrians in the environment. From Fig. 4, the constructed 
models satisfy this prediction accuracy and enable the robot to 
avoid obstacles safely. 

V. PREDICTION OF PEDESTRIAN TRAJECTORY 

It is advisable to predict all trajectories that pedestrian 
might move for safety when crossing roads. It is difficult to 
predict destination passage pedestrian might move when 
pedestrian walks far from the crossing area. So, we assume all 
passages as pedestrian destinations and predict trajectories 
toward each passage as shown in Fig. 5. However, we can pare 
down the candidates near the crossing area because pedestrians 
change their moving direction to the destination. Therefore, we 
predict toward most likely passage near crossing area as shown 
in Fig. 6. 

  
(a) Human walking situation               (b) Predicted trajectories 

Fig. 5. Predicted trajectories when human walks far from the crossing area 

(black: estimated trajectory, red: predicted right trajectory, green: predicted 
straight trajectory, blue: predicted left trajectory) 

  
(a) Human walking situation               (b) Predicted trajectories 

Fig. 6. Predicted trajectories when human walks near the crossing area 

TABLE I. NUMBER OF EXPERIMENTAL TRAJECTORY DATA 

We predict most likely passages by comparing the average 
prediction error. First, we calculate average prediction error 

d
ke  each passages and the minimum average prediction error 

minimum
ke . Second, we select models in which d

ke  is 1.0–1.5 

times of minimum
ke . d

ke  and minimum
ke  are defined as follows: 

 1 1|

1

1 ˆ
p

d d
k k i k i k i

i

e
p

    



  P P  

Subject Model construction Model verification 

Right trajectory data 50 5 

Straight  trajectory data 35 5 

Left  trajectory data 57 5 

Total 142 15 
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 minminimum d
k ke e  

To validate the model against the actual pedestrian 
trajectory, we used the verification data as shown in Table 1. 
Figure 7 shows the predicted and actual trajectories. Tables 2 
and 3 show the y  coordinates at which the appropriate model 

was chosen. 

   
(a)  Right 

   
(b)  Straight 

   
(c)  Left 

Fig. 7. Results of human trajectory prediction 

TABLE II. Y COORDINATE AT WHICH THE APPROPRIATE MODEL WAS 

CHOSEN [M] 

TABLE III. Y COORDINATE AT WHICH ONLY THE APPROPRIATE MODEL 

WAS CHOSEN [M] 

VI. DISCUSSION 

Figure 7 confirms that the number of selected models 
decreased and that only one appropriate model was selected 
near the crossing area. The selected models narrowed to only 
one appropriate model at 2.0y   when turning right (Fig. 7 

(a)). However, the narrowing of the selection of models is late 
when heading straight and turning left (Fig. 7 (b), (c)). 
Moreover, in Table 2 there is no change in the point at which 
the appropriate model is selected when going straight or 
turning right or left, but the point only appreciate model 

selected is later when heading straight and turning left in Table 
3, similar to Fig. 7. 

TABLE IV. PREDICTED TRAJECTORY ERROR AT Y = 1.5 [M] 

TABLE V. PREDICTED TRAJECTORY ERROR AT Y = 2.0 [M] 

The point at which the selection of models narrows stems 
from the environment. The environment that we experimented 
with has a wide road on the right and a narrow road on the left. 
Moreover, most of the participants whose trajectory was 
acquired were students who used this environment often, and 
whose curvatures when turning are thought to be small when 
turning right and large when turning left. So, there was likely 
little difference in the position error when heading straight or 
turning left, because participants tended to begin turning 
further before the crossing area when turning right than when 
heading straight or turning left. 

Tables 4 and 5 show the means and standard deviations of 

the prediction error d
kE  at 1.5y   and 2.0y  , that is, the 

mean points where only one appropriate model was selected 
when turning right and left. We confirm that the constructed 
models satisfy the prediction accuracy that is necessary for safe 
obstacle avoidance in an autonomous robot, because pedestrian 
trajectories need to be predicted with about 0.50 m accuracy 
considering the size of a pedestrian in the environment. 

VII. CONCLUSION 

We proposed methods that predict a pedestrian’s trajectory, 
evaluate each predicted trajectory, and select the pedestrian’s 
approaching path using an environmental sensor, for mobile 
robot navigation. We believe that a robot can avoid a 
pedestrian with enough margins using the proposed method. 
Our technique predicts pedestrian trajectories by selecting 
likely models for environments where several passages cross, 
and using only one model in environments with only one 
passage. This method can predict trajectories of several 
pedestrians if combined with, for example, the potential field 
or social force methods, and by considering the influence of 
other pedestrians. 

We demonstrated a method to construct pedestrian 
movement models based on VAR models that consist of 
pedestrian position, speed and direction for each passage using 
trajectory data that was acquired in advance by sensors in an 
environment where a blind area occurs to a mounted sensor on 
an autonomous robot when crossing roads. We also 
demonstrated a method of determining the degree of the model, 

Subject 
Moving direction 

Right Straight Left 

Mean 5.75 5.22 5.07 

Standard deviation 0.80 0.66 0.87 

Subject 
Moving direction 

Right Straight Left 

Mean 1.96 -0.59 1.53 

Standard deviation 1.03 0.88 0.34 

Subject 
Moving direction 

Right Straight Left 

Mean 0.27 0.10 0.30 

Standard deviation 0.03 0.01 0.03 

Subject 
Moving direction 

Right Straight Left 

Mean 0.23 0.20 0.31 

Standard deviation 0.03 0.02 0.03 
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such that degree is kept as low and prediction error as small as 
possible by comparing prediction error up to 3.0 s in the future. 
In addition, we validated the accuracy of the constructed 
models. Furthermore, we showed that we can predict the 
trajectory in which a pedestrian might move using a movement 
model that error is lowest between the estimated pedestrian 
states using an EKF and predicted the upcoming state using 
each model. 
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