
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

110 | P a g e

www.ijacsa.thesai.org

Decision Framework for Mobile Development

Methods

LACHGAR Mohamed

Laboratory of Applied Mathematics and Computer Science

(LAMAI), Faculty of Science and Technology (FSTG),

Cadi Ayyad University

Marrakech, Morocco

ABDALI Abdelmounaïm

Laboratory of Applied Mathematics and Computer Science

(LAMAI), Faculty of Science and Technology (FSTG),

Cadi Ayyad University

Marrakech, Morocco

Abstract—Recently, the mobile applications have emerged

with the uprising smartphone trend. Now-a-days, a huge number

of mobile operating systems require more developments, in order

to achieve that, Open source cross-platform mobile frameworks

came up, in order to allow importing the same code on various

operating systems. In this paper, the focus is made on commonly

used mobile development methods, and a process that selects the

most suitable solution for a particular need is proposed.

Eventually, a new framework that helps to choose the

appropriate approach and tool respectively is suggested,

according to a convenient survey based on binary questions, in

addition to certain criteria.

Keywords—Mobile development approaches; Mobile

development tools; Cross-platform mobile; Mobile OS

I. INTRODUCTION

Mobile devices, applications and associated services are
being radically reshaped by user’s behavior and corporate
organizations as well, either business models, or business
strategies and also the way employees work.

Since the release of the first iPhone in 2007, smart mobile
devices occupied an important role in the world economy, so
we talk more often about digital economy.

Worldwide mobile phones sales reached nearly 478 million
units during the third quarter of 2015, so an increase of 3.7
percent compared to the same period in 2014. The figures and
the trends presented in the following study confirm these facts
[1].

Fig. 1. Worldwide mobile phone sales to end users by vendor in 2015

This evolution is due to the growth the smartphone market,
as those consumers abandon more and more ―dumb‖ or ―less

smart‖ phones [1]. The following figure shows the evolution of
smartphone sales compared to classic mobiles sales.

Fig. 2. Sales of smartphones vs classic mobiles [2]

Between 2011 and 2013, the share of smartphone sales
increased by 37%. Now-a-days, about 71% of mobiles in
markets are smartphones.

The market of tablets and smartphones is dominated by
Android [1]. The choice of Android is justified by its
constantly innovative technology, open and less expensive
compared to iOS.

Fig. 3. Worldwide smartphone sales to end users by OS [1]

Each platform indeed requires different development tools.
If we want to deploy an application on different platforms, it
seems necessary to consume as much time as the sum of the
time needed for each application; But there are some solutions
to not allow the development of the application once, and then
deploy it on other platforms. The aim of this article is, on one

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

111 | P a g e

www.ijacsa.thesai.org

hand, to present these solutions and then to make a comparison
between them, each one has its advantages and drawbacks; on
the other hand, to provide afterwards an ideal approach for
deciding which solution should be adopted for a given case.

This paper is structured as follows: the first section presents
the mobile development methods, followed by a comparative
study of mobile development approaches. The second section
shows an ideal approach for deciding which solution should be
adopted for a given case. The last section concludes the paper
and presents some future works and perspectives.

II. RELATED WORKS

Several studies have been carried out on mobile
development methods, in which researchers presented the
advantages and drawbacks of each approach. In [3] the authors
presented a comparative study of multi-platform mobile
development tools (PhoneGap, Titanium, Sencha Touch and
jQuery Mobile). While the paper [4], has shown the advantages
and drawbacks of various methods of mobile development and
proposed technologies for each case, based on qualitative
properties. However, Charland and Leroux [5] present an in-
depth comparison of Native apps and Web apps development.
Heitkotter et al. [6] present a comparative study between some
cross-platform mobile tools based on several qualitative factors
such as licensing costs, look-and-feel, supported platforms,
development environments, maintainability and scalability. In
this approach, the cross-platform perspective is not taken into
account.

Veldhuis [8] present a comparative analysis about the
performance of various mobile development tools, based on a
simple numerical calculation.

In [9] the authors formulate a method to evaluate and select
the best cross-platform development tools for a developer and
also evaluate cross platform tools using time, technology,
maturity, and cost aspects of mobile apps development. In
contrast, this work is focused on the cross-platform
development tools and doesn't present a process to assess the
appropriate development method to adopt (native, hybrid or
web).

In this paper we presented the architecture and features of
each method, and an approach that could be adopted to choose
an appropriate method and tool is proposed, in order to develop
a mobile application.

Our framework focuses on the improvement of decision
making in the mobile applications domain, taking into account
several qualitative factors such as development rate,
documentation, look and feel, popularity, learning curve and
graphical tool for GUI. The mentioned framework can be
divided into two stages; the first one allows deducing the
mobile development method while the second one allows
selecting the right tool for each method whose precision
exceeds 50%.

III. MOBILE DEVELOPMENT METHODS

The cross platform mobile applications are widely meant to
provide mobile apps developers with means for writing once,

and deploying everywhere. Currently, the market is full of
dizzying array of cross-platform development tools [4].

Several studies on approaches to build cross-platform
mobile applications are produced [4], [9], [12], [13].
Conclusively, a classification of these approaches into three
categories is made:

Fig. 4. Mobile development method

These types will be explained in the following sub-sections.

A. Native Approach

The Native applications have the highest performance,
native look and feel, has full access to the device capabilities,
they use the most updated hardware resources, in order to
improve performance. The applications are built in languages
that the platform supports, as a consequence it has access to
IDEs, which provides the best tools for development, as well as
a fast debugging of the project. Android apps can be built in
Java on Android Studio, and iOS apps can be built in objective
C on XCode, which have all the tools either to debug, or to
design the interfaces, and then check the performance using
instruments. Yet, the development of the native App needs
initial time to learn the languages and tools provided by the
platform-specific vendor, then develops the App. Also, the App
will run on only one specific-platform [4], [9], [10]. The figure
below shows native apps architecture:

Fig. 5. Native app development

B. Web Approach

The mobile web Apps are developed using standard web
technologies—typically HTML5, JavaScript and CSS. These
apps are easy to develop, although cannot use device-specific
hardware features such as camera or GPS sensor, and the lack
look and feel of the native App [11].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

112 | P a g e

www.ijacsa.thesai.org

Fig. 6. Logical architecture of a mobile web application [4]

C. Hybrid Approach

The mobile hybrid apps combine between the web App and
the native App. This type does not perform as well as the other
programs that are based on native languages. Even though they
are packaged natively, they are not native applications, they are
executed on the platforms web engine, Webkit in case of
Android and iOS, which is another layer between the user and
the application, and so the performance can’t match with the
native apps [3], [12].

The below diagram depicts the high level of hybrid mobile
application architecture:

Fig. 7. Logical architecture of a typical hybrid application

D. A comparison of the three approaches

A comparison of the three approaches is structured in the
following table.

TABLE I. MOBILE APPS DEVELOPMENT APPROACHES COMPARISON

Native

Approach

Hybrid

Approach

Web

Approach

Device Access Full Full Partial

Speed Very fast Native speed Fast

App

Development

cost

Expensive Reasonable Reasonable

AppStore Yes Yes No

Approval

Process
Mandatory Low overhead None

Quality of UX Excellent
Not as good as
native apps

Very good

Quality of apps High Medium to low Medium

Security High Not good
Depends on
browser security

Potential users

Limited to a

particular

mobile

platform

Large – as it

reaches to users of
different platforms

Maximum

including

smartphones,
tablets and other

feature phones

Access device-

specific

features

High Medium Low

Development

language
Native only

Native and web or

web only
Web only

Skills/tools

needed for

cross-platform

apps

Objective-C,

Java, C, C++,
C#, VB.net

HTML, CSS,

JavaScript, Mobile

development
framework (like

PhoneGap)

HTML, CSS,

JavaScript

According to this study, native application turned out to be
more improved, in terms of performance compared to other
mobile application types (i.e., web and hybrid). Native
applications are developed using a platform specific API
compiled to run on the platform rather than an interpreted
language code, such as, JavaScript. But the problem is that
these native apps are more expensive to implement, limited to a
particular mobile platform, require a collection of knowledge
and languages to be realized.

The figure below shows the trend for native to cross
platform development cost and time factors.

Fig. 8. Native vs. Cross platform development

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

113 | P a g e

www.ijacsa.thesai.org

IV. DECISION FRAMEWORK FOR ADOPTING THE

APPROPRIATE DEVELOPMENT METHOD AND TOOLS

We have shown that the three solutions have advantages
and inconveniences. The question now that arises is: which are
the approaches that can be adopted to develop a mobile cross-
platform application? And what tool can be used to implement
the solution?

To answer these questions, a tool to provide answers based
on the nature of the application to develop is proposed. The
architecture of this tool is presented below (See Figure 9 for
more details).

Fig. 9. Framework architecture

In more detail, this architecture consists of four key steps:

1) The first step : consists of filling a survey, then sending

the answers to the decision engine.

2) In the second step : the decision engine analyzes the

responses and transmits the appropriate mobile development

method to the customer, and also determines the percentage of

completion of each method.

3) In the third step : according to the received method, the

customer must complete a survey, then forward it to the

decision tool engine.

4) In the last step : the decision tool engine analyzes the

responses and sends the right tool to be used in the

implementation of the solution to the customer. In the hybrid

case the tools are classified according to the features desired in

the application to develop.
The next subsections show how each block is implemented.

A. Decision Method Engine

For this, we propose a set of questions in order to single out
the correct approach to develop a very specific mobile
application.

Q 1 : Should it be published on the main AppStore?

Q 2 : Does it operate in offline mode?

Q 3 : Do you want to sell it?

Q 4 : Is it a simple application?

Q 5 : Will it be frequently used by the user?

Q 6 : Is there an immediate need to deliver the app to the

market?

Q 7 : Do you have separate budget for developers in each

OS?

Q 8 : Do you need a lot of native features in the Mobile

App?

Q 9 : Is app security a high priority?

Q 10 : Should it be very fluid?

Q 11 : Do you want a lot of animations?

Q 12 : Are we building application that needs a lot of

algorithmic computation?

Q 13 : Do you want to be always up to date with the latest

versions of OS?

Q 14 : Do you want to have the best user experience?
The table below gives the answers to these questions for

each mobile development approach (native, hybrid and web).

TABLE II. MOBILE DEVELOPMENT METHODS DECISION FRAMEWORK

 Native Hybrid Web

Q 1

Q 2

Q 3

Q 4

Q 5

Q6

Q 7

Q 8

Q9

Q 10

Q 11

Q12

Q 13

Q 14

In this perspective, we present the selection criterion
established in a decision tree represented in the figure 10
below.

B. Decision Method Engine implementation

The decision tree shown in Figure above is used to
determine the mobile development approach to be taken within
a given situation. The decision method engine will also
determine the percentage of completion of each method. To do
this, we have adopted the following approach.

We have assigned, a decision factor, to each question,
according to its importance. The selected intervals clarify these
points:

 8 : Very important

 6 : Important

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

114 | P a g e

www.ijacsa.thesai.org

Fig. 10. Decision Tree for adopting the appropriate development method

 4 : Not so important

 2 : Not at all important

The chart below illustrates these assigned weights:

TABLE III. FACTORS ATTRIBUTED TO QUESTIONS

Question Factor

Q1 8

Q2 4

Q3 6

Q4 2

Q5 2

Q6 6

Q7 8

Q8 6

Q9 6

Q10 4

Q11 4

Q12 6

Q13 6

Q14 6

The rationale for choosing various weights of factors is
provided below:

 Question 1 is essential, to decide between web approach
and the two other approaches. Question 7 is very
important for choosing between native approach and the
hybrid one, which explains the factor 8 as a decision
factor.

 Question 2, actually is less important, especially with
the web approach which allows saving data through
offline mode according to the HTML 5 innovations.

 Question 3 depends on question 1; a mobile application
for sale, must be published in the APPSTORE, thus, we
have provided the decision factor 6.

 Question 4 not all important, a simple application can
be developed even with all approaches.

 Question 5 not all important, a simple application
developed with the web approach, without recourse to
the native APIs, can also be used frequently by users.

 Question 6 is important, to decide between native and
web approach. If the company has skilled human
resources to develop the application within the
deadlines set, will be interesting to adopt the native
approach, which explains the factor 6 as a decision
factor.

 Question 8 can make the difference between native and
hybrid approaches. In order to implement an
application, an access to several native APIs is required,
so it is better to use native approach.

 Question 9 is important, if security is a priority, then it
would be better to adopt native approach.
Consequently, we assigned 6 as a decision factor for
this question.

 Questions 10 and 11 are less important, according to the
hybrid approach evolution that supports the
implementation of some animations and fluidity
depending on the JavaScript Framework evolution,
therefore, for both questions, we have assigned the
factor 4.

 Whenever the application requires a lot of algorithmic
computation, then it is better to use native language for
taking advantage of the methods already developed.
That explains 6 as a decision factor for a question 12.

 Question 13 is important, if a mobile application has
several native features it should benefit from the latest
updates of the operating system, which explains the
factor 6 as a decision factor.

The feedback is a strong point for this we assigned 6 as a
decision factor for a question 14.

An extract of the used class diagram for implementing is
shown below:

Fig. 11. Extract of class diagram of method engine

http://context.reverso.net/traduction/anglais-francais/Whenever+the+application+requires

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

115 | P a g e

www.ijacsa.thesai.org

The precision is given by the following ratio:

Precision (in %) =
∑ ()

∑ ()

Where:

∑ () : is the sum of the factors of the performed
questions.

∑ () : is the sum of the factors of the expected
questions.

With: () are the performed questions and () are the
expected questions (according to TABLE II).

C. Decision Tools Engine

Once the development approach is selected, the next step
will be to define the tools to use during the implementation
phase. In order to achieve this, we evaluate the needs of the
solution to develop towards some sensors and features
available in the mobile phone.

The following features and sensors are integrated in many
of the major smartphone devices:

TABLE IV. SMARTPHONE DEVICE STANDARD FEATURES

Code Features Definition

F1 Contacts
Does the solution supports CRUD functionality

to access the contact list?

F2 Geolocation
Does the solution can be capable of using

smartphone GPS?

F3 Ad hoc Wi-Fi
Does the solution capable of managing ad hoc

Wi-Fi connections?

F4 Storage
Does the solution support CRUD functionality

for Local Storage?

F5 SMS
Does the solution have an API to send SMS

from the application?

F6 Telephony
Does the solution have an API to make calls

from the application?

F7 Bluetooth
Does the solution supply an access to device

Bluetooth?

F8
Audio

(Recording)

Does the solution allow audio playback in the

application?

F9 Audio (Reading)
Does the solution allow audio recording in the
application?

F10
Camera (Take

photo)

Does the solution allow taking pictures in the

application?

F11
Camera (Video
Recording)

Does the solution allow the recording of video
in the application?

F12 Vibration
Does the solution allow making vibrate the

device since the application?

F13 Multi – touch
Does the solution can be capable of capturing
the "Gestures" or the "Multi-touch"?

F14 SOAP
Does the solution have an API to manage the

SOAP protocol?

F15 Push Notification
Does the solution contain an API to manage
"push notifications"?

F16 SQLite

Does the solution integrate the functionality

Create, Read, Update, and Delete (CRUD) of

SQLite?

F17
Network

availability

Does the solution can be capable of checking

the availability of the network?

F18 File System
Does the solution provide to access to the

device's file system?

F19
Memory

management

Does the solution allow to manually managing

memory?

TABLE V. SMARTPHONE DEVICE STANDARD SENSORS

Code Sensors Definition

S1 Accelerometer
Does the solution allow to access to the
accelerometer?

S2 Compass

Does the solution allow to access to the

magnetometer or has it an API to create a

compass?

S3 Orientation
Does the solution allow detecting the rotation of

the device?

S4 Light sensor
Does the solution allow access to the light

sensor?

S5 Gravity
Does the solution allow access to the gravity

sensor?

S6 Pressure
Does the solution allow access to the pressure
sensor?

S7 Gyroscope
Does the solution allow access to the gyroscope

sensor?

S8 Proximity
Does the solution allow access to the proximity
sensor?

S9 Temperature
Does the solution allow access to the

temperature sensor?

S10
Ambient
Temperature

Does the solution allow access to the ambient
temperature sensor?

S11
Linear

Accelerometer

Does the solution allow access to the linear

accelerometer sensor?

S12 Magnetic Field
Does the solution allow access to the magnetic
field sensor?

S13
Relative

Humidity

Does the solution allow access to the relative

humidity sensor?

Also, here are some criteria which may be useful in the
selection process:

TABLE VI. SELECTION CRITERIA

Code Criteria

C1 Development rate

C2 Documentation

C3 Look and feel

C4 Popularity

C5 Learning curve

C6 Graphical tool for GUI

The following sub-section describes and evaluates the
mobile development tools, towards the different aspects
identified above. These tools are classified in three categories:
the platform specific development kit, the Cross-platform
mobile development and the web tools.

D. Decision Tools Engine implementation

In the case of the web approach, the tools are defined
namely HTML5, CSS and JavaScript.

In the native approach, according to the target platforms,
tools to be used for each platform can be defined; therefore, the
choice will be unique in this case.

In the case of the hybrid approach the decision tools engine
must provide a score that will be calculated, based on the
number of features and sensors required in the application that
are supported by the tool.

Now, to choose the right tool for implementing a mobile
software application, we have defined the following scale:

http://context.reverso.net/traduction/anglais-francais/during+the+implementation+phase
http://context.reverso.net/traduction/anglais-francais/during+the+implementation+phase
http://context.reverso.net/traduction/anglais-francais/towards
http://context.reverso.net/traduction/anglais-francais/memory+management
http://context.reverso.net/traduction/anglais-francais/memory+management
http://context.reverso.net/traduction/anglais-francais/criteria+which+may
http://context.reverso.net/traduction/anglais-francais/selection+criteria
http://context.reverso.net/traduction/anglais-francais/development+rate
http://context.reverso.net/traduction/anglais-francais/Documentation
http://context.reverso.net/traduction/anglais-francais/Open+Source
http://context.reverso.net/traduction/anglais-francais/Popularity
http://context.reverso.net/traduction/anglais-francais/learning+curve
http://context.reverso.net/traduction/anglais-francais/graphical+tool+for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

116 | P a g e

www.ijacsa.thesai.org

Rating API or Sensor needs:

 4: Well Supported.

 2: Supported.

 0: Not support.

Development rate:

 3: Very Fast.

 2: Fast.

 1: Medium.

 0: Slow.

Documentation:

 3 : Very Good

 2: Good.

 1: Fair.

 0: Poor.

Look and Feel:

 3: Very Good.

 2: Good.

 1: Fair.

 0: Poor.

Popularity:

 3: Very popular (Very High).

 2: Popular (High).

 1: Less popular (Medium).

 0: Not popular.

Learning curve:

 3: Very Fast.

 2: Fast.

 1: Medium.

 0: Long.

Graphical tool for GUI:

 2: Well supported.

 1: Supported.

 0: Not supported.

An extract of the used class diagram for implementing is
shown in Figure 12 below:

Fig. 12. Extract of class diagram tools engine

V. CASE-STUDY

A. Description:

The aim of this project is to develop a location-based app,
this latter allows to locate the position of contacts in the phone
book located within a given radius, using a Map, it also
provides the ability to communicate with other people
connected to the network with the same application, by
exchanging text messages and media files (e.g. photo, video),
and finally it gives the possibility to take pictures and transmit
them via the application to other contacts.

B. Requirements:

 Available on Android and iOS.

 Access to the network.

 Notification Alert and Vibration.

 Access to Camera and video.

 Low costs development.

 Deployable on app stores.

 Access to media.

 Access to Smartphone GPS.

 Access to contacts list.

 Access to telephony.

C. Tools:

 F1 : PhoneGap + jQuery Mobile.

 F2 : PhoneGap + Sencha Touch.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

117 | P a g e

www.ijacsa.thesai.org

 F3 : PhoneGap + Onsen IU.

 F4 : PhoneGap + Angular UI.

 F5 : PhoneGap + Ionic.

 F6 : Titanium Appcelerator.

 F7 : Xamarin.

 F8 : Flex + Air.

D. Result:

 Method decision:

Fig. 13. Rate of attainment of each approach

62.16% of requirements need to adopt the native approach.

56.75% of requirements can be implemented with the
hybrid approach.

18.18% of needs can be developed with the web approach.

 Tools decision:

Fig. 14. Score for each tool

For this case-study, the platform specific development kits
are among the best, Titanium Appcelerator in the middle
followed by PhoneGap with Ionic framework and Sencha
Touch, and Flex among the lowest-ranking.

VI. CONCLUSIONS AND FUTURE WORKS

This work, presents a framework allowing to select the best
technology to use for the development of a specified mobile
application in a given context. This framework consists of two
main stages, the first one determines the mobile development

method (native, hybrid or web) with a completion percentage
called precision, based on a set of relevant questions, the
second one determines the appropriate tool for the
implementation based on a set of relevant criteria.

In an ideal world of technology, without time constraints
and money, it would be obviously more interesting to move to
a native solution. The result has advantages in terms of
ergonomics, performance and integrity.

This study allowed us to understand in which case it is
interesting to turn to the web and hybrid solutions. A timely
simple and unconstrained performance gain has to be a hybrid
or web approach.

Consequently, so as to remedy to native approach’s
shortcomings, we suggest setting up a solution based on the
Model-driven Engineering, allowing developers to generate
native applications from the UML diagrams or by using DSL
[14], [15].

We are currently working on the development of solutions
for reverse engineering, aiming to transform the hybrid code
and the web one, into native code. Thus, it will use the native
applications advantages and extend them with other native
features, which aren't supported now-a-days in the hybrid and
web methods.

REFERENCES

[1] Gartner, ―Gartner Says Smartphone Sales Surpassed One Billion Units
in 2014‖, http://www.gartner.com/newsroom/id/2996817, March 3, 2015
(Accessed on December 3, 2015)

[2] Kerensen Consulting, ―Evolution des usages Mobiles, prévision 2015‖.

[3] I. Dalmasso, S. Datta, C. Bonnet and N. Nikaein, ―Survey, comparison
and evaluation of cross platform mobile application development tools‖,
Proceedings of the 9th International Wireless Communications and
Mobile Computing Conference (IWCMC), IEEE Xplore press, Sardinia,
pp. 323-328. 2013. DOI: 10.1109/IWCMC.2013.6583580.

[4] R. Raj and S. B. Tolety, ―A study on approaches to build cross-platform
mobile applications and criteria to select appropriate approach‖, India
Conference (INDICON), IEEE Xplore press, Kochi, pp. 625-629. 2012.
DOI:10.1109/INDCON.2012.6420693.

[5] A. Charland and B. Leroux, ―Mobile application development: web vs.
native‖, Communications of the ACM, vol. 54, no 5, pp. 49-53. 2011.

[6] H. Heitkötter, S. Hanschke and T. A. Majchrzak, ―Evaluating cross-
platform development approaches for mobile applications‖, Web
information systems and technologies. Springer Berlin Heidelberg, pp :
120-138. 2012.

[7] L. Delía, N. Galdamez, L. C. Corbalán, P. J. Thomas and P. M. Pesado,
―Un análisis comparativo de rendimiento en aplicaciones móviles
multiplataforma‖, XXI Congreso Argentino de Ciencias de la
Computación. 2015.

[8] M. M. O. Veldhuis, ―Multi-Target User Interface design and generation
using Model-Driven Engineering‖, Unpublished dissertation in partial
fulfillment of the requirements for the degree of Master of Science in
Computer Science and Master of Science in Human Media Interaction
Faculty of Electrical Engineering, Mathematics and Computer Science
University of Twente, the Netherlands, 2013.

[9] P. Smutny, ―Mobile development tools and cross-platform solutions‖.
Proceedings of the 13th International Conference on Carpathian Control
(ICCC), IEEE Xplore Press, High Tatras, pp. 653-656, 2013,
DOI:10.1109/CarpathianCC.2012.6228727.

[10] S. Xanthopoulos and S. Xinogalos, ―A comparative analysis of
crossplatform development approaches for mobile applications‖,
Presented at the Proceedings of the 6th Balkan Conference in
Informatics, Thessaloniki, Greece, 2013.

http://context.reverso.net/traduction/anglais-francais/relevant+criteria.
http://dx.doi.org/10.1109/IWCMC.2013.6583580
http://dx.doi.org/10.1109/INDCON.2012.6420693
http://dx.doi.org/10.1109/CarpathianCC.2012.6228727

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 2, 2017

118 | P a g e

www.ijacsa.thesai.org

[11] L. Corral , A. Janes and T. Remencius, ―Potential Advantages and
Disadvantages of Multiplatfonn Development Frameworks-A Vision on
Mobile Environments‖, Procedia Computer Science, vol. 1 0, pp. 1202-
1207, 2012.

[12] M. Palmier, I. Sing and A. Cicchetti, ―Comparison of cross-platform
mobile development tools‖, Proceedings of the 16th International
Conference on Intelligence in Next Generation Networks (ICIN), IEEE
Xplore Press, Berlin, pp. 179-186, 2012,
DOI:10.1109/ICIN.2012.6376023.

[13] N. Serrano, J. Hernantes and G. Gallardo, ―Mobile Web Apps‖, IEEE
Software. pp: 22 – 27, 2013, DOI:10.1109/MS.2013.111.

[14] M. Lachgar and A. Abdali, ―Generating Android graphical User
Interfaces using an MDA approach‖, Proceedings of the Third
International Colloquium of Information Science and Technology
(CIST), IEEE Xplore Press, Morocco, pp. 80-85, 2014,
DOI:10.1109/CIST.2014.7016598.

[15] M. Lachgar and A. Abdali, Abdelmounaïm, ―Modeling and generating
native code for cross-platform mobile applications using
DSL‖, Intelligent Automation & Soft Computing, pp. 1-14, 2016.

http://dx.doi.org/10.1109/ICIN.2012.6376023
http://dx.doi.org/10.1109/MS.2013.111
http://dx.doi.org/10.1109/CIST.2014.7016598

