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Abstract—Even in homogenous soil and for simple 

geometrical structure the analytical design of a grounding system 

is a complex and not very accurate procedure. Using Finite 

Element Analysis (FEA) it can perform a precise design for 

complex grounding systems but with important hardware 

resources and time consumption. This paper proposes a 

methodology for power system grounding design, directed to 

ensure the advantages of the FEA but without its disadvantages. 

This is realized by adding the function emulation using neural 

networks. The vertical rod, buried in inhomogeneous soil is the 

subject of this presentation. Consequently, the first step was to 

perform FEA for a large number of configurations: different 

types of vertical rods connected to the surface, buried at various 

depths in different double-layer soil structures. Then, the results 

have been interpreted through a multi-layer perceptron (MLP) 

with one hidden layer. A compromise between the number of 

inputs and precision have been tested, in order to define a 

minimum number of FEA required to obtain an acceptable 

grounding system design, i.e. a desired grounding resistance, for 

any combinations of the geometrical and material parameters. 

The validation of the methodology was done based on data 

reported in various research works. 
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systems; grounding 

I. INTRODUCTION 

Numerical simulation of the electromagnetic field lays on 
the basis of modern CAD in electrical engineering. Finite 
Element Method (FEM) is the most used tool for this and 
permits, not just the design, but also the optimization and the 
validation of the equipment behavior in the field. The main 
disadvantage consists in hardware resources and time needed 
for simulations and the lack of generalization, i.e. for every 
configuration it must be performed another FEA 

The targeted sustainable smart grid concept, which ensures 
the continuity and quality of the energy supplies, must be 
realized in order to guarantee the safety of the human being 
and the installations. One of the key for achieving this is the 
power system grounding. 

The professional design of power system grounding is 
conducted analytical in homogenous soil, for simple structures 
configurations, according to the theoretical computation of the 
electromagnetic field [1], [2] and again for more complex 
devices, but using simplified relations imposed by standards 
and regulations, [3-5]. For inhomogeneous soils, analytical 
relations are very complicate, if exist, inaccurate and 

determinable for simplified structures, material parameters 
and variable behavior [1-5]. All these difficulties can be easily 
hurdle using FEA [6-11]. The problem here is that the results 
cannot be generalized, so for every configuration it means 
another simulation. 

This paper intend to structure a methodology, based on 
FEA and neural network to generalize the FEA result, 
meaning the grounding resistance value, for any variation of 
the geometrical and material parameter of the base 
configuration. For an easy and logic presentation, the 
methodology is depicted using a usable grounding structure, 
i.e. a single vertical rod, with variable length, buried in double 
layer, horizontally layered soil and connected to the surface. 

Therefore, an initial configuration, changed successively 
regarding the imposed variation limits for parameters 
(geometrical and material) will constitute the FEA models. In 
this step, a large number of models will be analyzed, asking 
for great hardware and time resources. 

All the results, i.e. the grounding resistances, in terms of: 
rod length, the thickness of the first soil layer and the ratio 
between upper and inferior layer resistivity, will enter in the 
next stage, meaning the neural network generalization. 
Creation, optimization of the neural network, reducing the 
number of inputs required to maintain a desired precision are 
the goals of this last step. 

As final result, for the above grounding system, the 
methodology offers, virtually instantaneously, a value of the 
grounding resistance for any combination of the material and 
geometrical parameters, offering in this way a key to a close 
optimum configuration. 

II. VERTICAL ROD GROUNDING STRUCTURE 

Standard regulations provide minimum allowed cross 
section for different materials for electrodes and also suggest 
some recommendations for different configurations. Based on 
these, the basic configuration is a Zn coated steel cylindrical 
rod, length L = 1 ÷ 3 m, diameter d = 2 inches, buried at a 
depth h = 1 m, in a double layered soil with resistivity, ρup and 
ρinf, as depicted in Fig. 1. 

The FEA for these configurations are presented in details 
in [12]. The results kept in these step, are the grounding 
resistances for 300 configurations generated by variations of 
the next variables: L = 1 ÷ 3 m, the thickness of the upper 
layer tup = 0 ÷ ∞, the ratio between upper and inferior layer 
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resistivity ρup/ρinf = 0.2 ÷ 5. 

 

Fig. 1. Vertical grounding electrode with connection to the surface 

III. NEURAL NETWORK STRUCTURE 

The grounding resistance has been emulated by building a 
neural network. It is well known the capability of neural 
networks to approximate functions, a concept called 
“regression” [13]. For such tasks, a simple multi-layer 
perceptron has been proved as a good choice, according to 
Schürmann [13]. However, the complexity of the network is 
crucial for its behavior. A trade-off regarding its size is always 
needed. A small architecture may prove inefficient to 
approximate the desired function, whereas a larger network 
may over-learn the training set, being unable to generalize on 
extra input data. Baum and Haussler give some principles in 
[14]. 

Therefore several experiments have been run for choosing: 

 The right size of the neural network; 

 The transfer function; 

 The learning algorithm; 

 The training epochs. 

The data consisted of 300 sets, with: vertical electrode 
length, the thickness of the upper layer and the ratio between 
upper and inferior layer resistivity as inputs for the network 
and the resistance as the desired output.  For avoiding the 
over-training, which is a common problem is neural design 
(see [15] and [16]), we have set aside 20% of the data for 
cross validation and other 20% for testing. This means that the 
training has been done using only 60% of the available data. 
For a better learning, the data has been shuffled as suggested 
by Ikegaya in [17]. 

A fully-connected multi-layer perceptron has been used, 
like in Fig. 2. 

 
Fig. 2. The general architecture of the neural network tested within the 

experiments 

The neural network has: 

 three inputs, each corresponding to: vertical electrode 
length, L, the thickness of the upper layer, tup, and the 
ratio between upper and inferior layer resistivity, 
ρup/ρinf; 

 a hidden layer with variable number of neurons; 

 and one output – the desired grounding resistance. 

As transfer function we have tested the sigmoid and the 
hyperbolic tangent. The sigmoid function is defined as: 
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and looks like in Fig. 3. 

 
Fig. 3. The shape of the sigmoid function 

The hyperbolic tangent (tanh) has a shape like in Fig. 4. 

 
Fig. 4. The shape of tanh function 
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Tanh is defined as: 
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The learning rules considered during our experiments 
were: step, momentum, quickprop, delta-bar-delta, conjugate-
gradient, Levenberg-Marquardt and resilient backpropagation 
(rprop), as defined in [18]. 

Gradient descent learning rules (Step) estimate the way to 
the minimum error of the network. The algorithm searches for 
the descending slope of the function with various steps. 
Tweaking the steps is an important aspect of the approach, as 
smaller steps would result in longer times to reach the 
optimum, whereas larger steps could overshoot the bottom, 
causing it to rattle or even diverge. 

The Momentum provides the gradient descent with some 
inertia, moving downwards based on some average estimates 
of that direction. 

The Quickprop implements Fahlman's quickprop 
algorithm. It is a gradient search procedure, however very fast 
in various problems. It is also very accurate. It makes use of 
the second order derivative for accelerating the search, unlike 
the step or gradient methods. 

Delta-Bar-Delta is a search method which makes use of 
the sign of the current update with respect to the previous one. 
If the two updates are both of the same sign, it increases the 
learning rate linearly. If the updates have different signs, this 
is an indication that the weight has been moved too far. When 
this happens, the learning rate decreases geometrically to 
avoid divergence. 

Conjugate gradient is also a second order method (like 
quickprop), which means that it approximates the second 
derivatives of the performance surface to determine the weight 
update. 

The Levenberg-Marquardt (LM) algorithm is one of the 
most appropriate higher-order adaptive algorithms known for 
minimizing the minimum square root (MSE). It is also a 
second order method. The LM makes use of the so called 
Gauss-Newton approximation that keeps the Jacobian matrix 
and discards second order derivatives of the error (see [19]). 

Resilient backpropagation (Rprop) is able to outperform 
most other local (i.e., first-order) learning techniques because 
it is able to adapt the step sizes of each individual weight 
instead of using the same step size for all weights. A detailed 
description of the algorithm can be found at [21]. 

IV. RESEARCHING THE BEST NEURAL ARCHITECTURE 

The first experiments were meant to determine the right 
learning algorithms. The number of hidden neurons was set to 
10, and sigmoid as transfer function, as this seems to be a 
reasonable architecture, according to [12]. 

The results are concluded in table I. Training MSE are the 
mean square errors of the neural network in the training phase. 
The training epochs represents the number of epochs needed 
for training. This is determined when there are no 

improvements in the training MSE and before the cross 
validation starts increasing, as this is the moment when the 
neural network starts overlearning the training set and 
behaving poorly on a test set. 

“Step”, “Quickprop”, “Deltabar” and “Rprop” present the 
training MSE, number of training epochs and test MSE when 
the network uses learning rule: step, quickprop, deltabar, 
respectively rprop; columns “Mom.”, “Conj. grad.”, “L.M.” 
show the values when the network is trained with momentum; 
conjugate gradient, respectively Levenberg-Marquardt. 

TABLE I. THE RESULTS OF THE EXPERIMENTS WITH 10 NEURONS IN THE 

HIDDEN LAYER, FOR DETERMINING THE PROPER LEARNING RULE 

 Step Mom. 
Quick-

prop 

Delta-

bar 

Conj. 

grad. 
L.M. Rprop 

Train-

ing 

MSE 

0.47 0.475 0.485 0.275 0.47 0.266 0.266 

Train-

ing 

epochs 

142 3000 3000 1720 243 133 123 

Test 

MSE 
0.50 0.482 0.484 0.363 0.481 0.345 0.360 

As observed in the table I, the best results, meaning lowest 
training and test MSE, are obtained using deltabar, Levenberg-
Marquardt and rprop as learning rules. The number of training 
epochs (and thus the learning time) is the best for Levenberg-
Marquardt and rprop and significantly higher for deltabar. 
However, as at this stage of experiments the quality is more 
important than the time, further experiments have been made 
taking into account these three algorithms. 

We have run (meaning training and testing) the neural 
network having 5, 10 and 15 neurons in the hidden layer. The 
number of inputs and outputs remained the same throughout 
all our experiments. 

The results are synthesized in table II. The second column 
shows the number of neurons in the hidden layer, namely 5, 
10 and 15; the next columns presents the training MSE, the 
number of training epochs and the test MSE when the network 
uses delta-bar-delta, Levenberg-Marquardt, respectively rprop 
for learning. 

TABLE II. THE RESULTS OF THE EXPERIMENTS FOR DETERMINING THE 

PROPER NUMBER OF NEURONS IN THE HIDDEN LAYER 

 

No. of 

hidden 

neurons  

Deltabar 
Levenberg-

Marquardt 
RProp 

Training 

MSE 
5 0.2966 0.273 0.2787 

Training 

epochs 
5 1836 34 35 

Test MSE 5 0.3543 0.3457 0.35191 

Training 

MSE 
10 0.2757 0.2661 0.2661 

Training 

epochs 
10 1720 133 123 

Test MSE 10 0.3631 0.3455 0.3607 

Training 

MSE 
15 0.2932 0.2674 0.2656 

Training 

epochs 
15 1730 52 48 

Test MSE 15 0.3628 0.3407 0.3478 
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Based on the results shown in table II, a neural network 
with 5 hidden neurons and L.M as learning rule would be very 
suited. However, the experiments have shown that it is very 
unstable, even in the training phase, e.g. the learning curve 
and the cross validation curve cross each other many times, as 
shown in Fig. 5. 

 
Fig. 5. The MSE for training (red) and cross validation (green) for a neural 

network with 5 hidden neurons 

Therefore so far, the network with 10 hidden neurons and 
L.M. as the learning rule has the best behavior. 

The next experiments were meant to determine the proper 
transfer function. The same set of tests have been run, but 
using tanh as transfer function, rather than sigmoid. The 
results are concluded in table III. 

The lines represent the training mean square error, 
respectively training error, and cross validation MSE, 
respectively cross validation error, the number of training 
epochs and the testing MSE, respectively testing error. The 
columns represent the number of neurons in the hidden layer, 
the results for deltabar, Levenberg-Marquardt and rprop 
learning rules. 

TABLE III. THE RESULTS OF THE EXPERIMENTS USING TANH  AS 

TRANSFER FUNCTION 

 

No. of 

hidden 

neurons  

Deltabar 
Levenberg-

Marquardt 
RProp 

Training MSE 5 0.0119 0.01 0.012 

Training error 5 13.012% 12.50% 14.25% 

CV MSE 5 0.0101 0.005 0.01 

CV error 5 14.04% 13.14% 13.48% 

Training 

epochs 
5 1622 56 1604 

Test MSE 5 0.14 0.002 0.005 

Test error 5 79.25% 14.90% 19.23% 

Training MSE 10 0.04 0.002 0.002 

Training error 10 35% 7.31% 8.28% 

CV MSE 10 0.02 0.003 0.003 

CV error 10 25% 7.77% 7.42% 

Training 

epochs 
10 414 78 1245 

Test MSE 10 0.04 0.0009 0.001 

Test error 10 61.30% 7.88% 10.85% 

Training MSE 15 0.03 0.01 0.0055 

Training error 15 36.61% 20.06% 10.96% 

CV MSE 15 0.0328 0.01 0.003 

CV error 15 34.91% 13.00% 8.56% 

Training 

epochs 
15 324 268 1711 

Test MSE 15 0.0099 0.01 0.004 

Test error 15 29.76% 31.19% 16.88% 

The chart in Fig. 6 concludes the number of training 
epochs for neural networks with 5, 10 and 15 hidden neurons, 
and sigmoid, respectively tanh as transfer functions, for L.M. 
and Rprop learning rules. The Delta-bar-delta has been 
skipped as the training times are much higher. 

 
Fig. 6. The number of training epochs for various configurations of the 

neural network 
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The training MSE are depicted in Fig. 7. 

 
Fig. 7. The training MSE for the researched neural configurations 

The MSE of the tests are depicted in Fig. 8 

 

Fig. 8. The testing MSE for the researched neural configurations 

From both Fig. 7 and Fig. 8, it is obvious that tanh is a 
better option for the transfer function. 

Fig. 9 displays the errors for training, cross-validation and 
tests. Please notice that there are two training errors for Delta-
bar-delta, respectively for 5 and 10 hidden neurons very high 
(79.25%, respectively 61.30%). But for the sake of clearance, 
we preferred to scale down to 42% the Y axis of the chart, so 
that the important errors are visible too. 

 
Fig. 9. The training, CV and test errors for the neural configuration with tanh 

as transfer function 

V. EXPERIMENTAL RESULTS 

At this point we have decided that a neural network with 3 
inputs, 10 hidden neurons and one output, using tanh as 
transfer function, respectively L.M. as learning rule is the best 
option in terms of quality (lowest error), learning time 
(shortest training time) and computation resources. We have 
done all these tests using a set of 300 data, out of which 60% 
(180 records) have been used for training, 20% (60 records) 
for cross validation and 20% (60 records) for testing. The 
records belonging to one set or the other have been chosen at 
random. 

The question that rises at this stage is: what is the 
minimum size of the training set so that the quality of the 
output is still good (e.g. the error is less than 10%). For that, 
we have varied the size of the training set from 10% (meaning 
30) to 60% (180 records). The training error, cross validation 
error and test error are depicted in Fig. 10. 

 

Fig. 10. The errors of the neural network varying the size of the training set 

It is obvious that the errors are below 15% in all cases, 
however, the errors are less than 10% when the size of the 
training set is above 100 records (30% of the current available 
data). 

This means that 100 FEA must be realized in order to have 
enough data to be able to generalize the results for all input 
data in designing process, with a guaranteed error below 10%. 

For this grounding system configuration, a value of the 
grounding resistance for any combination of the material and 
geometrical parameters is obtained very fast, so the 
optimization process could be started up. Usually, the soil 
structure is known and the length of the electrode has to be 
chosen. 

VI. CONCLUSIONS 

This article presented the experiments and the results 
obtained for configuring a neural network capable of 
emulating the grounding resistance of a vertical electrode 
buried in a two-layered soil. 

The presentation was structured on two horizontally 
layered soil, which for zero or infinite thickness of the upper 
layer simulate also the homogenous soil. The number or/and 
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the arrangements of the layers could be modified, or/and the 
configuration of the grounding system could be altered (e.g. 
horizontally electrode, more simple electrodes, or a complex 
structure as it is for power substations) so the generality could 
be pushed further. 

Based on methodology depicted above we suggest that 
FEA combined with neural network analysis may be 
considered as the best computer aided investigation, not only 
for power system grounding systems, but also for many other 
systems used in engineering. 
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