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Abstract—Clustering process is defined as grouping similar 

objects together into homogeneous groups or clusters. Objects 

that belong to one cluster should be very similar to each other, 

but objects in different clusters will be dissimilar. It aims to 

simplify the representation of the initial data. The automatic 

classification recovers all the methods allowing the automatic 

construction of such groups. This paper describes the design of 

radial basis function (RBF) neural classifiers using a new 

algorithm for characterizing the hidden layer structure. This 

algorithm, called k-means Mahalanobis distance, groups the 

training data class by class in order to calculate the optimal 

number of clusters of the hidden layer, using two validity 

indexes. To initialize the initial clusters of k-means algorithm, the 

method of logarithmic spiral golden angle has been used. Two 

real data sets (Iris and Wine) are considered to improve the 

efficiency of the proposed approach and the obtained results are 

compared with basic literature classifier 
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I. INTRODUCTION 

Clustering is one of the most useful tasks in data mining 
process for discovering groups and identifying interesting 
distributions and patterns in the underlying data. The problem 
with Clustering is about partitioning a given data set into 
groups (clusters) such that the data points in a cluster are more 
similar to each other than points in different clusters [1]. 

In recent years, a number of clustering algorithms has been 
proposed and is available in literature. The radial basis 
function (RBF) neural network is one of the most used in data 
classification. 

RBF neural networks consist of three layers: an input 
layer, a hidden layer and an output layer. The input layer 
corresponds to the input vector feature space and the output 
layer corresponds to the pattern classes [2]. So the whole 
architecture is fixed only by determining the hidden layer and 
the weights between the middle and the output layers [3]. 

Its training procedure is usually split into two successive 
steps: training in the hidden layer followed by training in the 

output layer [4]. First, the centers of the hidden layer (HL) 
neurons are selected by clustering algorithms such as k-means 
[5], [6], support vector machine (SVM) [7] or hierarchical 
clustering [8].Second, the weights connecting the hidden layer 
with the output layer are determined by Singular Value 
Decomposition (SVD) or by Least Mean Squared (LMS) 
algorithms. 

One of the used techniques to find the optimal number of 
this HL is the logarithmic spiral which has seen a significant 
amount of research on nature-inspired optimization techniques 
such as neuro-computing in the past 25 years, evolutionary 
and genetic algorithms, particle swarm optimization. Most 
recently, a new multipoint meta-heuristics research method 
has emerged for 2-dimensional continuous optimization 
problems based on the analogy of spiral phenomena in nature, 
called 2- dimensional spiral optimization first proposed by 
Tamura and Yasuda in 2010 [9]. 

Focused spiral phenomena are approximated to 
logarithmic spirals, which frequently appear in nature, such as 
whirling currents, nautilus shells and arms of spiral galaxies. 
A Two-dimensional spiral optimization uses the feature of 
Logarithmic Spirals [LS] [9]. 

In this paper, a new learning algorithm is proposed for the 
construction of the radial basis function networks solving 
classification problems. It determines the proper number of 
hidden neurons automatically and calculates the centers values 
of radial basis functions. After the selection of the hidden 
neurons, the widths of nodes are determined by the P-nearest 
neighbors heuristic, and the weights between the hidden layer 
and the output layer are calculated by the pseudo-inverse 
matrix. 

The aim of this approach consists in transforming the 
problem of determining the number of hidden layer neurons to 
a clustering problem. In order to determine the number of 
clusters in the data of each class, the k-means algorithm is 
combined with two different validity indexes (the validity 
index of Davis Bouldin for the first classifier and Mean 
Square Error for the second classifier). 

In k-means algorithm, the used distance corresponds to the 
Mahalanobis distance. A solution is also given to overcome 
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the problem of setting the start values for the initial centers 
needed to start this algorithm using the proposed method "The 
logarithmic spiral golden angle". Two different real databases 
are used in order to evaluate the two proposed classifier 
performances. 

Next section presents the problem of the construction of 
the hidden layer for RBF neural networks. Section 3 describes 
in detail the logarithmic spiral golden angle. Section 4 is 
devoted to the elaborated solution to overcome the problem of 
the k-means algorithm. Section 5 describes the construction of 
the two proposed RBF classifiers. Experiments and 
discussions are presented in Section 6, followed by concluding 
remarks in Section 7. 

II. PROBLEM STATEMENT OF USE 

The construction of the hidden layer of RBF neural 
networks is by clustering algorithms such as k-means. K-
means clustering algorithm is one of the best-known 
algorithms used in clustering. 

However, it still has some problems one of which is in its 
initialization step which is generally done randomly by users. 
Another disadvantage of k-means is that it converges to local 
optimum, depending on its random initialization. 

The k-means algorithm classifies objects to a pre-defined 
number of clusters, which is given by the user (assume k 
clusters). The idea is to choose random cluster centers, one for 
each cluster. These centers are preferred to be as far as 
possible from each other. The Starting points affect the 
clustering process and results [10], “Fig. 1”. 

Each boot (initialization) is a different solution (local 
optimum) which can in some cases be far from the optimal 
solution (global optimum) [11]. A simple solution to this 
problem is to run the algorithm several times with different 
initialization and retain the best combination found. 

The use of this solution is limited because of its cost and 
because of the possibility of finding better results in a single 
execution [12]. 

 
Fig. 1. Clustering on a set of 2D points data, 3 clusters 

The main idea of this work is to improve the performance 
of the k-Means clustering algorithm by fixing its weaknesses.  
Randomness is one of the techniques wildly used in 
initializing K-means algorithm that is why it is considered as 
the main point of weakness that should be solved. 

However, because of the sensitivity of k-means to its 
initial points, two solutions have been proposed to this 
problem. The first one is to initialize the centers of k-means 
algorithm using the circle method [13]. The obtained results of 

this algorithm are the initial centers positions kC represented 

by the “Fig. 2”. 

The second solution is to initialize the centers of k-means 
algorithm using the logarithmic spiral golden angle in order to 
improve the clustering performance. In this paper, the second 
solution will be explained. 

 

Fig. 2. Tracing of initialization of the k centers maximum on the outline of 

the circle of radius r  and spaced by the angle  

III. THE LOGARITHMIC SPIRAL GOLDEN ANGLE 

The logarithmic spiral golden angle is a specific case of 
the logarithmic spiral. It represents a plane curve centered in a 
starting point and parameterized by the radius r , the angle 
and the Golden Ratio . 

A. The logarithmic spiral 

A Logarithmic Spiral is a plane curve for which the angle 
between the radius vector and the tangent to the curve is a 
constant [14]. Such spirals can be approximated 
mathematically defined by the following equation on the 2-

dimensional polar coordinate system  ,r  as [9]: 

  br a e                (1) 

Where a  and b are positive real with  0a   and 0b  . 

Equation (1) can be transformed into Cartesian coordinates 
as follows: 

 
       
       

 cos cos

 sin sin

b

b

x r ae

y r ae





   

   

  


 
           (2) 

In this work, the factor b of the logarithmic spiral has been 

set to zero ( 0b  ), it goes back to simplify the polar radius as 

follows: 
0br ae ae r a      

The following equation of the logarithmic spiral golden 
angle is obtained: 

r

é 
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B. The Golden ratio 

The irrational number, golden ratio is also known as 
golden section by the ancient Greeks, golden proportion, 
divine proportion or golden number [15]. 

The golden ratio , has many properties which people are 

eager to know. It is a number that is equal to the reciprocal of 

its own with the addition of 1: 
1

1


  . 

Likewise, the ratio of any two consecutive Fibonacci 
numbers converges to give approximates of 1.618, or its 
inverse, 0.618. This shows the relationship between Fibonacci 
numbers and golden ratio [16]. 

If the possibility of dividing a line in such a way that the 
ratio of the whole length to the length of the longer segment 
happens to be equal to the ratio of the length of the longer 
segment to the length of the shorter segment, then it could be 
said that the ratio is a golden ratio [15], “Fig. 3”. 

 

Fig. 3. Dividing of a whole length AC into two segments AB and BC  

This gives mean ratio if 
AB AC

BC AB
 . If the value of AB is 

set to be x , and use 1  to represent the length of BC, then 

1

1

x x

x


 is obtained. Then the irrational number is the only 

positive solution of the equation
2 1 0x x   , so 

1 5

2
x


  

Its value is: 
1 5

1,6180339887
2




  .Where the Greek 

letter phi ( ) represents the golden ratio. 

C. The Golden angle 

In geometry, the golden angle is created by dividing the 
circumference of a circle c  in two sections, a longer arc of 

length a and a smaller arc of length  b  such that: c a b       

and    
a b c a

a a b



    , “Fig. 4”. 

 
Fig. 4. Golden angle measurement 

The angle formed by the arc b  of circle c  is called the 

golden angle . It derives from the golden ratio  . 

 1
2,391 rad

2
2 2 137,5


  

 

 
      

 
 

IV. PROPOSED INITIALIZATION OF THE K-MEANS 

ALGORITHM WITH LOGARITHMIC SPIRAL GOLDEN ANGLE 

The k-means algorithm aims to minimize the distance 
between the object and the center of its group. In this section, 
the k-means algorithm based on the Mahalanobis distance and 
its proposition for initialization of the centers are presented. 

A. The k-means algorithm Mahalanobis distance 

specifications 

There are different types of distances such as: Minkowski 
distance, the average, the family of metrics, Euclidean 
Weighted and the Euclidean distance which is the most used, 
e.g. applied in the RBF Networks. [17] 

Moreover, the Mahalanobis distance is a distance measure 
and its utility is a way to determine the similarity between two 
multidimensional random variables. It differs from Euclidean 
distance, because the Mahalanobis distance takes into account 
the correlation between random variables, [17]. The 
Mahalanobis distance is defined by: 

     
1

( , )
T

d x y x y Cov X x y


                (4) 

With  Cov X  is the covariance matrix. 

If the elements x  and y  are independent, the covariance 

matrix is the identity and the Mahalanobis distance is equal to 
the Euclidean distance. The proposed algorithm based on the 
combination of Mahalanobis distance with k-means is 
described by the following steps: 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

266 | P a g e  

www.ijacsa.thesai.org 

Algorithm: Function Kmeans_distance_Mahalanobis (KDM) 

Begin 

Input:    - The database  1 2, ,....., d

NX x x x R  . 

- The position of each center  1 2, ,..., d

kC c c c R  . 

Output: - The new position of each center  * *

1 ,..., d

kC c c R    

Step 1: 
-  Determine the size N  of the data base of X .  

- Determine the number k  of centers to be used in the 

observation space C . 

-   Initialize the vector of the new positions of the centers 
*C to zero. 

Step 2:   - Determine the covariance matrix  Cov X  with 

the following equation: 

           
1

1
( )

1

N T

ij j ij j

i

Cov X X X X X
N 

  

  

with ijX X    ; 1,...,i n and 1,...,j p .
 

Where 
1

n

j ij

i

X X


  with jX : arithmetic averages. 

While: The new centers do not have, a significant 
displacement Do: 
Step 3: - Assign each observation (dot) group nearest center

jc : l jx c  according to the Mahalanobis distance formula:  

                
1

( , )
T

i j i jd i j x c Cov X x c


      

with  Nl ,...,1 and kj ,...,1 . 

Step 4:  - Recalculate the position of each new center:  

           
* 1

l j

N

j l

x cj

c x
N 

   

with jN = the set of points belonging to the center jc  and 

1,...,j k . 

End While 
End 

To increase the performance of the k-means algorithm 
Mahalanobis distance, a solution is proposed to initialize the 
k-means algorithm using the logarithmic spiral golden angle 
parameterized by the radius r , the angle  and the Golden 

ratio   and the Golden angle  [18]. This solution is divided 

into several steps: 

The first step is to calculate the maximum distance 

between two individual points  ,a b belonging to the 

database, then to define the middle ground G  between these 

two individual points and determine the radius R Gb  “Fig. 

5”. 

The second step is to calculate the golden number   by 

applying the following formula:
1 5

1,6180339887
2




   

The third is to initialize the values of the logarithmic spiral 

golden angle on the polar coordinate system  ,r  : the radius 

0 0r a a    and the angle 0 0   .The angle   

increases by the factor 
 1

2d





 


 and the radius r  

increases by the factor 
max max

G
d

k

R b
a

k
  . 

 

Fig. 5. Tracing of the two most distant individuals  ,  a b and their medium 

G  

To determine maxk , the suggestion of  Bezdek was adopted 

[19] as follows :
maxk N ,( N  is the size of the database) . 

The forth step is to determine the positions of the centers 
of the logarithmic spiral golden angle with center G  and radius

r a “Fig. 6”. The calculation of the center position kC is 

performed by applying the following formula: 

cos( )

sin( )

kx x

ky y

C G a

C G a





  


  
                                (5) 

With d    ; a a da   and max1,...,k k . 

 

Fig. 6. Tracing of the initialization of the k centers maximum on the outline 

of the logarithmic spiral golden angle 

Thereafter, the positions of these maxk centers in the 

variable  1 max,...,k kC c c will be saved. 
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The basic principle of the adopted strategy is summarized 
in the following algorithm: 

Algorithm: Init_Centres_Kmeans_ Logarithmic_Spiral 

Begin 

Input:   - The database  1 2, ,....., d

NX x x x R  . 

 - The maximum number of centroids maxk .  

Output: - The position of each center  1 max,.., ,..., d

k kC c c c R    

Step 1:   - Calculate the maximum distance D  between two 
points belonging to the base X . 

 - Calculate the center G  of D and the radius R Gb  .  

Step 2:   - Calculate the golden ratio  by applying the 

following formula: 
1 5

2



  

Step 3:   - Initialize the values of the logarithmic spiral 

golden angle on the polar coordinate system  ,r  : the 

radius 0 0r a a    and the angle 0 0   . 

- Fix the increment of the angle   by the factor 

 1
2d





 


 

- Fix the increment of the radius r  by the factor 

max max

G
d

k

R b
a

k
   

Step 4: - Determine the positions of the centers belonging to 
the logarithmic spiral golden angle with center G  and radius

r a according to the following formula: 

              
cos( )

sin( )

kx x

ky y

C G a

C G a





  


  
 

 With d    ; a a da   and max1,...,k k . 

Step 5: - Save the positions of the centers found in 

 1 max,.., ,..., d

k kC c c c R  . 

End 

B. Evaluation Measures 

Using an unsupervised clustering algorithm, such as k-
means algorithm, requires the determination of the number k 
of groups leading to the execution of the algorithm repeatedly 
for different values of this parameter. 

For optimal number of groups, a criterion should be used 
to evaluate the result of the algorithm. This criterion is known 
as the validity index [1], [20]-[22], [15, 16, 17, and 18] name 
based on the notions of compactness and separation. 

In literature, there are a lot of validity indexes, most of 
them are based on the notions of compactness within different 
groups and the separability between these different groups. In 
this article, the Davies-Bouldin index and the Mean Squared 
Error will be used as two validity indexes of neural classifiers. 

C. Davies-Bouldin Index 

This index takes into account both of the compactness and 
the separability of groups [23]. Its value is much lower than 

the groups are compact and well separated. It promotes 
hyperspherical groups and is, therefore, particularly well-

suited for a use with the k-means algorithm. The DBI index is 

defined by the following expression: 

    
 1

1
max

,

k
c i c j

DB
i j

i cc i j

d c d c
I

K D c c



                    (6) 

Where  c id c is the average distance between an object 

and its group ic following the center and  ,cc i jD c c is the 

distance between the centers of groups ic and jc with: 

 
1

1 lN

c i l j

ll

d c x c
N 

                      (7)  

 ,cc i j i jD c c c c              (8) 

D. Mean Squared Error 

The Mean Squared Error is frequently used to assess the 
risk of an estimator. It is also useful to relay the concepts of 
bias, precision, and accuracy in statistical estimation. In this 
work, the MSE was used for groups’ compactness measure for 
each centroid [24]; it is notably equivalent to the Euclidean 
function of the k-means algorithm: 

2

1 1

N k

il l j

l j

E x c
 

               (9) 

With: 
1 if 

0 else    

l i

il

x c






 

V. NEW ALGORITHMS FOR THE CONSTRUCTION OF THE 

HIDDEN LAYER OF THE RBF CLASSIFIER 

Two new algorithms were used to characterize the hidden 
layer classifier i.e. to determine the number of centers of 
different Gaussian and the value of each center. 

In what follows, the principle of the proposed classifiers is 
presented. It is also explained how the two validity indexes 
(IDB and MSE) are combined with the k-means algorithm 
Mahalanobis distance to determine automatically the number 

k of groups. 

However, it is necessary to fix a maximum number of 

centroids maxk . The maxk value can be defined by the user if 

he/she knows the structure of his database. Given that it is not 
always the case, the Bezdek [19] suggestion is adopted, so the 

maxk N  ( N  is the size of the database) is chosen. 

Applying these algorithms to all classes and summing the 
number of the obtained groups, the number of neurons in the 
hidden layer is determined. A neuron is then assigned to each 
group. For this RBF classifier, the database was partitioned

 1 2, ,..., d

NX x x x R   in individual blocks according to the 

http://www.statlect.com/glossary/estimator.htm
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number of output classes 1,2,...,j m  .The database

 1 2  .   . .
T

d mX X X X   is obtained. 

Then, we apply the Principal Component Analysis (PCA) 

to the data base dX in order to reduce it to a new basis two-

dimension   2

1 2,dX x x R   . 

Principal component analysis (PCA) is a widely used 
statistical technique for unsupervised dimension reduction. K-
means clustering is a commonly used data clustering for 
performing unsupervised learning tasks [25]. 

The PCA is based on the calculation of averages, variances 
and correlation coefficients. The main basis of dimension 
reduction is that PCA picks up the dimensions with the largest 
variances. 

The PCA allows, in the same time, a reduction of data and 
an easier interpretation in the treated domain, as the new 
dimensions are often very significant [26]. In this case, the 
two largest variances were chosen to represent the new 
database. 

The next step is to determine the number of centers and the 

center position of each class  1 1,...,
d

kC c c R    through the 

classifier based on the k-means algorithm with Mahalanobis 
distance. 

The centers of each class 1,...,j m  found in the

1

.

.

m

C

C

C





 
 
 
 
  
 

 matrix are grouped and the k-means algorithm 

Mahalanobis distance is applied to the new positions of the 

centers  * * *

1 2, ,....., d

KC c c c R   . 

To complete the construction of the hidden layer classifier, 
there is a second parameter to consider in the neurons, which 

is the width factor j for each centroid jc  ( 1,...,j k ). This 

factor is calculated using the following formula: 

 
1

1

8

Na

j i j

ia

x c
N




                             (10) 

Witch aN   represents the training data 

A. Construction of  the RBF classifier KMD-LS-IDB 

The proposed algorithm (KMD-LS-IDB) based on the k-
means algorithm with Mahalanobis distance combined with 
the Davies-Bouldin validity index. This classifier determining 

the number and the centers values of the hidden layer for each 
class of the database is described below: 

Begin 
Input: 

- The block database  1,...,
d

j mX X X R    of one 

class of data base dX , taking the case of the block. (The 

same approach for other classes). 

Output: - The position of each center  1 1,...,
d

kC c c R  

. 
Step 1:  - Determine the size n and the number of 

characters (the attributes) p  of the data base 1X  . 

Step 2:   - Initialize the minimum number of centroids 

min 2K  and then look for the maximum number of 

centroids by
maxK n . 

- Initialize the variables mina k K  and 1d  . 

Step 3:  - Apply Algorithm Init_Centres_Kmeans_ 
Logarithmic_Spiral which initializes the centers for 

kmeans algorithm of the data base 1X  . 

Step 4:  - Repeat the following steps until maxk K  

Step 4.1:  -If max 1k K   Then: 

   - Take the following centers positions  1,...,
d

aC c c R  .    

   - Deduce the number of the centers k .  

               End If 
Step 4.2:  - Apply k-means algorithm with Mahalanobis 
distance to determine the new positions of the 

 * *

1 ,..., d

aC c c R   centers. 

Step 4.3:  - Calculate the compactness and separability of 

groups with the Davies- Bouldin Index: DBI . 

 

Step 4.4: - Save DBI  variable in the table called _Tab IDB .  

Step 4.5: - Increment variables 1a a  , 1d d  . 

Step 5:  - Determine  : the DBI lowest index of the table

_Tab IDB
 
. 

- Take the following centers positions  1 1 1,..., dC c c R    

as the optimal number required classifying 1  class 

centers. 
End 

B. Construction of RBF classifier KMD-LS-MSE 

The proposed algorithm (KMD-LS-MSE) based on the k-
means algorithm with Mahalanobis distance combined with 
the Mean Squared Error validity index. This classifier 
determining the number and the centers values of the hidden 
layer for each class of the database is described below:  



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 2, 2017 

269 | P a g e  

www.ijacsa.thesai.org 

Begin 

Input: 

- The block database  1,...,
d

j mX X X R    of one 

class of data base dX , taking the case of the block. (The 

same approach for other classes). 

Output: - the position of each center  1 1,...,
d

kC c c R   . 

Step 1:   - Determine the size n and the number of 

characters (the attributes) p  of the data base 1X  . 

Step 2:   - Initialize the minimum number of centroids 

min 2K  and then look for the maximum number of 

centroids by
maxK n . 

- Initialize the variables mina k K  and 1d  . 

Step 3:  - Apply Algorithm Init_Centres_Kmeans_ 
Logarithmic_Spiral which initializes the centers for 

kmeans algorithm of the data base 1X  . 

Step 4:  - Repeat the following steps until maxk K  

Step 4.1:  -If max 1k K   Then: 

   - Take the following centers positions  1,...,
d

aC c c R  .    

   - Deduce the number of centers k .  

               End If 

Step 4.2:  - Apply k-means algorithm with Mahalanobis 
distance to determine the new positions of the 

 * *

1 ,..., d

aC c c R   centers. 

Step 4.3:  - Calculate the compactness and separability of 

groups with the Mean Squared Error Index: SEM . 

Step 4.4: -Save SEM variable in the table called _Tab MSE .  

Step 4.5: - Increment variables 1a a  , 1d d  . 

Step 5:  - Determine  : the SEM lowest index of the table

_Tab MSE . 

- Take the following centers positions  1 1 1,..., dC c c R    

as the optimal number required classifying 1  class 

centers. 
End 

C. Calculation of synaptic weight 

After determining the parameters of the proposed classifier 
hidden layer, the learning is finished by the calculation of the 

synaptic weight ijw , connecting the hidden layer neurons to 

those of the output layer.  

The linearity property of the outputs ( )j ly x of the network 

is used. The expression of each of the m outputs is written as: 

( ) ( )j l j l ijy x h x w                  (11) 

The global output of the network is written as follows: 

Y H W            (12) 

The objective is to determine the matrix W that minimizes 

an error function, chosen as the square of the sum of 
classification errors. 

The weight of the output layer can be calculated by the 
following matrix equation: 

11 12 1 11

21 22 2 22

1 2

........

........

... ... ........ ... ......

........

M

M

N N NM NM

W YH

yw

yw

yw

  

  

  

    
    
     
    
    

    

                (13) 

With 

H : The matrix of Radial Basis Functions 

Y : The matrix of the output layer. 

W : The weight matrix of centroids. 

ij : The Gaussian widths of the matrix H . 

The above equation is giving by: 

1H W Y W H Y                            (14) 

Given that the H matrix is rarely square, the pseudo- 
inverse of the matrix H is applied according to equation (15): 

1
T TW H H H Y



                                             (15) 

VI. EVALUATION OF RBF CLASSIFIERS 

The purpose of this section is to evaluate the performance 
and efficiency of the proposed RBF neural classifiers. The 
performance of these RBF neural networks classifiers is tested 
with two different databases: Iris and Wine among the 
different data sets available from the machine learning 
community by the University of California at Irvine (UCI) 
[27]. 

The first test is carried out with the Wine database which 
includes the results of a chemical analysis of types of wine 
produced in different regions of Italy from different grapes 
varieties. The concentration of 13 components are indicated 
for each of the 178 types of wine (patterns) which are 
analyzed and divided into three classes (59 in Class 1, 71 in 
Class 2 and 48 in Class 3). 

The second test is done with Iris database which is one of 
the most popular data set to examine the performance of novel 
methods in pattern recognition and machine learning. It is 
composed of three classes (i.e., iris Setosa, iris Versicolor and 
iris Virginica) each having 50 patterns with four features. 

To evaluate the proposed classifiers performances, the 
holdout method is used. It consists on dividing the initial data 
into two independent sets: one for training and the other for 
testing the classifier performances. 

The results given by the RBF classifier built with this 
algorithm are compared with those obtained with other neural 
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classifiers: the Learning Vector Quantization (LVQ) classifier 
proposed by Kohonen, the RBF neural network classifier for 
which the hidden layer is obtained using adaptive Pattern 
Classifier (APCIII) [28], the Multi-Layer Perceptrons 
classifier (MLP) and with a reference: the K nearest Neighbor 
(KNN). 

The present comparative results of different classifiers 
over Wine and Iris are illustrated in Table I and Table II. 

TABLE I. RESULTS OF THE RECOGNITION RATE OVER WINE  DATABASE 

Classification algorithms Database: Wine 

KMD-LS-IDB 98,88 % 

KMD-LS- MSE 95.55 % 

LVQ 66,14 % 

APCIII 67,04 % 

MLP 73,80 % 

KNN 70,45 % 

TABLE II. RESULTS OF THE RECOGNITION RATE OVER IRIS DATABASE 

Classification algorithms Database: Iris 

KMD-LS-IDB 93.46 % 

KMD -LS-MSE 93.46 % 

LVQ 94,00 % 

APCIII 93,33% 

MLP 96,66 % 

KNN 96,70 % 

Considering Wine database, the best recognition rate is 
obtained by the KMD-LS-IDB proposed classifier and then 
the proposed classifier KMD-LS-MSE. For Iris database, the 
best recognition rate is given for the KNN classifier; however, 
the difference with the two proposed classifiers is not 
important. 

Then, the proposed algorithms give good results in terms 
of recognition rate but the most powerful of them is the 
classifier KMD-LS-IDB. 

VII. CONCLUSION 

In this paper, new RBF neural networks classifiers has 
been designed to classify database. The proposed algorithms 
aim to deduce the centers of the hidden layer neurons and to 
calculate the number of the neurons in particular. 

The basic idea of this approach is to select the training data 
from the database class by class and to decide about the 
optimal number of neurons in each class by using two 
different validity indexes (the validity index IDB and the 
MSE). This number is integrated in the k-means algorithm 
with the Mahalanobis distance. 

A solution was also proposed to overcome the problem of 
initialization of centers necessary for the start of the K-means 
algorithm using the method of the logarithmic spiral golden 
angle. 

The obtained classifiers results are satisfactory in 
comparison with other considered classifiers in literature for 
two real databases (Iris and Wine). 
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