
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Reverse Area Skyline in a Map

Annisa
Graduate School of Engineering,

Hiroshima University, Japan

Asif Zaman
Graduate School of Engineering,

Hiroshima University, Japan

Yasuhiko Morimoto
Graduate School of Engineering,

Hiroshima University, Japan

Abstract—Skyline query retrieves a set of data objects, each
of which is not dominated by another object. On the other
hand, given a query object q, “reverse” skyline query retrieves
a set of points that are “dynamic” skyline of q. If q is a given
preference of a user, “dynamic” skyline query retrieves a set of
points that are not dominated by another point with respect to
q. Intuitively,“reverse” skyline query of q retrieves a set of points
that are as preferable as q. Area skyline query is a method for
selecting good areas, each of which is near to desirable facilities
such as stations, warehouses, promising customers’ house, etc.
and is far from undesirable facilities such as competitors’ shops,
noise sources, etc. In this paper, we applied reverse skyline
concept to area skyline query and proposed Reverse Area Skyline
algorithm. Analogically, given an area g, reverse area skyline
query selects areas, each of which are as preferable as g. Assume
that a real estate company wants to sell an area. Reverse area
skyline query must be useful for such company to consider
effective real estate developments so that the area attracts many
buyers. Reverse area skyline query can also be used for selecting
promising buyers of the area.

Keywords—skyline query; reverse skyline query; area skyline
query

I. INTRODUCTION

Skyline query [1] is a widely applicable method for select-
ing small number of superior data objects. It retrieves a set
of data objects, each of which is not dominated by another
object. Given D as a d-dimensional database, an object pi
is said to dominate another object pj if pi is not worse in
any of the d dimensions than pj , and pi is better than pj
in at least one of the d dimensions. Fig. 1 shows a typical
example of skyline. Consider a typical online booking system.
A user can select a hotel from the list in Fig. 1 (a) based
on her/his preference on the price and distance of the hotel
to the beach. Assume that smaller value is better for each
attribute. In this situation, {h1, h3, h4} are skyline objects
because they are not dominated by another object. Other
objects {h2, h5, h6, h7, h8} are dominated by h4. Fig. 1 (b)
shows skyline hotels from the given hotel list.

Dynamic skyline query [2] and reverse skyline query [3]
is a variant of skyline query. Given a query object q, “reverse”
skyline query retrieves a set of points that are “dynamic”
skyline of q. If q is a given preference of a user, “dynamic”
skyline query retrieves a set of points that are not dominated
by another point with respect to q. Intuitively,“reverse” skyline
query of q retrieves a set of points that are as preferable as q.
Assume that a businessman is running a hotel h2. Reverse
skyline query of h2 retrieves a set of hotels that are as
preferable as h2. Therefore, he/she can expect customers who
are interested in reverse skyline hotels of h2, might also be
interested in h2. Skyline query retrieves candidate hotels from

0

10

20

30

40

50

60

0 10 20 30 40 50

P
r
ic

e

Distance

ID Distance Price

h1 40 5

h2 35 25

h3 20 10

h4 10 20

h5 15 40

h6 25 55

h7 40 45

h8 45 55

h2

h1

h3

h4

h5

h6

h7

h8

(a) (b)

Fig. 1: List of Hotel (a) and Conventional Skyline (b)

users’ perspective, while reverse skyline query retrieves hotels
from hotels’ perspective.

Skyline and reverse skyline query are two important meth-
ods for selecting smaller number of objects in various applica-
tions, one of which is in location selection problem. Choosing
good location in a map is very important for many location-
based applications. Usually, one would consider a location
as a good location if it is near to desirable facilities that
would be useful and/or pleasant to her/him such as stations,
schools, supermarkets, etc. and is far from undesirable facilities
that would unpleasant to her/him, such as competitors, noise
sources, pollution sources, high-crime areas, etc.

Area skyline query is a method for selecting good areas,
which are near to desirable facilities and far from undesirable
facilities. In [4] and [5], the idea of skyline queries [1] is used
to select area skyline in a map. We proposed Grid-based Area
Skyline (GASky) algorithm in [5], which divides query area
into grids as disjoint areas, and calculate minimum (min) and
maximum (max) distance of each grid from closest desirable
“+” facilities and closest undesirable “-” facilities. An area
g dominates another area g′ if g has smaller or equal max
distance than min distance of g′ for all facility types. Shaded
grids in map in Fig. 2 shows an example of area skylines.

Area skyline query is important method to select non-
dominated area from the users’ perspective, who need some
good locations based on his/her preference. Assume a real
estate company has an area g (grid (2,18) in Fig. 2) to develop
apartment, office, or market complex. The company needs to
know who will be interested in the area. By using the idea of
“reverse skyline”, reverse skyline areas of g can be identified.
Grey grids in Fig. 3 are dynamic area skyline of grid (1, 14),
while grey grids of Fig. 4 are reverse area skyline of g. Notice
that g is a dynamic area skyline of grid (1, 14), so that grid
(1, 14) is a reverse area skyline of g.

www.ijacsa.thesai.org 333 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

f1
1

+
f1

2
+

f2
1

-

f2
2

-

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Fig. 2: Area Skyline Queries

f1
1

+
f1

2
+

f2
1

-

f2
2

-

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1,14

Fig. 3: Dynamic Area Skyline of grid (1,14)

On the analogy of the utilization of “reverse skyline”,
the “reverse” skyline areas has invaluable information. Let us
consider a real estate company that have an area g (grid (2,18)
in Fig. 4). Information about reverse area skyline, shaded area
in Fig. 4, must be useful for such company to consider effective
real estate developments so that the area attracts many buyers.
Reverse area skyline query can also be used for selecting
promising buyers of the area, since it may give the company
clues to find who will be interested in the area. Moreover, it
also may help to predict what type of business that would be
suitable for the area considering the type of business that had
already exist in the reverse area skylines.

In this paper, we present the reverse area skyline query and
propose an effective and efficient method to answer reverse
area skyline problem.

The contributions of this paper are summarized below:

1) We have introduced a new skyline query, i.e., reverse

f1
1

+
f1

2
+

f2
1

-

f2
2

-

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

g

Fig. 4: Reverse Area Skyline Result

area skyline query in the literature.
2) We have introduced some important concepts, dy-

namic area skyline and global area skyline, and
propose Reverse Area Skyline (RASky) algorithm to
answer the reverse area skyline problem.

3) We have conducted intensive experiments to prove
the efficiency of proposed algorithm.

The rest of this paper is organized as follows. Section 2
reviews about skyline, dynamic skyline, reverse skyline, global
skyline, spatial skyline, and area skyline issues. Section 3
formulates the problem definition and proposes the reverse area
skyline algorithm. Section 4 presents the result of experiments,
and finally Section 5 gives conclusions and future works.

II. LITERATURE REVIEW

A. Skyline, Dynamic Skyline, Reverse Skyline, and Global
Skyline

Skyline query is a popular method for selecting small
number of preferred answer from database. Since first intro-
duced in [1], many algorithms have been proposed for answer-
ing skyline query problem, [1], [2], [6], [7]. Two important
variants of skyline query are dynamic skyline query [2] and
reverse skyline query [3]. Currently, the most efficient method
in computing skyline and dynamic skyline is Branch and
Bound Skyline (BBS), proposed in [2], which is a progressive
algorithm using the R-tree, while The Branch and Bound
Reverse Skyline (BBRS) algorithm [3] are the state-of-the-
art algorithms for answering reverse skyline queries using the
global skyline concept. In particular, BBRS is an improved
customization of the original BBS algorithm [2]. GSRS is an
improvement of BBRS to answer reverse skyline query [8].

In dynamic skyline query, a user specifies her/his prefer-
ence as a query point in the data space and the query retrieves
skyline objects that are not dominated by another with respect
to the query object. In reverse skyline query, given a dataset
P and a query point q in the space of P , an object p in P
called as a “reverse skyline” of q if q is a dynamic skyline of
p.

www.ijacsa.thesai.org 334 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

0

10

20

30

40

50

60

70

80

0 10 20 30 40 50 60

Distance

h2

h1

h3

h4

h5

h6

h7

h8

0

10

20

30

40

50

60

0 10 20 30 40 50 60

Distance

h2

h5

h6

q q

h4
I

h3
I

h2
I

h1
I

Price

Price

(a) (b)

qI

Fig. 5: Dynamic Skyline of h5 (a) and Reverse Skyline (b)

Fig. 5 shows an example of a dynamic and reverse
skyline queries. The example assumes that a user specifies
q = (30, 30) as a query point. To find reverse skyline of q,
compute dynamic skyline of all objects, and find which objects
that have q in its dynamic skyline. Fig. 5 (a) shows dynamic
skyline query of h5, (x = distance, y = price) = (15, 40).
To find dynamic skyline based on h5, we first transform
objects as follows. If x value of objects is less than 15, then
transform the x value into 15 + (15 − x). Similarly, if y
value of objects is less than 40, then transform y values into
40 + (40 − y). These transformations result in transformed
data objects as in Fig. 5 (a). In the example, h2 = (35, 25) is
transformed to h′2 = (35, 55), h4 = (10, 20) is transformed to
h′4 = (20, 60), and so forth. We, then, compute skyline query
for the transformed data objects as dynamic skyline query
for (15, 40), which retrieves {h4, h6, q, h7}. Since q is in the
dynamic skyline h5, h5 is a reverse skyline of q. Similarly, we
calculate other reverse skyline objects of q as in Fig. 5 (b).

Skyline query in the Fig. 1 retrieves candidate hotels from
users’ perspective. On the other hand, reverse skyline query
in Fig. 5 (b) retrieves hotels from hotels’ perspective. Assume
that a company is running a hotel whose detail is represented
as a query point q. Intuitively, a user that is interested in h5

hotel may also be interested in q since q is a dynamic skyline
of h5. The similar intuition holds on h2 and h6. Therefore, the
company can expect users who are interested in h2, h5, and
h6 might also be interested in q.

Calculating dynamic skyline for each p in P to find reverse
skyline of q needs very large computation. In order to reduce
the search space, Dellis and Seeger introduced Branch and
Bound Reverse Skyline (BBRS) algorithm using a concept
called global skyline in [3].

Given a d-dimensional data set P and a query point q, p1
said globally dominates p2 with respect to q if: (1) (p1-q)(p2-
q)>0 for all dimension, and (2) distance p1 to q are smaller
or equal than distance p2 to q for all dimension, and smaller
at least in one dimension. Rule (1) is to make sure that p1 and
p2 are in the same quadrant w.r.t query point, while Rule (2)
is dominance rule of global skyline. Evangelos and Seeger [3]
have proved that reverse skyline point always a member of
global skyline point.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

P
r
ic

e

Distance

h1

h2

h3

h4

h5

h6

h7

h8

q

Fig. 6: Global Skyline and Query window

For selecting reverse skyline points from global skyline
points, BBRS applies a window query for each global skyline
point p. Window Query is an empty range query (boolean
range query) which will return either true or false depending
on whether there is any object inside the given range or
not [9]. In [3], window query is the rectangle area with p
as its center, and distance to a given query point q and its
extension as its border coordinate. If there is another point
inside this rectangle, then p is not a reverse skyline of q,
otherwise p is a reverse skyline of q. Moreover, to reduce
the number of window query checks, Gao et al. [8] introduced
global-1-skyline concept in GSRS algorithm, which is a set of
points that globally dominated by at most one global skyline
point. They have proved that instead of checking all globally
dominated points against all window queries, we simply just
need to check whether any global skyline point or global 1-
skyline point is inside the window query. Using the concept
of global skyline point, BBRS and GSRS only consider points
that potentially can be reverse skyline points and prune other
points.

Fig. 6 shows an example of global skyline points of q
({h2, h3, h4, h5, h6, h7}), global 1-skyline points, h1 and h8

(white points), and the window query of h7. Based on rule 1
in global skyline definition, each point is only compared with
other points in the same quadrant. There are four quadrants in
Fig. 6. h5 and h6 are in the same quadrant, h7 and h8, h4 and
h3, and h2 and h1 are in the other quadrants. Since h8 is inside
the window query of h7, then h7 is not a reverse skyline of q.
Applying window query to the rest of global skyline points,
we can get the reverse skyline points of q are h2, h5, and h6

(black points). h7, h3, and h4 (grey points) are global skyline
points, but not reverse skyline points since there is another
point inside their window query.

Due to the importance of its use in various fields of
application, research in the reverse skyline has gained many
attention in the database research community such as in [3],
[10]–[15]. All of the proposed reverse skyline variations above
only consider about reverse skyline for zero dimensional data.
Specifically, none of them considers about how to select

www.ijacsa.thesai.org 335 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

reverse skyline from two dimensional objects, such as areas in
a map. Therefore, all the previous algorithms can not directly
be used to answer reverse area skyline problem.

B. Spatial Skyline Query

Spatial skyline query (SSQ) was first introduced in [16].
Given a set of data points P and a set of query points Q, an
SSQ retrieves those points of P which are not dominated by
any other point in P considering their derived spatial attributes,
which is the point’s distance to a query point. The difference
between spatial skyline query with the regular skyline query
is that the domination condition of P depends on the distance
to query points Q.

There are several researches works of spatial skyline prob-
lem, like in [17]–[23]. All of the above studies are based on the
assumption that there are candidate points to choose skyline
location and focused only on spatial data points, which is a
zero dimensional data.

C. Area Skyline Query

Area skyline query was introduced in [4] and [5]. Given
A as a domain area on map and g as rectangular query area
in A. Let F = {F1, ...Fm} be a set of facility types, which
can be categorized into m types. Each type is classified into
desirable (annotated by + mark) or undesirable (annotated
by − mark). Each facility type has some number of facility
objects mi, for example, a desirable facility F1+ has two
objects F1+ = {f1+1 , f1

+
2 }. Area skyline query using GASky

algorithm consist of two steps. In the step one, GASky would
divide A into sxt grids, where s is a number of rows and t is a
number of columns. Let us consider a map in Fig. 2. Suppose
a company would like to build a new housing complex in
a region. To attract customers, the housing complex should
be in an area that is near to train stations (point) and far
from pollution source (triangle). There are two train stations
(f1+1 , f1

+
2) and two pollution sources (f2−1 , f2

−
2) in this

region. Note that “+” symbol is annotated to train stations,
which are desirable facilities, and “-” symbol is annotated
to pollution sources, which are undesirable facilities. In this
situation, the company has to find two dimensional area on the
map. In this example, the region is divided into 20× 20 grids,
say grid (0,0), ..., grid (19,19), each of which can be identified
by row and column number. Then, GASky finds the closest
train station and the closest pollution source from each grid
and calculates min and max distance to the closest facilities
and record the computation result into Minmax table like in
Fig. 7. Min distance is the closest distance from grid to the
closest facility, while max distance is the farthest distance from
grid to the closest facility.

Since each grid is surrounded by four vertexes, to simplify
in calculating min and max distance from each grid to closest
facility type, GASky calculates distance from vertexes first.
Using Voronoi diagram of each facility type, GASky finds
the closest facility object for each type to each vertex, and
then calculates its distance. Using vertex distance, GASky can
calculate min and max distance for each grid easily [5]. For
example, the closest F1 facility to four vertexes of a grid
g0,0 is f1+2 (as shown in Fig. 2). In common case, using
these vertexes’ distance information, GASky simply add the

lowest value as min distance, and the highest as max distance.
However, there are two special cases in calculating the min
distance: first if the facility is inside the grid, and the other
is if the facility is outside of the grid but one of the facility’s
coordinate is located between the coordinate of two vertexes.
In the first case, 0 value simply added to the min distance of
the grid, but in the second case we need to recalculate min
distance from the facility to the edge connecting those two
vertexes.

Fig. 7 is a partial Minmax table that records min and
max distance to each facility type for grid (0, 9), (1, 15), and
(0, 19) in Fig. 2. In the table, notice that each distance value of
undesirable facility was multiplied by -1 and swapped between
its min and max value, so that we can say that the smaller value
is better.

Grid

ID

Closest

F1+

Closest

F2-

F1+

min

F1+

max

F2-

min

F2-

max

0,9 f12
+ f21

- 0.5 1.6 -17.5 -16.5

1,15 f11
+ f22

- 0.7 2.1 -17.3 -16.1

0,19 f12
+ f21

- 20.8 22.1 -3.5 -2.5

Fig. 7: Minmax Table

After completing Minmax table, in the second step GASky
finds area skyline using area skyline dominance rule. A grid g
would dominate another grid g′ if for all distance to all facility
type, max distance of g is smaller or equal than min distance
of g′. Area skyline is a set of grids that are not dominated
by another grid. Grid (0, 9) and (1, 15) dominates (0, 19).
Therefore, (0, 19) is not an area skyline. GASky returns non-
dominated areas (records) in the Minmax table (shaded area
in Fig. 2) as area skyline.

The computational cost analysis of GASky step 1 shows
that GASky takes O(stm) in addition to the Voronoi diagrams’
construction time, where s,t, and m are the number of rows,
the number of columns, and the number of facility types,
respectively. Experiment result in [5] shows that processing
time of GASky increases when the number of facility type, the
number of objects, and the number of grids increase. The ratio
of skyline, which is the ratio between the number of skyline
grids compared to all grids, would be high if the number of
grids is small and the number of facility type and facility
objects are big. If a user prefers small number of area skyline,
she/he should increase the number of grids, so that the ratio of
skyline areas will decrease. GASky can answer area selection
based on user’s perspective, but not from the company/business
owner perspective. Nevertheless, since GASky operates on two
dimensional object, we can use step one method of GASky to
calculate Minmax table in reverse area skyline problem.

III. REVERSE AREA SKYLINE QUERY

In this section, we propose a reverse skyline query for grids
in a map, which we call “Reverse Area Skyline Query”.

www.ijacsa.thesai.org 336 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

A. Problem Definition

Let A be a rectangular target area in which there are spatial
objects. Each spatial object can be categorized into one of m
facility types. Let Fk be a set of type k (k = 1, ...m) objects,
which are Fk = {fk1, fk2, ..., fknk

} where nk is the number
of objects of the type k facility.

1) Grids and Vertexes: We divide A into s × t square
grids where s is the number of rows, and t is the number
of column. We can identify each grid using row number and
column number. For example, gi,j is a grid that lies in the
i-th row and the j-th column. Each square grid is surrounded
by four vertexes, each of which can also be identified by row
number and column number. For example, top-left, top-right,
bottom-left, and bottom-right vertex of gi,j can be identified
as vi,j , vi,j+1, vi+1,j , and vi+1,j+1, respectively. In Fig. 8,
we defined the query grid g, and divided an area into 12x12
grids. g4,6 is surrounded by four vertexes v4,6, v4,7, v5,6 and
v5,7, respectively. For each vertexes, we find the nearest object
of each facility type using Voronoi diagram. After that, we
calculate min and max distance from each grid using the same
calculation in GASky step 1 as discussed in Section II-C, and
record the distances in the Minmax table. From now, we call
one record in Minmax table as one object.

0

1

2

3

4

5

6

7

8

9

10

11

0 1 2 3 4 5 6 7 8 9 10 11

f11
+

f12
+

f21
-

f22
-

0,5

4,6

2,10

6,4

4,6

5,6

4,7

5,7

0,0

11,11

Fig. 8: Target area divided into 12 x 12 grids

2) Dynamic Area Skyline: Let min(dk(g)) and
max(dk(g)) be the the min and max distance to facility fk
of grid g, and min(dk(q)) and max(dk(q)) be the the min
and max distance to facility fk of query grid q. In order
to calculate dynamic area skyline, we need to transform
the distances similar to conventional dynamic skyline. Let
min(dk(g))

T and max(dk(g))
T are the transformed min

and max distance, respectively. There are six cases to
transform min(dk(g)) and max(dk(g)) w.r.t query grid q
into min(dk(g))

T and max(dk(g))
T . Fig. 9 illustrates the

transformation of six cases in dynamic area skyline.

In all cases, we assume min(dk(q)) and max(dk(q)) are
5 and 8, respectively. In case 1, assume min(dk(g)) and
max(dk(g)) are 9 and 11. Since 9 and 11 are larger than
8, then min(dk(q))

T and max(dk(q))
T become 1 (9-8) and

Case 1

Case 3

Case 6 Case 5

Case 2

Case 4

5 8 9 11 5 8 6 11

5 8 6 7 5 8
1 11

5 8 1 6 1 4 5 8

Fig. 9: Transformation cases

3 (11-8). In case 2, assume min(dk(g)) and max(dk(g)) are
6 and 11. Since 6 is between 5 and 8, and 11 is larger than 8,
then min(dk(q))

T and max(dk(q))
T become 0 and 3 (11-8).

In case 3, assume min(dk(g)) and max(dk(g)) are 6 and 7.
Since 6 and 7 are between 5 and 8, then min(dk(q))

T and
max(dk(q))

T become 0. In case 4, assume min(dk(g)) and
max(dk(g)) are 1 and 11. Since 1 is smaller than 5 and 11
is larger and 8, then min(dk(q))

T and max(dk(q))
T become

0 and 3, just like in case 2. In case 5, assume min(dk(g))
and max(dk(g)) are 1 and 6. Since 1 is smaller than 5 and
6 is between 5 and 8, then min(dk(q))

T and max(dk(q))
T

become 0 and 4 (5-1). In case 6, assume min(dk(g)) and
max(dk(g)) are 1 and 4. Since 1 and 4 are smaller than 5,
then min(dk(q))

T and max(dk(q))
T become 1 (5-4) and 4

(5-1).

We then formally defined Case 1 to 6 as:

if min(dk(g)) ≥ max(dk(q)), then

min(dk(g))
T = min(dk(g))−max(dk(q))

max(dk(g))
T = max(dk(g))−max(dk(q))

(1)

if max(dk(g)) > max(dk(q)) and max(dk(q)) > min(dk(g)) ≥
min(dk(q)) , then

min(dk(g))
T = 0

max(dk(g))
T = max(dk(g))−max(dk(q))

(2)

if min(dk(g)) ≥ min(dk(q)) and max(dk(g)) ≤ max(dk(q)) ,
then

min(dk(g))
T = 0

max(dk(g))
T = 0

(3)

if min(dk(g)) < min(dk(q)) and max(dk(g)) > max(dk(q)) ,
then

min(dk(g))
T = 0

max(dk(g))
T = max(dk(g))−max(dk(q))

(4)

www.ijacsa.thesai.org 337 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

if min(dk(g)) < min(dk(q)) and min(dk(q)) < max(dk(g)) ≤
max(dk(q)) , then

min(dk(g))
T = 0

max(dk(g))
T = min(dk(q))−min(dk(g))

(5)

if max(dk(g)) ≤ min(dk(q)), then

min(dk(g))
T = min(dk(q))−max(dk(g))

max(dk(g))
T = min(dk(q))−min(dk(g))

(6)

Definition 1. Dynamic Area Skyline Query

For two objects, g and g′, we said g dynamically dominates
g′ w.r.t q, if and only if max(dk(g))

T ≤ min(dk(g
′))T for

all k (1 ≤ k ≤ m). Dynamic area skyline query of q retrieves
the set of all area objects that are not dynamically dominated
by any other objects w.r.t q.

Based on dynamic area skyline definition, we can formally
define the reverse area skyline of query area q.

Definition 2. Reverse Area Skyline Query

Let G be a set of d-dimensional objects. Reverse area
skyline query w.r.t query area q retrieves all area objects g ∈ G
where q is in the dynamic area skyline of g. In other words,
we said g is reverse area skyline of q if @g′ ∈ G such that
max(dk(g

′))T ≤ min(dk(q))
T for all k (1 ≤ k ≤ m) w.r.t g.

Using Definition 2, we can compute reverse area skyline
query by performing dynamic area skyline query for each grid
objects, and retrieve set of grid objects which have query
area q in their dynamic area skyline result. But as discussed
in Section II-A, to compute reverse skyline by computing
dynamic skyline for each object is time-consuming. In this
paper, we define global area skyline concept to compute
reverse area skyline. We extend global skyline concept in [3]
so that it can be applied in area skyline.

3) Disjoint, Overlap, Within/Contain: Using information of
min and max distances, one object’s min and max distance
might disjoint, overlap, within/contain with another object’s
min and max distance. Let us consider the example of Fig. 9
again. We define disjoint objects using case 1 and 6, overlap
objects using case 2 and 5, and case 3 and 4 for within/contain
objects.

Definition 3. Disjoint Objects

Object g is disjoint with g′, if max(dk(g)) ≤ min(dk(g
′))

or min(dk(g)) ≥ max(dk(g
′)), for all k ∈ m.

Definition 4. Overlap Objects

Object g overlap with g′, if max(dk(g)) > max(dk(g
′))

and max(dk(g
′)) > min(dk(g)) ≥ min(dk(g

′)), or
if min(dk(g)) < min(dk(g

′)) and min(dk(g
′)) <

max(dk(g)) ≤ max(dk(g
′)), for at least one k ∈ m.

Definition 5. Within/Contain Objects

Object g is within g′, if min(dk(g)) ≥ min(dk(g
′))

and max(dk(g)) ≤ max(dk(g
′)), for all k ∈ m. Object g

contains g′ if min(dk(g)) < min(dk(g
′)) and max(dk(g)) >

max(dk(g
′)), for all k ∈ m.

These disjoint, overlap, and within/contain conditions are
two dimensional objects’ characteristics that are not exist in
zero dimensional objects. Based on these characteristics, we
define Lemma 1 and 2 which are very important to efficiently
compute reverse area skyline using global area skyline concept.

Lemma 1. Let q be the query area. If g overlaps with or
within/contain q, then g must be a reverse area skyline of q.

Proof. Assume g is not a reverse area skyline of q. Then,
there should be at least one object that dynamically dominates
q w.r.t g. If we apply dynamic area skyline of g, since g
overlaps or within/contains q, based on case 2, 3, 4, 5 in
Section III-A2, min(dk(g))

T is always be 0, which makes
it not possible to be dominated by other objects. It means that
q is a dynamic area skyline of g, and consequently, g is reverse
area skyline of q. So the assumption is not true and the proof
is complete.�

Fig. 10 shows an illustration of Lemma 1. Fig. 10 (a) shows
original min-max distance of q and g, while Fig. 10 (b) shows
min-max distance of qT after we apply dynamic area skyline
of g.

(a)

1 8

4 9

(b)

3 0

0 0

Fig. 10: Lemma 1 situation

Lemma 1 provides an easy selection method for RASky
algorithms to directly put overlap/within/contain objects into
reverse area skyline result.

Before defining global area skyline, let us consider the
definition of global skyline for zero dimensional data in [3].
Given a d-dimensional data set P and a query point q, p1 is
said globally dominates p2 with respect to q if: (1) (p1-q)(p2-
q)>0 for all dimension, and (2) distance p1 to q are smaller
or equal then distance p2 to q for all dimension, and smaller
at least in one dimension. Let us consider point h2 and h1

in Fig. 6. We said h2 is globally dominates h1, because (h1-
q)(h2-q)>0 and distance h2 to q are smaller than distance h1

to q for all dimension. In two dimensional case, the above
situations become more complicated for overlap/within/contain
conditions. Lemma 2 shows that overlap/within/contain objects
can not globally dominate any other objects.

Lemma 2. Overlap/within/contain objects can not globally
dominate any other objects

Proof. Let assume that g and g′ is in the same quadrant
w.r.t q. g is an overlap/within/contain object w.r.t q, and g′

has min(dk(g
′))T ≥ max(dk(g))

T , for all k ∈ m, so that
g globally dominated g′, and g′ is not a reverse area skyline
of q. On the contrary, if we apply dynamic area skyline of
g′, we can see that g can not dominate q, since g and q are
overlap/within/contain objects. This mean that g′ is reverse
skyline of q and should not be discarded by g.�

www.ijacsa.thesai.org 338 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Fig. 11 shows an illustration of Lemma 2. Fig. 11 (a) shows
the original min-max distance of q, g, and g′. Fig. 11 (b) shows
if g (overlap/within/contain object) globally dominate g′ w.r.t
q, since max(dk(g))

T is smaller than min(dk(g
′))T , then g′

is not a reverse skyline of q. But this will lead to wrong result.
If we apply dynamic area skyline on g′ as in Fig. 11 (c), q is
in dynamic area skyline of g′, which consequently makes g′

as reverse area skyline of q. In this situation g should not be
allowed to globally dominate g′ at the first place, since g′ is
reverse area skyline of q. Using Lemma 1 and 2, we can reduce
the comparison step in calculating global area skyline because
all the overlap/within/contain objects do not participate in the
comparison process.

(a)

1 3

5 9

6 11

(b)

5 3

1 0

0 0

(c)

0 0

2 6

3 8

Fig. 11: Lemma 2 situation

4) Global and Global-1 Area Skyline: Based on Lemma
1 and 2, only disjoint objects will participate in global area
skyline computation. Let us consider disjoint situations in
Fig. 9 case 1 and 6. In Fig. 9 case 1, min(dk(g)) and
max(dk(g)) are larger than max(dk(q)), while in Fig. 9 case 6
min(dk(g)) and max(dk(g)) are smaller than min(dk(q)). To
differentiate between these two disjoint conditions, we defined
diff (gk) as:

diff (gk) =

min(dk(g))−max(dk(q))

if max(dk(q)) ≤ min(dk(g)).

max(dk(g))−min(dk(q))
if max(dk(g)) ≤ min(dk(q)).

Notice that the value of diff (gk) could be “positive” (case
1) or “negative” (case 6). Two objects g and g′ are in the
same quadrant w.r.t q if (diff (gk))(diff (g′k)) >0 for all k ∈
m. In Fig. 12, since max(dk(g)) ≤ min(dk(q)),(15 ≤ 20),
then diff (gk) < 0 while diff (g′k) > 0, since min(dk(g

′)) ≥
max(dk(q)), (30 ≥ 25). Using Lemma 1, Lemma 2, and diff
definition, we define global and global-1 area skyline.

Definition 6. Global and Global-1 Area Skyline For two
objects, g and g′, we said g globally dominates g′ w.r.t
q, if and only if: (1)g and g′ are disjoint objects w.r.t
q, (2)(diff (gk))(diff (g′k)) > 0 and (3) max(dk(g))

T ≤
min(dk(g

′))T , for all k ∈ m. Any objects g′′ becomes global-
1 area skyline if there is only one other object that globally
dominates it.

5) Window Query: Window Query of grid w(g) w.r.t q,
has minimum and maximum value for each k dimension,
min(wk(g)) and max(wk(g)) where k ∈ m. It is defined
as follows:

min(wk(g)) =

max(dk(q)) if min(dk(g)) ≥ max(dk(q)).

min(dk(g)) + diff (gk)
if max(dk(g)) ≤ min(dk(q)).

max(wk(g)) =

max(dk(g)) + diff (gk)

if min(dk(g)) ≥ max(dk(q)).

min(dk(q)) if max(dk(g)) ≤ min(dk(q)).

Fig. 12 shows an illustration of window query’s minimum
and maximum value in one dimension. Assume min and max
distance for g, q, and g′ are (10,15), (20,25), and (30,35). For
w(g), since max(dk(g)) ≤ min(dk(q)), then diff (gk) is -5
(15-20), so that min(wk(g)) and max(wk(g)) are 5 (10 +
(-5)) and 20 (same value as min(dk(q))). For w(g′), since
min(dk(g)) ≥ max(dk(q)), then diff (g′k) is 5 (30-25), so
that min(wk(g

′)) and max(wk(g
′)) are 25 (same value as

max(dk(q))) and 40 (35+5).

5

10 15

20

20 25

25

30 35

40

Fig. 12: Diff and Window query

Lemma 3. Let g be a global area skyline of q, and g′ be
a global or global 1-area skyline of q with the same quadrant
with g. If the window query of g contains g′ w.r.t q, then g is
not a reverse area skyline of q.

Proof. If the window query of g contains g′, then if
we apply dynamic area skyline of g using formula in Sec-
tion III-A2, we know that max(dk(g

′))T is always smaller
than min(dk(q))

T . It means that g′ will dynamically dominate
q w.r.t g, therefore g can not be a reverse area skyline of q.�

 5

10 15

20

20 25

12 18

0 0

5 10

0 3

(a) (b)

Fig. 13: Lemma 3 situation

Fig. 13 illustrates Lemma 3 situation. Fig. 13 (a) shows
that w(g) is contain g′, while Fig. 13 (b) shows that g′ will
dynamically dominate q w.r.t g, so that g is not a reverse area
skyline of q. Using Lemma 3, for each global area skyline we
simply just check whether at least one of other global or global
1-area skyline is within its window query or not.

www.ijacsa.thesai.org 339 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

B. Reverse Area Skyline (RASky) Algorithm

Reverse area skyline algorithm (RASky) consist of two
steps. At step 1, we divide A into grids. For each grid,
we find the nearest facility type, calculate its min and max
distance, and complete the distance information in Minmax
table using the same method in GASky step 1 [5] as explained
in Section II-C. In step 2, using information in Minmax table
from the first step, we calculate reverse area skyline using
global area skyline. In this section, we will focus on the reverse
area skyline step 2.

Grid

ID
F1+

 min F1+
 max F2-

 min F2-
 max

0,0 27 38 33 43

0,1 17 28 23 34

0,2 8 18 8 19

0,3 0 10 3 15

0,4 2 14 0 10

1,0 29 39 28 40

1,1 19 32 24 37

1,2 10 25 15 28

1,3 7 19 8 22

1,4 8 21 8 19

2,0 18 29 18 31

2,1 19 30 18 29

2,2 19 32 19 32

(a) (b)

Grid

ID
F1+

 min F1+
 max F2-

 min F2-
 max

2,3 17 28 18 30

2,4 18 30 18 28

3,0 8 19 8 22

3,1 9 23 8 19

3,2 15 29 10 25

3,3 25 37 19 32

3,4 27 39 28 38

4,0 0 10 3 15

4,1 2 14 0 10

4,2 13 24 7 18

4,3 23 34 17 28

4,4 33 44 28 38

 0 1 2 3 4

0

1

2

3

4
f11

+ f21
-

f12
+ f22

-

Fig. 14: Sample map (a) and Minmax Table (b)

In this section we use sample map in Fig. 14 (a) and set
g3,2 as query area q, then divide sample map into 5x5 grids.
In this map we have two types of facilities, F1+ and F2−,
each of them have two objects F1+ = (f1+1 , f1

+
2), F2− =

(f2−1 , f2
−
2). After completing RASky step 1 in the sample

map, we obtain Minmax table like in Fig. 14 (b).

We index the grid by their min and max distance in
Minmax table using R-tree structure. Each leaf in the R-tree
is in the format (id, qd,RECT), where id is the number
of grid in Minmax table, qd is quadrant, and RECT is
a bundle of all min and max distance in a grid for all
dimension. For example, for 2 facility type, or 2-dimensional,
RECT has (f1min, f2min) as bottom-left coordinate and
(f1max, f2max) as top-right coordinate. Our query object
RECT3,2 has bottom-left coordinate (15,10) and top-right
coordinate (29,25). Using RECT object, we build R-tree of
Minmax table.

1) Building R-tree: RASky read each object in Minmax
table. Using Lemma 1 and 2, if the object is an over-
lap/within/contain object, then it will automatically be a re-
verse area skyline object, and will be excluded from R-tree
and further computation. Only disjoint objects will be inserted
into R-tree. Let us consider Minmax table in Fig. 14 (b). Since
g0,4, g1,0, g4,1, and g4,4 are disjoint objects (rows with bold
border in Fig. 14 (b)), they are inserted into R-tree, while
others directly become reverse area skyline of q. Fig. 15 shows
R-tree after inserting disjoint objects.

2) Finding Global and Global-1 area skyline: RASky
insert all root entries into heap H and sort them by their
distance from q. Besides H , we also use two additional heap
Hg and Hg1 to maintain global area skyline and global-1 area
skyline. Since N1 is closest to q, its entry is expanded, and
N1 is removed from H . Now H contents become RECT0,4,

Fig. 15: R-tree of disjoint objects

RECT4,1, and N2. As top of H , RECT0,4 then become
the first global area skyline and inserted into Hg . Notice that
RECT4,1 is in the same quadrant with RECT0,4 and it is not
globally dominated by RECT0,4, so it also inserted into Hg .
Next N2 is expanded and RECT1,0 and RECT4,4 is inserted
into H . Since RECT1,0 is in different quadrant with RECT0,4

and RECT4,1, RECT1,0 also become global area skyline
and inserted into Hg . RECT4,4 is in the same quadrant with
RECT1,0, but since it is not globally dominated by RECT1,0,
then it also inserted into Hg . Since there is no global-1 area
skyline in this sample dataset, then Hg1 is remain empty.

3) Applying Window Query: After getting all global area
skyline, we build window query for each entry in Hg . Using
window query formula in Section III-A5, Fig. 16 shows
bottom-left and top-right coordinate of each window query
for query area RECT3,2 whose bottom-left and top-right is
(15,10) and (29,25), respectively.

Window

Query

0,4 -1 0 (1,15) (0,10) (1,0) (15,10)

4,1 -1 0 (1,15) (0,10) (1,0) (15,10)

1,0 0 3 (29,39) (25,43) (29,25) (39,43)

4,4 4 3 (29,48) (25,41) (29,25) (48,41)

Fig. 16: Window query in sample dataset

Let us consider w(g0,4), diff (g0,41) is -1 (14-15) and
diff (g0,42) is 0 (10-10). Using these values, we can compute
min and max of w(g0,4) in dimension 1 as (2+(-1),15) and
in dimension 2 as (0+0,10), so that bL and tR coordinates
are (1,0) and (15,10). Since RECT4,1 has the same bL and
tR coordinate with RECT0,4, then min and max of w(g4,1)
are the same with w(g0,4). This mean that RECT4,1 always
contains w(g0,4) and vice versa, so based on Lemma 3, both
of them are not reverse area skyline of g3,2. Now for w(g1,0),
diff (g1,01) is 0 (29-29) and diff (g1,02) is 3 (28-25). Min
and max of w(g1,0) in dimension 1 as (29,39+0) and in
dimension 2 as (25,40+3), so that bL and tR coordinates are
(29,25) and (39,43). Finally, for w(g4,4), diff (g4,41) is 4 (33-
29) and diff (g4,42) is 3 (28-25). Min and max of w(g4,4) in
dimension 1 as (29,44+4) and in dimension 2 as (25,38+3),

www.ijacsa.thesai.org 340 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

so that bottom-left and top-right coordinates are (29,25) and
(48,41). RECT4,4 overlaps with w(g1,0), while window query
of w(g4,4) contains RECT1,0. Based on Lemma 3, RECT1,0

is reverse area skyline of q while RECT4,4 is not. From the
above computation, we can find that g0,4, g4,1, and g4,4 is not
reverse area skyline of g3,2 while the others are.

 0 1 2 3 4

0

1

2

3

4
f1

1
+ f2

1
-

f1
2

+
f2

2
-

Fig. 17: Reverse area skyline for sample map

Shaded area in Fig. 17 shows reverse area skyline of g3,2
in sample map Fig. 14 (a), which is 88% of all grids. Next in
the experiment section, we discover that smaller size of query
area q will reduce reverse area skyline result.

IV. EXPERIMENTAL EVALUATION

We experimentally evaluated RASky algorithm in a PC
with Intel Core i5 3.2GHz processor and 4GB of RAM. We
conducted three experiments using three synthetic datasets.
In each experiment, we repeated five times and reported the
average. We examined the effect of parameters such as number
of objects, number of types, and number of grids, to the step
1 and step 2 of RASky algorithm. We recorded the processing
time for step 1 and step 2 of RASky and the ratio of reverse
area skyline resulted from each experiment. Ratio of skyline is
the number of reverse area skyline compared with the number
of grids in the experiment, Table I lists the synthetic datasets
and parameters in these experiments.

TABLE I: Experimental Dataset

Dataset Objects Types Grids
DB1 1k,2k,4k,8k,16k 2 160k
DB2 1k 2,4,8,16 40k
DB3 1k 2 10k,40k,160k,640k

A. Effect of Number of Objects

In these experiments, we examined the performance of
RASky on the different number of objects, when the number
of facility types and the number of grids are fix, using DB1.
Fig. 18 shows the processing time of this experiment. We can
see that the increase of the number of objects will increase the
total processing time of RASky. In step 1, increasing number
of objects will increase the processing time to build Voronoi

diagram. However, since the number of Voronoi diagram is
fix according to the number of type, increasing number of
objects does not have effect in the size of Minmax table.
Hence in RASky step 2, increasing the number of objects has
less effect, and the processing time tend to decrease when the
number of objects increases. The reason is because increasing
number of objects, while the number of grids is fix, increases
the number of non-disjoint objects. It means less objects
will participate in global area skyline computation, since only
disjoint objects participates in the computation. Therefore the
processing time will be decreased. The ratio of reverse area
skyline are increasing as reported in Fig. 19. Increasing the
number of objects will cause smaller value on min and max
distances, but since the number of grids is fix when the number
of objects increase, the ratio of reverse area skyline still will
increase.

0

2

4

6

8

10

12

1k 2k 4k 8k 16k

T
im

e
(s

)

#Objects

step1 step2 total

Fig. 18: Processing time of DB1

5.2

5.4

5.6

5.8

6

6.2

6.4

6.6

1k 2k 4k 8k 16k

R
a

ti
o

(%
)

#Objects

#reverse

Fig. 19: Reverse area skyline’s ratio of DB1

B. Effect of Number of Types

In these experiments, we used a synthetic data DB2 that
have fix number of objects and number of grids. From the
results in Fig. 20, we can observe that the processing time
increases with the increase of the number of types. The
increasing number of types will require more Voronoi dia-
grams, which in turn increase the processing time. The result
illustrates that increasing the number of types significantly
increase the processing time of step 1. Similar with increasing

www.ijacsa.thesai.org 341 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

number of objects, increasing number of types with fix number
of grids will decrease the number of disjoint objects. Although
the number of disjoint objects decreases, the processing time
still increases because increasing facility types also means
larger size of Minmax tables. Since the dimension is increasing
as the number of facility types increase, the ratio of skyline is
also increasing as shown in Fig. 21.

0

1

2

3

4

5

6

7

8

2 4 8 16

T
im

e
(s

)

#Types

step1 step2 total

Fig. 20: Processing time of DB2

0

5

10

15

20

25

30

35

2 4 8 16

R
a

ti
o

 (
%

)

#Types

#reverse

Fig. 21: Reverse area skyline’s ratio of DB2

C. Effect of Number of Grids

In these experiments, we evaluated the effect of number of
grids while the number of objects and number of types are fix,
using DB3. Fig. 22 shows that the number of grids affects the
processing time of step 1 and step 2. In step 1, increasing the
number of grids means more comparison on Voronoi diagrams
and more calculation time to obtain min and max distance, and
in the same time enlarges the number of record in Minmax
table which also cause increasing time needed for step 2
computation. Increasing number of grids while number of
objects and number of types are fix also causing the number
of disjoint objects to increase. In step 2, increasing number
of disjoint objects will increase processing time since more
objects will participate in global area skyline computation. In
Fig. 23, the effect of number of grids affect ratio of skyline
differently compared to the effect of the number of objects and
types. Increasing the number of grids will decrease the ratio
of skyline. The important reason of that is because more grids

has the same meaning of having smaller size of each grid,
which significantly decrease the ratio of skyline, since smaller
area is likely to be dominated by another area.

0

5

10

15

20

25

30

10k 40k 160k 640k

T
im

e
 (

s)

#Grids

step1 step2 total

Fig. 22: Processing time of DB3

0

2

4

6

8

10

12

10k 40k 160k 640k

R
a

ti
o

 (
%

)

#Grids

#reverse

Fig. 23: Reverse area skyline’s ratio of DB3

From all of experimental results, we can indicate that the
total processing time of RASky increases when the number
of objects, number of facility types, and the number of grids
increases. In addition, the ratio of skyline increases when the
number of objects and types increases, and decreases when the
number of grids increases.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we define dynamic area skyline, global area
skyline, and propose reverse area skyline algorithm (RASky)
to solve the reverse area skyline query. This query is very
important for location selection in business’ or landowners’
perspective. RASky has two steps, step 1 to compute Minmax
table and step 2 to calculate reverse area skyline. Smaller query
area will obtain smaller number of reverse area skyline and
vice versa. Reverse area skyline gives invaluable information
for landowner to pursue targeted customer or to decide what
type of business that would attract more customer. Comprehen-
sive experiments are conducted to show the effectiveness and
efficiency of the proposed algorithms. In the future, we will
consider another skyline problem in two dimensional objects,
such as selecting k-dominant areas. We are also interested in

www.ijacsa.thesai.org 342 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

the application of this method to road network, which also
taken into account nonspatial properties such as population
density, price, traffic condition, and so on.

ACKNOWLEDGMENT

The authors would like to thank KAKENHI (16K00155)
Japan for supporting this research, Indonesian Government
DG-RSTHE scholarship for supporting Annisa, and Japanese
Government MEXT Scholarship for supporting Asif Zaman.

REFERENCES

[1] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proceedings of the 17th International Conference on Data Engineering
(ICDE), April 2–6, Heidelberg, Germany, 2001, pp. 421–430.

[2] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries,” in Proceedings of the ACM SIGMOD
June 9–12, California, USA, 2003, pp. 467–478.

[3] D. Evangelos and B. Seeger, “Efficient computation of reverse skyline
queries,” in Proceedings of the 33rd international conference on Very
large data bases, VLDB Endowment, 2007, pp. 291–302.

[4] Annisa, M. A. Siddique, A. Zaman, and Y. Morimoto, “A method
for selecting desirable unfixed shape areas from integrated geographic
information system,” in Proceedings of IIAI, 2015, pp. 195–200.

[5] Annisa, A. Zaman, and Y. Morimoto, “Area skyline query for selecting
good locations in a map,” Information Processing Society of Japan :
Database Transaction, vol. 9, no. 3, pp. 0–0, 2016.

[6] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with Pre-
sorting,” in Proceedings of the 19th International Conference on Data
Engineering (ICDE), March 5–8, Bangalore, India, 2003, pp. 717–719.

[7] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in Proceedings of the 27th International Conference on
Very Large Data Bases (VLDB), September 11–14, Rome, Italy, 2001,
pp. 301–310.

[8] Y. Gao, Q. Liu, B. Zheng, and G. Chen, “On efficient reverse skyline
query processing,” Expert Systems with Applications, vol. 40, no. 7, pp.
3237–3249, 2014.

[9] H. F. Singh, Amit and A. aman Tosun, “High dimensional reverse
nearest neighbor queries,” in Proceedings of the twelfth International
Conference on Information and Knowledge Management, 2003, pp. 91–
98.

[10] W. Xiaobing, Y. Tao, R. C.-W. Wong, L. Ding, and J. X. Yu.,
“Finding the influence set through skylines,” in Proceedings of the 12th
International Conference on Extending Database Technology: Advances
in Database Technology, ACM, 2009, pp. 1030–1041.

[11] L. Zhu, C. Li, and H. Chen, “Efficient computation of reverse skyline
on data stream,” in Computational Sciences and Optimization, Interna-
tional Joint Conference on, vol. 1, IEEE, 2009, pp. 735–739.

[12] G. Wang, J. Xin, L. Chen, and Y. Liu, “Energy-efficient reverse skyline
query processing over wireless sensor networks,” IEEE Transactions on
Knowledge and Data Engineering, vol. 24, no. 7, pp. 1259–1275, 2012.

[13] Q. Liu, Y. Gao, G. Chen, Q. Li, and T. Jiang, “On efficient reverse
k-skyband query processing,” in International Conference on Database
Systems for Advanced Applications, 2012, pp. 544–559.

[14] Y. Park, J.-K. Min, and K. Shim, “Parallel computation of skyline and
reverse skyline queries using mapreduce,” in Proceedings of the VLDB
Endowment 6, no. 14, 2013, pp. 2002–2013.

[15] M. S. Islam, R. Zhou, and C. Liu, “On answering why-not questions
in reverse skyline queries,” in IEEE 29th International Conference on
Data Engineering, 2013, pp. 973–984.

[16] M. Sharifzadeh and C. Shahabi, “The spatial skyline queries,” in
Proceedings of the 32nd International Conference on Very Large Data
Bases (VLDB), September 12–15, Seoul, Korea, 2006, pp. 751–762.

[17] K. Kodama, Y. Iijima, X. Guo, and Y. Ishikawa, “Skyline queries
based on user locations and preferences for making location-based
recommendations,” in Proceedings of the International Workshop on
Location Based Social Networks (LBSN) November 03, Washington,
USA, 2009, pp. 9–16.

[18] M. Arefin, J. Xu, Z. Chen, and Y. Morimoto, “Skyline query for
selecting spatial objects by utilizing surrounding objects,” Journal of
Software, vol. 8, no. 7, pp. 1742–1749, 2013.

[19] X. Guo, Y. Ishikawa, and Y. Gao, “Direction-based spatial skylines,”
in Proceedings of the 9th ACM International Workshop on Data
Engineering for Wireless and Mobile Access (MobiDE), June 6, Indiana,
USA, 2010, pp. 73–80.

[20] Q. Lin, Y. Zhang, W. Zhang, and X. Lin, “Efficient general spatial
skyline computation,” World Wide Web, vol. 16, no. 3, pp. 247–270,
2013.

[21] G.-W. You, M.-W. Lee, H. Im, and S.-W. Hwang, “The farthest spatial
skyline queries,” Information Systems, vol. 38, no. 3, pp. 286–301, 2013.

[22] Y.-W. Lin, E.-T. Wang, C.-F. Chiang, and A. L. P. Chen, “Finding targets
with the nearest favor neighbor and farthest disfavor neighbor by a
skyline query,” in Proceedings of the 29th Annual ACM Symposium on
Applied Computing (SAC), March 24–28, Gyeongju, Korea, 2014, pp.
821–826.

[23] M. Arefin, G. Ma, and Y. Morimoto, “A spatial skyline query for a
group of users,” Journal of Software, vol. 9, no. 11, pp. 2938–2947,
2014.

www.ijacsa.thesai.org 343 | P a g e

