
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

OpenCL-Accelerated Object Classification in Video
Streams using Spatial Pooler of Hierarchical

Temporal Memory

Maciej Wielgosz
AGH University of Science and Technology

Kraków, Poland

Marcin Pietroń
Academic Computer Centre CYFRONET,

of the University of Science and Technology in Cracow
Kraków, Poland

Abstract—The paper presents a method to classify objects
in video streams using a brain-inspired Hierarchical Temporal
Memory (HTM) algorithm. Object classification is a challeng-
ing task where humans still significantly outperform machine
learning algorithms due to their unique capabilities. A system
which achieves very promising performance in terms of recogni-
tion accuracy have been implemented. Unfortunately, conducting
more advanced experiments is very computationally demanding;
some of the trials run on a standard CPU may take as long
as several days for 960x540 video streams frames. Therefore,
authors decided to accelerate selected parts of the system using
OpenCL. In particular, authors seek to determine to what extent
porting selected and computationally demanding parts of a core
may speed up calculations.

The classification accuracy of the system was examined
through a series of experiments and the performance was given
in terms of F1 score as a function of the number of columns,
synapses, min overlap and winners set size. The system achieves
the highest F1 score of 0.95 and 0.91 for min overlap=4 and
256 synapses, respectively. Authors have also conduced a series
of experiments with different hardware setups and measured
CPU/GPU acceleration. The best kernel speed-up of 632x and
207x was reached for 256 synapses and 1024 columns. However,
overall acceleration including transfer time was significantly
lower and amounted to 6.5x and 3.2x for the same setup.

Keywords—Hierarchical Temporal Memory; OpenCL; GPU;
Video processing

I. INTRODUCTION

Despite the huge technological growth witnessed nowa-
days, there are still no autonomous machines available which
would be capable of operating in the real world. Such machines
would take over most of our tedious everyday duties and
clear the way for a breakthrough in Artificial Intelligence.
However, such robots need to be able to process inputs in
real time, learn, generalize and react to events. This requires
building an appropriate processing system which has human–
like capabilities.

A mammalian brain is an example of such a system which
evolved over millions of years. Despite its apparent complexity
there is only one algorithm [1] within the brain which governs
the body functions. This allows for scalability of the solutions
based on the algorithm since more complex systems may be
built on a top of the simpler ones just by duplication of the
basic structure.

The human brain as a whole has not been completely
explored yet, making its artificial implementation and veri-
fication a very hard task. However, there are initiatives [2]
which have taken up the challenge of simulating and modeling
a brain as we know it today. Rather than model the brain, the
authors of this paper have adopted a slightly different approach
of gradually introducing selected components of Hierarchical
Temporal Memory (HTM) to the video processing system
with the intention of enhancing its performance. By doing so,
authors aim to develop a complete system [3] working on the
principles of the human brain as they were presented in [1],
[4] with necessary modifications making the algorithm suitable
for hardware implementation. Running HTM on CPU is very
slow and the algorithm due to its strongly parallel structure
is a good candidate for General–Purpose Graphics Processing
Unit (GPGPU) and Field–Programmable Gate Array (FPGA)
acceleration. Consequently, this paper presents an architecture
of GPU implementation of Spatial Pooler (SP). The computa-
tionally demanding overlap and inhibition sections of SP were
implemented on GPU.

The rest of the paper is organized as follows. Sections
I-A and I-B provide the background and related work of
Hierarchical Temporal Memory and object classification in
video streams, respectively. The data flow in the custom–
designed system used for the experiments is presented in
Section II with system architecture described in Section III.
Section IV provides the results of the experiments. Finally, the
conclusions of conducted research are presented in Section V.

A. Hierarchical Temporal Memory

Hierarchical Temporal Memory (HTM) replicates the struc-
tural and algorithmic properties of the neocortex. It can be
regarded as a memory system which is not programmed, but
trained through exposing it to data flow. The process of training
is similar to the way humans learn which, in its essence, is
about finding latent causes in the acquired content. At the
beginning, the HTM has no knowledge of the data stream
causes it examines, but through a learning process it explores
the causes and captures them in its structure. The training
is considered complete when all the latent causes of data
are captured and stable. The detailed presentation of HTM
is provided in [4]–[6].

HTM constitutes a hierarchy of nodes, where each node
performs the same algorithm. The most basic elements (raw

www.ijacsa.thesai.org 344 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

1: for all col ∈ sp.columns do
2: col.overlap ← 0
3: for all syn ∈ col.connected synapses() do
4: col.overlap ← col.overlap + syn.active()
5: end for
6: if col.overlap < min overlap then
7: col.overlap ← 0
8: else
9: col.overlap ← col.overlap * col.boost

10: end if
11: end for

Fig. 1. Overlap algorithm

1: for all col ∈ sp.columns do
2: max column ← max(n max overlap(col, n), 1)
3: if col.overlap > max column then
4: col.active ← 1
5: else
6: col.active ← 0
7: end if
8: end for

Fig. 2. Inhibition algorithm

and unprocessed data) enter at the bottom of the hierarchy.
Each node learns the spatio–temporal pattern of its input and
associates it with a given concept. Consequently, each node, no
matter where it is in the hierarchy, discovers the causes of its
input. In an HTM, beliefs exist at all levels in the hierarchy and
are internal states of each node. They represent probabilities
that a cause is active. Each node in an HTM has a fixed
number of concepts and a fixed number of output variables.
The training process of an HTM starts with a fixed number of
possible causes, and in a training process, assigns a meaning
to them.

Consequently, the nodes do not increase the number of
concepts they cover; instead, over the course of the training,
the meaning of the outputs gradually changes. This happens at
all levels in the hierarchy simultaneously. Thus the top level
of the hierarchy remains with little or no meaning till nodes
at the bottom are trained to recognize the basic patterns.

HTM is composed of two main parts, namely Spatial and
Temporal Pooler (TP). This paper focuses on Spatial Pooler
(SP), aka Pattern Memory, which is employed in the processing
flow of the system. It contains columns with synapses con-
nected to the input data [4]. The main role of SP in HTM is
finding spatial patterns in the input data. It may be decomposed
into three stages:

• Overlap calculation (Fig. 1),

• Inhibition (Fig. 2),

• Learning.

The first two stages are very computationally demanding
but can be parallelized. Therefore the authors decided to
implement them on GPU in OpenCL. The learning stage,
the detailed description of which is provided in the Numenta
whitepaper [4], is implemented on CPU.

����������	
�	
��	�������	

�	�����������

�����
�������

�������
������	
�������
�

����
�������	

��������
�

������	

Fig. 3. Architecture of a video processing system

The overlap section (Fig. 1) computes col.overlap for
every column in SP structure i.e. a number of active and con-
nected synapses. If the number is larger than col.min overlap,
then it is boosted and passed on to the inhibition section (Fig.
2).

The inhibition stage (Fig. 2) implements a winner–takes–
all procedure where for each column a decision is made as
to whether it belongs to a range of n (winners set size)
columns of the highest values. The n max overlap() function
performs the comparison.

B. Object classification in video streams

Most state–of–the–art information extraction systems con-
sist of the following sections: preprocessing, feature extraction,
dimensionality reduction and classifier or ensemble of classi-
fiers (Fig. 3). Their construction requires expert knowledge as
well as familiarity with the data that will be processed [7], [8].

Usually, systems for object classification in video streams
are also designed according to this scheme. Consequently,
the proper choice of the operations which constitute all the
mentioned stages of the system is important and determines
the classification result [9]–[11]. One of the most challenging
stages is feature extraction, which substantially affects the
overall performance of the system.

There are also systems which take advantage of the spatial–
temporal [4] profile of the data [12]–[15]. They are closer to
the concept of the solution presented in this paper, which may
be considered a hybrid approach since it features components
of both schemes.

II. PROCESSING FLOW

The data is fed into the system in a frame–by–frame
manner. In the first step, the original frame is turned into
a binary image (see III-A2). This conversion constitutes the
encoding which allows the generation of input data for the SP
processing stage.

Thereafter, the encoded data is fed into the SP. The
processing done by the SP effectively maps input to Sparse
Distributed Representation (SDR), which then may be passed
on to the TP. The TP is not used in this particular application,
but the system in general has such a capability. Instead, the
TP is substituted with histograms to serve a similar purpose.

Histograms of consecutive frames are built from SP output
on a per–video basis. The histograms are used as the input

www.ijacsa.thesai.org 345 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

101000110000001000100000100
100010000100000010000100000
100010000000010011100100010
010001000010000001000010000

SVM

layers

>

(connecting to the input)
synapses

columncolumn

per-frame
HTM outputs

per-video
histograms

Fig. 4. Block diagram of the proposed approach

data for the SVM classifier which comes next. Classifier maps
the results from SDR to the result space (output categories).

The complete processing flow of the system is presented
in Fig. 4.

III. SYSTEM DESCRIPTION

The system is highly configurable, with numerous param-
eters responsible for the core HTM’s structure, the encoder
behavior, statistics rendering, etc. The configuration is stored
in a file written in JSON format, which allows it to maintain
its readability while providing a clear structure. In addition
to the core module, a set of supporting modules has been
developed. Most of them are used for feeding video data to
the core module, and receiving and analyzing the results.

The HTM itself is a ’core’ module, in addition to the
ones necessary for the system to function (responsible for data
reading and encoding, as well as results interpretation) and
ones created for debugging and statistics gathering purposes.
The overall system architecture is depicted in Fig. 5. The most
relevant modules are described in detail below.

A. Outer Structure

The outermost level of system is CLI (Command Line
Interface). Depending on the provided command line options,

Fig. 5. Architecture of the implemented system

it invokes a particular setup – either ’Single HTM’ or ’Multiple
HTMs’. In the ’Single HTM’ setup data from all categories is
fed into a single HTM instance. ’Multiple HTMs’ refers to
creating HTM instances on a per–category basis, resulting in
an ensemble of one–vs–all detectors.

In both modes the same wrappers encapsulating the actual
processing units can be used. A wrapper is created for a
particular HTM use – it is responsible for creating relevant
data readers, encoders, decoders and output writers, and for
passing them to the iterator – a part of the core that manages
HTM cycles.

After data is processed by the wrapper, the result reaches
CLI, which is responsible for further analysis and data pre-
sentation – combining wrappers outputs, gathering statistics,
training the classifier used to provide the final results, rendering
data visualizations etc. The HTM results are post-processed
using a LinearSVM classifier.

1) HTM Wrapper: As mentioned above, a wrapper is
created for a specific use – the one designed to work with
videos will differ from the one tailored for texts. Assembling
a wrapper from predefined or newly created modules is the
main task of the experiment setup.

The wrapper used in the present system setup creates a
reader able to get data from video files and an encoder that
converts raw frame data to the required format. The HTM
output is neither modified (a pass-through decoder module)
nor stored for future reference (a pass-through writer module).

Preparing the processing units to work is not the wrapper’s
only responsibility – it also controls the number of executed
iterations. The minimum (and default) number of cycles equals
a single pass of the learning set, however setups specifying
maximum number and/or metrics measuring whether HTM
still needs learning are also possible.

The wrapper module also coordinates statistics gathering
and visualization on a per-instance basis.

www.ijacsa.thesai.org 346 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

2) Adaptive Video Encoder: During the encoding process
an original video frame is converted to a binary image.
Depending on the configuration, the original image can be
first reduced in size to trim down the amount of data. After
reduction, the color image is converted to a grayscale one,
which is later binarized using adaptive thresholding.

Adaptive thresholding uses a potentially different threshold
value for each small image region. It gives better results
than using a single threshold value for images with vary-
ing illumination. In this encoder ’ADAPTIVE THRESH -
GAUSSIAN C’ algorithm from OpenCV library [16] is used –
a threshold value is the weighted sum of neighbourhood values
where weights are a gaussian window.

B. HTM Core

All implemented readers, encoders, decoders and writers
provide pre-defined interfaces. Such a solution allows to
separate data acquisition and output storage from the actual
processing. The loop consisting of a data retrieval, processing
and outputting is executed by the iterator object of the core
module.

1) HTM: An HTM object itself consists of a configurable
number of layers, a Spatial Pooler and a Temporal Pooler
object. Upon each iteration, each layer state is updated by SP
and (depending on the configuration) TP, based on the data it
receives. In the case of the lowest layer the input is obtained
from the encoder, and for the higher ones – from the previous
level. Setting the layer number to zero effectively turns off
the HTM, causing the whole module’s output to be equal to
that of the encoder. This feature was used when comparing
performance of ’SVM’ only with the ’SP + SVM’ ensemble.

Layers consist of columns, which are composed of connec-
tors (containing synapses used in the spatial pooling process)
and cells (used in temporal pooling). Cells themselves are
built from segments, with each segment containing synapses
connecting it to the other cells. This hierarchical structure
closely mirrors the one described in the algorithm section.

Every object encapsulates its functionality, making intro-
duction of changes and enhancements trivial, while at the
same time providing a clear reference point for modifications.
The object-oriented structure also enhances the visibility of
a very important HTM feature – its potential for massive
parallelization. One example of that can be a spatial pooling
process. The initial system setup used a sequential version of
SP. After some tests, a decision to replace it with a concurrent
implementation running on a GPU (and an FPGA in the future)
was made. The replacement spatial pooler, taking advantage of
OpenCL capabilities, was written and plugged into the system
without changes to the rest of the architecture.

2) Hardware architecture: The overlap calculation is a
computationally intensive operation, executed multiple times
for every input. Fig. 6 presents the hardware architecture of
the overlap unit which was implemented in OpenCL. The main
idea behind the presented architecture is based on a concept of
locating each column in a separate GPU block (work group).
This enables parallel calculation of each column’s overlap
which is only limited by global–to–local memory data transfer.
Once the data is available in the local memory of each work

Fig. 6. Overlap implemented in OpenCL

group, a reduction operation is initiated. Intermediate results
are stored in the local memory, and in the last stage the results
from each block are sent over to the global memory of the
GPU. It is worth noting (Fig. 6) that the boost operation [4]
is also computed by each kernel within the work group.

The inhibition section presented in Fig. 7 may be con-
sidered as an extension of the overlap kernel. It builds up
on top of the overlap kernel. The results of the overlap
operation are sent back to the global memory of GPU to be
fetched again to GPU blocks during the inhibition calculation
procedure. The amount of the data required by every work
group depends on the inhibition radius. When the overlap data
are collected in each work group, a reduction, summation
operation and winners set size comparison is performed.
The last operation directly affects the column state by changing
it to active or inactive. Extending the overlap module with
the logic related to the inhibition calculation improved the
performance gain of system as presented in Fig. 18.

IV. EXPERIMENTS AND THE DISCUSSION

This section presents both quality assessment and accelera-
tion results of the video classification system. It is worth noting
that the output of CPU and GPU implementation is not exactly
the same due to random initialization of the HTM parameters
(e.g. synapses init perm values) and learning/testing sets
randomization.

All the tests presented in this chapter were performed on
Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz with Radeon
R9 390 STRIX GPU platform and 32 GB DD3 1600 MHz
memory.

A. Experiments setup

A series of experiments (details of which are provided in
Tab. I and Tab. II) was conducted. The experiments allow

www.ijacsa.thesai.org 347 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Fig. 7. Overlap + Inhibition implemented in OpenCL

TABLE I. EXPERIMENTS DETAILS

Size of a single video frame 240x134
No. of frames in a single video 32
Object classes cone, cube, cylinder,

monkey, sphere, torus
No. of classes 6

Total no. of videos

all 6000

training 4800

testing 1200

Videos per class

all 1000

training 800

testing 200

Videos per trial

all 100

training 80

testing 20

to compare the performance of the system featuring Spatial
Pooler in the processing flow with the one lacking it, and to
measure execution times of both implementations on CPU and
GPU.

The experiments were conducted using a ’Single HTM’
setup (see III-A). For each trial, the system was trained in the
learning mode with 80% of available data (80 videos of each
class randomly selected from a pool of 800) and then was

TABLE II. BASIC CONFIGURATION PARAMETERS

No. of columns 2048
No. of synapses per column 128
Perm value increment 0.1
Perm value decrement 0.1
Min overlap 8
Winners set size 40
Initial perm value 0.21
Initial inhibition radius 80

tested with the remaining 20% of the data in the testing mode
(20 videos per class selected out of 200).

During the course of an experiment the value of a single
configuration parameter was changed, while the rest remained
as in Tab. II. Each generated configuration was then used to run
tests both on GPU and CPU using OpenCL inhibition kernel.
Additionally, the same experiments with columns and synapses
were conducted also for the overlap kernel (Fig. 18).

B. Dataset

The challenging part involved generation of sample videos
for testing. The videos had to meet a series of requirements
such as object location, camera location and object–camera
distance. Consequently, a dedicated application was used to
generate the videos (i.e. Blender [17]). Original rendered
videos had a size of 960x540 pixels and showed a single,
centered, stationary object with camera moving around it (Fig.
8).

For the experiments, the dataset (available online [18])
based on the rendered videos was created, with the frame
resized to 240x134 pixels. The initial testing showed that
reducing the frame size has a very small impact on SVM
results (used as a baseline for comparison), while significantly
shortening the HTM calculation time.

C. Quality assessment

The F1 score is used as a quality evaluation of the experi-
ments’ results presented in this paper. The precision and recall
for corresponding clusters are calculated as follows:

Recall(i, j) =
nij

ni
, (1)

Precision(i, j) =
nij

nj
, (2)

where nij is the number of items of class i that are
classified as members of cluster j, while nj and ni are the
numbers of items in cluster j and class i, respectively. The
cluster’s F1 score is given by the following formula:

F (i, j) = 2 · Recall(i, j)Precision(i, j)

Precision(i, j) +Recall(i, j)
. (3)

The overall quality of the classification can be obtained
by taking the weighted average F1 scores for each class. It is
given by the equation:

F1 =
∑
i

ni

n
maxF (i, j), (4)

www.ijacsa.thesai.org 348 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Fig. 8. Sample frames of different shapes rendered in Blender

Fig. 9. Average F1 scores as a function of different SP configuration parameters

www.ijacsa.thesai.org 349 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

where the maximum is taken over all clusters and n is the
number of all objects. The F1 score value ranges from 0 to 1,
with a higher value indicating a higher clustering quality.

In each experiment presented in Fig. 9 one of the param-
eters was changed. ’SP + SVM’ refers to the baseline results
obtained with the proposed system using configuration values
from Tab. II. It is worth noting that despite the superiority
of the baseline ’SVM’ setup, the ’SP + SVM’ performance
in selected cases is better than it is for ’SVM’. Especially,
the number of synapses and the min overlap value affects
the performance of the module i.e. a rise in the number of
synapses and a drop in the min overlap value leads to better
classification results. For every value of winners set size
the results remain on the same level with low fluctuation
around the baseline. This results from the relationship between
the inhibition radius and the winners set size parameter.
Change of the winners set size is compensated by appro-
priate adaptation of the inhibition radius [4].

D. Acceleration results

A series of comparative tests were carried out for columns,
synapses, min overlap and winners set size. Two different
test types were conducted, namely GPU vs CPU OCL denoted
also as OCL and GPU vs CPU kernel referred to as kernel in
the text. The first one accounts for the complete execution time
of the examined procedures i.e. data preparation, data transfer
in both directions and kernel execution [19]. The second test
type embraces only kernel execution.

It should be noted that the GPU supersedes OpenCL
CPU inhibition implementation and the discrepancy increases
with increasing column numbers as it was presented in Fig.
10. Furthermore, OpenCL kernel performance is substantially
better than its CPU counterpart (Fig. 11). However, when
kernel launching procedures and data transfer are taken into
account the speed-up is reduced. It is worth noting that it
levels off at about 130x and 2.5x for kernel and OCL tests,
respectively.

Fig. 12 and 13 show a change of speed-up as a function
of the number of synapses connected to each column of a
Spatial Pooler. The more synapses are connected, the greater
the acceleration that is achieved. This results from the internal
architecture of the overlap module (Fig. 6) which is, in essence,
a hardware reduction operation performed within each GPU
block. Fig. 13 depicts that both learning and testing phases
of SP yield the same speed-up results. It is worth noting
that, depending on the accelerator, there is a constraint on a
maximum size of a work group, which directly translates to a
limit in the number of synapses that can be accommodated by
a single GPU block.

Min overlap has a slight impact on performance and
speed–up of the object classification system (Fig. 14 and 15).
GPU execution time is gradually reduced reduced with a rise
of min overlap. This results from the kernel implementation
which allows for bypassing inhibition computation whenever
overlap is lower than min overlap. For higher overlap values
the number of zeros rapidly grows which leads to the rise of
CPU/GPU speed-up.

Winners set size is the number of ’winning’ (having
the highest overlap score) columns among the given column

competitors in a contest to be chosen as active [4]. The number
of neighboring columns which are taken into account impacts
the computational effort since the columns are compared with
all others within the inhibition range. Since winners set size
affects the inhibition radius, the larger the winners set size
is, the bigger the discrepancy in computation time between
CPU and GPU, which is depicted in Fig. 17. Winners set
computation may be perceived as a specific kind of reduction
operation.

Fig. 18 presents the contribution of overlap computations
to the complete inhibition execution routine. It ranges between
50 % and 75 % of total inhibition kernel calculation time.

It is worth emphasizing that overall OCL test results
depend on data transfer, which in turn is related to data
representation. Therefore, changing from integer to boolean
data type will result in approximately 32–fold reduction of the
amount of data to be transferred to the accelerator. Such a
transition is unfortunately not available for all the data which
are sent to the device, for instance boost is of a float type and
can not be easily mapped to boolean.

According to the authors’ knowledge, it is hard to find
papers which directly correspond to the research conducted in
this work. Nevertheless, the following papers were examined:
[20]–[22] which present results of video classification using
UCF-101 dataset. The best systems presented in those papers
are based on various architectures of Convolutional Neural
Networks (CNNs) and achieve accuracy of 80% or more. It is
worth emphasizing that despite similar performance in terms
of the quality results, presented test setup is different mostly
in terms of the dataset used for the experiments.

V. CONCLUSIONS AND FUTURE WORK

This paper presents experimental results of using an HTM–
based system for object classification in video streams. The
classification accuracy of the system was examined through
a series of experiments and the performance was given
in terms of an F1 score as a function of the number of
columns, synapses, min overlap and winners set size. The
system achieves the highest F1-score of 0.95 and 0.91 for
min overlap = 4 and 256 synapses, respectively. A series of
experiments with different hardware setups have also been con-
duced and CPU/GPU acceleration measured. The best kernel
speed-up of 632x and 207x was reached for 256 synapses and
1024 columns. However, overall acceleration including transfer
time was significantly lower and amounted to 6.5x and 3.2x
for the same setup.

In future work, the authors are going to modify the prepro-
cessing stage of the video processing flow and introduce TP.
The authors are going to implement the most computationally–
exhaustive routines in OpenCL and deploy the system on
platforms equipped with GPU– or FPGA–based acceleration.
This will enable conduction of experiments using video with
a lower image reduction ratio and larger datasets as well as
stacking several layers of SP.

ACKNOWLEDGMENT

I would like to thank my wife Urszula Wielgosz for her
huge contribution to the preparation of the paper.

www.ijacsa.thesai.org 350 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

(a) Average OCL kernel exec time (b) Average kernel exec time (with forecast)

(c) Average host–to–device data transfer time (d) Average device–to–host data transfer time

Fig. 10. Profiling results for columns

(a) GPU vs CPU OCL (b) GPU vs CPU kernel (with forecast)

(c) GPU vs CPU data transfer

Fig. 11. Profiling results for columns

www.ijacsa.thesai.org 351 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

(a) Average OCL kernel exec time (b) Average kernel exec time

(c) Average host–to–device data transfer time (d) Average device–to–host data transfer time

Fig. 12. Profiling results for synapses

(a) GPU vs CPU OCL (b) GPU vs CPU kernel

(c) GPU vs CPU data transfer

Fig. 13. Profiling results for synapses

www.ijacsa.thesai.org 352 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

(a) Average OCL kernel exec time (b) Average kernel exec time

(c) Average host–to–device data transfer time (d) Average device–to–host data transfer time

Fig. 14. Profiling results for min overlap

(a) GPU vs CPU OCL (b) GPU vs CPU kernel

(c) GPU vs CPU data transfer

Fig. 15. Profiling results for min overlap

www.ijacsa.thesai.org 353 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

(a) Average OCL kernel exec time (b) Average kernel exec time

(c) Average host–to–device data transfer time (d) Average device–to–host data transfer time

Fig. 16. Profiling results for winners set size

(a) GPU vs CPU OCL (b) GPU vs CPU kernel

(c) GPU vs CPU data transfer

Fig. 17. Profiling results for winners set size

www.ijacsa.thesai.org 354 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Fig. 18. Percentage of Overlap kernel execution time in whole Inhibition kernel execution time (on GPU)

REFERENCES

[1] V. Mountcastle, “The columnar organization of the neocortex,” Brain,
vol. 120, no. 4, pp. 701–722, apr 1997.

[2] “The Human Brain Project - Human Brain Project,” https://www.
humanbrainproject.eu, (Accessed on 10.04.2016). [Online]. Available:
https://www.humanbrainproject.eu

[3] “Custom Hierarchical Temporal Memory implementation,” https://
bitbucket.org/maciekwielgosz/htm-hardware-architecture, (Accessed on
12.04.2016). [Online]. Available: https://bitbucket.org/maciekwielgosz/
htm-hardware-architecture

[4] J. Hawkins, S. Ahmad, and D. Dubinsky, “Hierarchical temporal
memory including HTM cortical learning algorithms,” Numenta, Inc,
Tech. Rep., sep 2011. [Online]. Available: http://numenta.org/resources/
HTM CorticalLearningAlgorithms.pdf

[5] X. Chen, W. Wang, and W. Li, “An overview of Hierarchical Temporal
Memory: A new neocortex algorithm,” in Modelling, Identification &
Control (ICMIC), 2012 Proceedings of International Conference on.
Wuhan, China: IEEE, 2012, pp. 1004–1010.

[6] D. Rachkovskij, “Representation and processing of structures with
binary sparse distributed codes,” IEEE Transactions on Knowledge and
Data Engineering, vol. 13, no. 2, pp. 261–276, 2001.

[7] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE
Transactions on Knowledge and Data Engineering, vol. 21, no. 9, pp.
1263–1284, sep 2009.

[8] P. Zhang, X. Zhu, and L. Guo, “Mining Data Streams with Labeled
and Unlabeled Training Examples,” in 2009 Ninth IEEE International
Conference on Data Mining, IEEE. Miami, USA: IEEE, dec 2009,
pp. 627–636.

[9] X. Lu, C. Zhang, and X. Yang, “Online video object classification using
fast similarity network fusion,” in 2014 IEEE Visual Communications
and Image Processing Conference, IEEE. Valletta, Malta: IEEE, dec
2014, pp. 346–349.

[10] R. N. Hota, V. Venkoparao, and A. Rajagopal, “Shape Based Object
Classification for Automated Video Surveillance with Feature Selec-
tion,” in 10th International Conference on Information Technology
(ICIT 2007), IEEE. Rourkela, India: IEEE, dec 2007, pp. 97–99.

[11] M. K. Islam, F. Jahan, J.-H. Min, and J.-H. Baek, “Object classification
based on visual and extended features for video surveillance applica-
tion,” in Control Conference (ASCC), 2011 8th Asian. Kaohsiung,
Taiwan: IEEE, 2011, pp. 1398–1401.

[12] M. Castrillón, O. Déniz, C. Guerra, and M. Hernández, “ENCARA2:
Real-time detection of multiple faces at different resolutions in video
streams,” Journal of Visual Communication and Image Representation,
vol. 18, no. 2, pp. 130–140, apr 2007.

[13] P. Devarakota, M. Castillo-Franco, R. Ginhoux, B. Mirbach, S. Kater,
and B. Ottersten, “3-D-Skeleton-Based Head Detection and Tracking
Using Range Images,” IEEE Transactions on Vehicular Technology,
vol. 58, no. 8, pp. 4064–4077, oct 2009.

[14] F. N. Khan and S. A. Khan, “Real-time object based single-stream
to multi-stream network enabled multimedia system using an adder-
less reconfigurable fast area correlator processor,” in 8th International

Multitopic Conference, 2004. Proceedings of INMIC 2004., IEEE.
Lahore, Pakistan: IEEE, 2004, pp. 688–693.

[15] Y. Bengio, A. Courville, and P. Vincent, “Representation Learning: A
Review and New Perspectives,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 35, no. 8, pp. 1798–1828, aug 2013.

[16] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[17] “Blender project - Free and Open 3D Creation Software,” https:
//www.blender.org/, (Accessed on 12.04.2016). [Online]. Available:
https://www.blender.org/

[18] “HTM Test Datasets,” http://data.wielgosz.info, (Accessed on
02.07.2016). [Online]. Available: http://data.wielgosz.info

[19] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih,
“PyCUDA and PyOpenCL: A Scripting-Based Approach to GPU Run-
Time Code Generation,” Parallel Computing, vol. 38, no. 3, pp. 157–
174, 2012.

[20] Joe Yue-Hei Ng, M. Hausknecht, S. Vijayanarasimhan, O. Vinyals,
R. Monga, and G. Toderici, “Beyond short snippets: Deep networks
for video classification,” 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 4694–4702, jun 2015.

[21] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, “Large-Scale Video Classification with Convolutional Neural
Networks,” in 2014 IEEE Conference on Computer Vision and Pattern
Recognition. IEEE, jun 2014, pp. 1725–1732.

[22] S. Zha, F. Luisier, W. Andrews, N. Srivastava, and R. Salakhutdinov,
“Exploiting Image-trained CNN Architectures for Unconstrained
Video Classification,” ArXiv e-prints, mar 2015. [Online]. Available:
http://arxiv.org/abs/1503.04144

www.ijacsa.thesai.org 355 | P a g e


