
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Method for Game Development Driven by
User-eXperience: A Study of Rework, Productivity

and Complexity of Use

Mario González-Salazar∗, and Hugo Mitre-Hernández†
Software Engineering Group,

Center for Research in Mathematics (CIMAT)
Av. Universidad 222, 98068

Zacatecas, Mexico

Carlos Lara-Alvarez‡
CONACYT Research Fellow

Center for Research in Mathematics (CIMAT)
Av. Universidad 222, 98068

Zacatecas, Mexico

Abstract—The growing capabilities and revenues of video
game development are important factors for software companies.
However, game development processes could be considered im-
mature, specifically in the design phase. Ambiguous requirements
in game design cause rework. User-eXperience (UX) is usually
assessed at the end of the development process, causing difficulties
to ensure the interactive experience between the game and users.
To reduce these problems, this paper proposes a method for
Game Development driven by User-eXperience (GameD-UX) that
integrates a repository based on requirements engineering, a
model for user experience management, and an adjusted agile
process. Two experiments were conducted to study rework and
productivity of video game development. Results of the first
experiment revealed that GameD-UX causes less rework than
conventional approaches, but it induces lower productivity. A
tool for supporting the GameD-UX method was developed by
considering the lessons learned. The second experiment showed
that the software tool increases the productivity and reduces the
complexity of use of GameD-UX.

Keywords—Rework; Productivity; Complexity of Use; Video
Game Development

I. INTRODUCTION

Video games are important economically, they constitute
the main entertainment industry, with continuous growth and
billions of dollars in sales and revenues [1]. CEO of the En-
tertainment Software Association (ESA) point out that “Video
games are the future; from education and business, to art and
entertainment, our industry brings together the most innovative
and creative minds to create the most engaging, immersive
and breathtaking experiences we’ve ever seen...” [1]. However,
ensuring the correct level of interactive experience between the
game and the player is a challenge [2]; additionally, 65% of
problems in game development are generated at pre-production
stage and are related to unspecified or ambiguous requirements
in game design [3], [4] causing rework and low productivity.

This article presents the Game Development driven by
User-eXperience (GameD-UX) method that is composed by
an improved Game Design Document (iGDD) [5] from re-
quirements engineering perspective, a model for Game Ex-
perience Management (GEM) [6] from software architecture
approaches, and an adapted agile method for game develop-
ment. As shown in [6] the GEM model is able to improve the
User eXperience (UX).

Besides defining the game requirements, the iGDD formal-
izes the game design by using software requirement principles.
The main idea behind the GEM model is to transform the
desired experience into game attributes. The quality attributes
in conventional software products are security, usability, per-
formance, among others; but in UX, these attributes can be
seen as factors such as enjoyment, excitement, frustration,
boredom, fear and more. Finally, the iGDD and GEM were
included into a modified agile model for game development.

Two experiments were conducted to compare rework, pro-
ductivity, and complexity of using GameD-UX and a con-
ventional approach to game development. Results of the first
experiment revealed that GameD-UX causes less rework, but
it also induces lower productivity. The main difficulties found
were attributed to failures in capturing and querying infor-
mation from the iGDD and GEM – i.e. the low productivity
was caused mainly by the complexity of using text docu-
ments; to overcome these limitations, a tool for supporting the
GameD-UX method was developed. The second experiment
confirmed that the GameD-UX supported by an appropriated
tool produces better results in terms of rework, productivity,
and complexity of use.

The rest of this article is organized as follows: section II
presents the work related to the game repository, development
and UX evaluation. Section III presents the method for Game
Development driven by User-eXperience and its tool. Section
IV explains the experiments. Section V presents and discusses
the results. Finally, conclusions are presented in section VI.

II. RELATED WORK

This section presents the related work in video game devel-
opment (repository, UX evaluation, and development models),
and how the proposed method alleviates the problems found
in conventional approaches.

The game development process is composed by three
stages: pre-production, production, and post-production [7].
The pre-production stage focuses mainly on creating the game
concept and design. The production stage creates and validates
the software; this stage also produces visual and auditory
assets required by the game. Finally, the post-production

www.ijacsa.thesai.org 394 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

stage distributes and maintains the game; it also manages the
feedback coming from different sources – e.g., reviews.

A. Game Design Repository

Games are complex systems requiring significant effort
in the first two development stages – pre-production and
production. These complexities can increase the amount of
rework and consequently, the cost of the game. The rework
can be avoidable in most cases by detecting and correcting
problems in early stages. A game design document can help
to specify and structure the requirements of the game. The
following sections have been proposed in the literature:

• Overview. Almost all authors suggest that a GDD
should include a section that summarizes the key
elements of the game to keep the eyes on the road
[8]. Some authors even include a subsection of goals
or objectives of the game [8], [9], [10], [11], [12],
[13], [14].

• Mechanics. The term mechanics is used to describe
game elements – e.g., player characters – and interac-
tion rules – e.g., a player-enemy interaction. Mechan-
ics include characters or assets list [8], [9], [10], [11],
[12], [13], [14].

• Dynamics. Several proposals have common sections
that contains intended interactions with the player such
as interfaces, levels or challenges [8], [9], [10], [11],
[12], [13], [14].

• Aesthetics. It is what the player perceives by his
visual and auditory senses. Most authors only cover
the visual aspects in a document called the art bible.
Baldwin [12] suggests a GDD template that abbrevi-
ates an art bible. Auditory assets can also be included
in this section [8], [9], [14].

• Experience. Creating enjoyable player experience is
fundamental for the game success [2]. Player ex-
periences are enriched by mechanics, dynamics and
aesthetics of the game. Playability can be used to
link game design to player experience [15]. Therefore,
defining the expectations of player experiences may
lead to the improvement of the game and to the
establishment of a base line to test the experiences
in production.

• Assumptions and Constraints. Some authors include
technical limitations in the technical bible [10], [12],
[14].

An effort to integrate the previous sections into a single
repository, the authors of this paper have proposed the im-
proved Game Design Document (iGDD) [5]; iGDD sections
are related to the Software Requirement Specification (SRS)
characteristics as described in Table I. The method proposed
in this paper also uses the iGDD as repository.

B. Game User eXperience Evaluation

Guaranteeing an enjoyable User eXperience (UX) is critical
for game companies. There are some related works seeking to
solve the problem:

TABLE I. DESCRIPTION AND CHARACTERISTICS OF SECTIONS OF
THE IGDD

iGDD Section Description SRS Characteristics
Overview Describes briefly the most im-

portant aspects of the game.
Relations with other docu-
ments, and common language
for better understanding

Mechanics Describes the elements of the
game.

Organization of game require-
ments (objects organization).

Dynamics Describes how the elements of
the game will take action in
the game.

Organization of game require-
ments. Relation of complexity
with gamer profile.

Aesthetics Describes what the player per-
ceives directly through their
sense, like what he sees and
hears.

It is not related to the SRS.

Experience Highlights important aspects
of the game and what you
hope to achieve from these
aspects.

Decision-making based on
trade-offs of game parts.
Quality attributes on video
games.

Assumptions and
constraints

Narrates the aspects of the de-
sign assumptions and limita-
tions of the game, either tech-
nical or business.

Knowledge of game parts
for reviews. Limitations or
boundaries of video game

• Core Elements of the Gaming Experience (CEGE).
Calvillo et al. [16] suggest that core elements to ensure
UX are: puppetry (control, ownership, and facilitators)
and video game (game-play and environment). They
also propose a questionnaire for evaluating these ele-
ments.

• Game Experience Questionnaire (GEQ). Engl and
Nacke [17] consider that immersion, flow, compe-
tence, tension, challenge, positive and negative affect
are UX evaluation factors. They also propose a com-
parative evaluation instrument.

• Heuristics. Hochleitner et al. [18] propose a frame-
work of heuristics (design guidelines for aesthetics
and mechanics in a game genre) categorized in game
play/story, and virtual interface to asses UX.

Although heuristics are part of the game design, they are
considered general guidelines that belong to a game genre;
similarly, the GEQ instrument does not ensure the UX because
it can be only used after the game is finished. Conversely,
integrating CEGE components for designing the game could
avoid unpleasant experiences. In a previous work, the CEGE
was compared to the Game Experience Management Model;
games developed using the GEM, improves the UX [6].

The GEM is based on software architecture because of its
advances in software systems design. The interaction expe-
rience between game and player can be interpreted as a set
of quality attributes in software engineering [2]. In traditional
software systems, quality attributes include: security, usability,
performance, etc. In video games these attributes could be
considered as factors of User eXperience (UX) as: enjoyment,
excitement, attention; these attributes are closely related to
emotions and cognitions of the player.

The quality attribute approaches in software architecture
design can be categorized into [19]:

• Quality Attribute Requirement Focused (QARF).
These approaches perceive Quality Attribute require-
ments as the main focus in the software architecture
design phase, and consider each design decision based

www.ijacsa.thesai.org 395 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

on its implications on the prioritized quality attributes
[20];

• Quality Attribute Scenario Focused (QASF). These
approaches map architectural quality goals into con-
crete scenarios to characterize stakeholders concerns
throughout the software architecture design phase
[20], [21];

• Influencing Factor-Focused (IFF). These approaches
focus on the inter-dependencies among factors and
constraints that would affect the choice of design
decisions [21].

Software architecture design is an area that can bring the
solution idea for UX management in pre-production stage. The
QARF and QASF approaches are suitable for game design
due to its aspects of quality attributes requirements, prioritized
QA, and the scenarios of design. Into these categories we can
find the Quality Attribute Workshop (QAW) and the Attribute
Driven Design (ADD) methods. The QAW [20] is a facilitated,
early intervention method used to generate, prioritize, and re-
fine quality attribute scenarios before the software architecture
is completed. The ADD defines software architecture by basing
the design process on the quality attributes that the software
must fulfill [21].

Initially, the GEM model [6] defines a high-level game
design that associates game goals of the iGDD with the desired
experience; the experience is described in design drivers,
detailed in guidelines and verified by test cases. A design driver
is a high-level property that the game should have in order to
generate the intended experience in the player; i.e., the user
experience metrics – emotions as fear, happiness, angry, etc. In
each iteration of game development, game elements are created
and checked to confirm that the game is achieving the goals. A
game design guideline is a description of how game elements
need to be created in order to achieve the intended experience
established in the game design drivers. Finally, the test cases
evaluate guidelines in terms of fulfillment of their goals; it
could include a questionnaire or an emotional evaluation model
and its relation to parts of the game. There must be at least
one test case per guideline. In sum, GEM is able to design and
manage the expected UX in the proposed method.

C. Video game development models

The video game development is a form of software de-
velopment that adds additional requirements, – e.g., artistic
aspects; hence, many of the management tools and standards
from the software industry can be useful for game devel-
opment. Game projects are usually more complicated than
software projects because they involve a multidisciplinary team
and they usually have more uncertainty around project goals.
Software development models – e.g. waterfall, iterative, or
extreme can be used for developing video games [7]. In
general, the waterfall model is considered inadequate because
it is highly structured and it cannot be adapted to changes in
the requirements; therefore, more flexible models are needed
[22], [2], [23].

Agile methodologies – i.e. Scrum [24] or eXtreme Pro-
gramming [25] – are better suited for the challenges of game
development [26], [27]; they have been adapted to game

development by using other tools as complements: user stories
[26], game design documentation [28], or workshops for
strengthening the interaction between clients and developers
[29].

The adjustment of software development to a specific con-
text is well studied in software engineering through patterns.
Patterns [30] are used to solve a generic problem: given a
narrative and context of the problem to be solved, they propose
a solution. They can be used for formalizing the knowledge
about the development process. In [31] the authors propose the
Software Development Project Pattern (sdPP) framework. For
testing this approach [31], generates four instances of the sdPP
with agile development models; one of these instances Scrum
sdPP is suitable for game agile development because it allows
to follow an iterative process without sacrificing creativity. The
resulting workflow and productflow can guide game developers
between the activities and their corresponding input and output
products.

An sdPP instance of Scrum was adapted for agile game
development. In this modified pattern instance, the iGDD and
GEM were integrated. The main activities in relation with
iGDD and GEM are described in the proposed method.

III. PROPOSED APPROACH

This section first describes the GameD-UX activities and
how they are related to the iGDD and the GEM, then it
describes the software tool improvements based on the lessons
learned of the initial experiment.

Game Development driven by User-eXperience (GameD-
UX) is a method to design and develop video games from
the required user experience. It uses two components: (i) the
improved Gamed Design Document (iGDD) for the repository
of all structured game elements, and (ii) the Game Experience
Management (GEM) model to capture and manage the required
UX along game development.

A. Method for Game Development driven User-eXperience

GameD-UX is composed of a repository containing game
design (iGDD); a model to design, track and manage user
experience (GEM); and an adapted Scrum method for game
development, with the aim to design and develop video games
based on user experience. Scrum was selected because is a
flexible framework that can be adapted to other methods or
tools – e.g., user stories, Kanban board –, its cycle life is
iterative, incremental, and evolutionary. It does not sacrifice
creativity, and it is well documented [26].

The GameD-UX activities are based on the general Scrum
activities. Fig. 1 illustrates these activities and their relationship
to iGDD and GEM. The following paragraphs describe these
activities:

1) Initiate the project. A game development project
may have different sources: an original idea for a
game, or an opportunity found in a specific market.
Once a game idea from some source initiates a game
development project, the first activity is to assign
resources and to transform the game idea into the
game concept.

www.ijacsa.thesai.org 396 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Initiate Project

Create Product Backlog

Prioritize Product Backlog

Sprint Planning

Create Sprint Backlog

Execute Sprint

Sprint Review

Project Review

Initiate Project

Create Overview

Design High Level
Game

Design High Level
Architecture

Create Product Backlog

Sprint Planning

Design Game

Generate Code and Assets

Commit and Integrate

Test and Tune

Sprint Review

Prioritize Product Backlog

Create Sprint Backlog

Project Review

Alpha
Test

Beta Test

Finished Project

Features remaning

No features remaning

Not finished project

Powered By�Visual Paradigm Community Edition

(a)

Initiate Project

Create Product Backlog

Prioritize Product Backlog

Sprint Planning

Create Sprint Backlog

Execute Sprint

Sprint Review

Project Review

Initiate Project

Create Overview

Design High Level
Game

Design High Level
Architecture

Create Product Backlog

Sprint Planning

Design Game

Generate Code and Assets

Commit and Integrate

Test and Tune

Sprint Review

Prioritize Product Backlog

Create Sprint Backlog

Project Review

Alpha
Test

Beta Test

Finished Project

Features remaning

No features remaning

Not finished project

Powered By�Visual Paradigm Community Edition

(b)

Fig. 1. Comparison of the general activities between: (a)Scrum, and (b)the proposed approach. The proposed approach adds (black) and modifies (gray)
activities.

2) Create overview (product: overview of the iGDD)
The overview describes the game in a brief abstract,

identifies the main objectives of the game, the genre
of the game, asks questions e.g., why the game is

www.ijacsa.thesai.org 397 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

worth doing, defines which type of players would like
to play the game, and what will be the main activities
that the player will be doing while playing the game.

3) Design high level game (product: overview of the
iGDD, drivers and guidelines of the GEM). The high
level game defines some main features of the game:
the game modalities (single player, multiplayer, on-
line, arcade mode, history mode, among others), the
platform or platforms on which the game is intended
to run, the game theme (medieval, futuristic, western,
among others), the game story and an initial scope of
the levels, size and time that the game may require.
Based on the overview information, it defines the high
level properties (drivers) that the game should have
in order to bring the desired UX. For each driver,
it defines one or more guidelines on how to create
specific game element(s) in order to fulfill the driver
goal. Team members must approved guidelines.

4) Design high level game architecture (product: as-
sumptions and constraints, mechanics, dynamics of
the iGDD and guidelines of the GEM). The high
level architecture reviews the technical settings to
modify the assumptions and constraints. Technical
settings include: the standards, conventions, technol-
ogy, resources and architecture selected for the game.
This activity creates a high level version of the game
elements related to the guidelines.

5) Create product backlog (product: overview of the
iGDD). The main features in the game listed in the
overview are used to create the requirements in the
product backlog.

6) Prioritize product backlog (no iGDD or GEM
section associated). The team prioritize the product
backlog requirements based on the value that each
requirement give to the game.

7) Organize product backlog (no iGDD or GEM sec-
tion associated). The product backlog lists everything
that might be needed in the game, the resulting
list has the requirements to be implemented in the
project.

8) Sprint planning (no iGDD or GEM section associ-
ated). In this activity, the requirements with the higher
priority from the backlog are selected and planned.

9) Create sprint backlog (no iGDD or GEM section
associated). In this activity, each task derived from
the chosen requirements is estimated and assigned to
the team members as long as there is time left in the
sprint.

10) Design Game (products: mechanics, dynamics of the
iGDD and guidelines of the GEM). This activity de-
signs each game element needed to fulfill the require-
ments to be developed on the sprint and verifies that
the game elements follow the guidelines associated to
them (if there is any). It also validates that designed
game elements correspond to guidelines. Finally, it
creates test cases to validate guidelines (if needed).

11) Generate code and asset (products: mechanics, dy-
namics of the iGDD and guidelines of the GEM). This
activity creates game elements based on the game
design and their corresponding guidelines. These
elements include code and assets – e.g., music or
animations.

12) Commit and integrate (products: guidelines of the
GEM). This activity validates that the developed
game elements follow the guidelines or gives a valid
justification of why they could not follow them. It
also integrates game elements in a version suitable
for release.

13) Test and tune (products: guidelines and test cases of
the GEM). This activity tests the resulting product of
the sprint in order to verify the quality e.g., fulfill
the guidelines. Small adjustments can be made to
polish the game, but radical changes should be placed
in the product backlog to consider them in the next
sprint. The result of this activity will be a potentially
shippable product.

14) Sprint review (products: GDD all and GEM all).
The retrospective presents the results of the sprint:
reviews of the product, process, tools, people, and
any other relevant aspect of the project. The feedback
given by members of the team and other stakeholders
is evaluated.

15) Project review (products: GDD all and GEM all).
The information of previews sprints is used to evalu-
ate the project, if needed the team adjusts the project
duration; modifies, eliminates or adds requirements
in the product backlog. While there are pending
requirements in the backlog go to activity 7.

16) Do alpha test (products: test cases of the GEM).
Alpha test finds and removes bugs and verifies that
game elements fulfill quality criteria [26], [32], [11].

17) Do Beta test (products: test cases of the GEM). This
test evaluates UX.

B. Software tool to support GameD-UX

GameD-UX can help to improve the experience of the
player [6] and reduce the rework [33] of the game development
team. Nevertheless, in opinion of developers after the execution
of the first experiment, the complexity of using iGDD and
GEM together provokes low productivity. For this reason, we
designed a software tool aiming to reduce the complexity of
use of GameD-UX; hence, the requirements presented in Table
II were defined.

The tool to support GameD-UX has two menus: the iGDD
(Fig. 2a) and the GEM (Fig. 2b). The iGDD menu can create,
modify or disable game categories and elements. The game
designer can change the status of a category or an element.
The tool enforce to follow the structure of the iGDD – e.g., if
the user wants to create a ninja, it is necessary to create the
enemies category.

Analogously, the GEM menus enforce to follow the GEM
structure. It is necessary to have a goal in the iGDD overview
to associate a driver, a driver to create a guideline, and so on.

IV. MATERIAL AND METHODS

Two experiments are presented in this section following
the suggestions of Wohlin et al. [34]. The purpose of the first
experiment is to evaluate GameD-UX in terms of rework and
productivity. The second experiment is intended to evaluate the
productivity and complexity of using the GameD-UX tool.

www.ijacsa.thesai.org 398 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

(a) (b)

Fig. 2. Software Tool: (a) menus that support the iGDD. (b) menus that support the GEM.

TABLE II. SOFTWARE TOOL REQUIREMENTS

N Description
R1 The tool can have information on the status of each element

created in the iGDD, to know if an element is in progress
(which means it can’t be implemented yet) or it is already
finished (which means ready to implement).

R2 The tool can keep track of the game elements in the iGDD
with the drivers and guidelines in the GEM and show with
which guidelines and drivers the game elements are linked.

R3 The tool can filter of all the information of the game
elements in the iGDD, to let the team know which elements
are finish (ready to implement) and which are in progress.
It can also help to filter the information by role (it let know
which game elements are related to the art roles or software
engineering roles).

R4 The iGDD in the GameD-UX method is a repository with
a precise structure and relations, by ensuring with a tool
that the game designers keep this structure and relations.
Requirements can be easily linked to the game element
by the method taxonomy. If the requirement involves the
development of a core game element, or a challenge, these
key categories can be present in the requirement description
as a tag with a color associated to them.

R5 The tool can ensure that the game elements are created
correctly following the structure and inter-dependencies pre-
determined. For instance, if the game designer wants to
create a challenge, but there are no core game elements, the
challenge will be empty until the core game elements are
created and can be integrated in the challenge. Same way, if
the game designer want to create a core game element but
there is no category to which this must belong the element
cannot be created. In sum, the constraints of iGDD elements
and its relations are automated in the tool.

R6 The tool can notify with which guidelines (GEM elements)
the game elements are related and what the guideline says
about the game element to be developed. This makes easy
to confirm if the game element follows the guideline(s).

A. Context

Students who successfully completed the video game de-
velopment course in the software engineering master degree
program, in the Center for Research in Mathematics (CIMAT)
were eligible to participate in the study. Besides the funda-
mental concepts of video game development, this course also
focuses in Unity R© as game engine and C# as programming
language.

B. Participants

Eighteen junior software engineers carried out this empiri-
cal study; these engineers (hereafter, participants) had experi-
ence in Scrum. Three groups were considered:

Group A. Three development teams of two participants that
use GameD-UX.

Group B. Three development teams that use the conven-
tional approach composed by: Taylors GDD [8],
and the agile game development with Scrum [26].

Group C. Three development teams that uses the GameD-
UX tool.

Each team (composed of two participants) developed a
single video game. The game overview can be summed as:
a tower defense game for teaching basic multiplication oper-
ations to children in elementary school. The goal of a tower
defense game (a special case of strategy video games) is to
stop enemies from reaching a specific point on a map; for
this, the player can build towers to kill enemies.

C. Metrics

a) Rework: is defined as any additional effort required
for finding and fixing problems after documents and code
are formally signed-off as part of configuration management
[35]. For measuring the rework, any artifact put to test for the
first time starts to register rework time after the test is done.
To compare different products, rework effort is sometimes
normalized by being calculated as a percentage of development
effort [35].

b) Productivity: is the amount of requirements that a
team can complete in an hour.

c) Complexity of use: of GameD-UX tool is evaluated
with a post-mortem survey applied to participants (teams A
and C) after finishing the project. The survey evaluates the
complexity of using GameD-UX with the software tool, it
contains the following assertions evaluated in a likert scale
(1 strongly disagree – 7 strongly agree):

www.ijacsa.thesai.org 399 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Assertion 1 (A1): The tool or text documents
easily allow to associate the guidelines (GEM)
with the game elements (iGDD) to be developed.
Assertion 2 (A2): The tool or text documents
makes easy to identify which game elements
(iGDD) are in progress and which are finished.
Assertion 3 (A3): The tool or text documents
facilitates the validation of game elements (iGDD)
with their corresponding guidelines (GEM).

An overview of the two experiments (A, B) and their
relationships to the study groups, metrics, and lesson learned
are shown in Fig. 3.

D. Experiments

The experiment A was conducted to compare rework and
productivity of GameD-UX and a conventional approach to
game development. For this aim, projects of groups A and B
are compared in terms of rework and productivity.

The experiment B evaluates the software tool developed
for supporting GameD-UX in terms of productivity and the
complexity of use. For this aim, projects of groups A and C
are compared in terms of productivity and the post-mortem
survey.

V. RESULTS

Experiment A

As shown in Fig. 4, the normalized mean of rework
for group A was 2.73%, while for group B was 11.50%.
A Wilcoxon signed-rank test showed that the GameD-UX
induces significantly less rework than the induced in the group
B (p < 0.01). This proves that GameD-UX generates less
rework than the conventional approach.

Concerning productivity, the mean of requirements finished
in Group A was 11, the mean in Group B was 11.66; the pro-
ductivity mean in Groups A was 0.22 requirements/hour and in
Group B was 0.29. A Wilcoxon signed-rank test showed that
GameD-UX (group A) induces significantly less productivity
than the productivity induced in the group B that used the
conventional approach (p < 0.01). This means that GameD-
UX without supporting tool has the disadvantage of low
productivity in comparison with the conventional approach.
To illustrate this disadvantage of our method, Fig. 5 shows a
boxplot of productivity distribution in both groups.

After the groups delivered their developments, a post-
mortem evaluation was performed to evaluate the good and
bad experiences of using the main elements of GameD-UX.
The post-mortem analysis of the game developers experiences
(Group A) brings us potential evidences to explain the poor
productivity in our method. The resumed lessons learned of
the six participants that use the iGDD and GEM are:

• It is unclear when to modify the iGDD content.

• There exists a missing link between requirements and
GEM guidelines.

• It is hard to recognize elements to be developed by
role of the team; e.g., artist, programmer, designer.

TABLE III. PRODUCTIVITY (HOURS) FOR GROUPS A AND C

Requirement Media
R1 R2 R3 R4 R5 R6 Total

Group A 21.5 32 12 17 31 18 131.5
Group C 20 31 10 16 28 11 116.0

• It is hard to visually associate requirements to game
elements of the iGDD.

• It is hard to recognize the correct sequence of sections
to be developed.

• Developers are usually overloaded with manual vali-
dation of GEM elements.

Experiment B

Results of experiment A show that manual work (using text
documents) to manage GEM, iGDD, and the links between
them generates low productivity for video game development.
To overcome this issue, a tool (described in section 3.2) was
developed following the lessons learned.

In general, the productivity of group C (total median of
116.0 hours) is better than the productivity of group A (total
median of 131.5 hours). Table III shows the results for each
requirement.

The complexity evaluation was measured by applying an
independent sample t-test to examine if there was a significant
difference among the means of assertions answers. The boxplot
shows the median results for the survey (Fig. 6). A statistical
difference was observed for A1 (p < 0.01) and A2 (p < 0.01).
It means that the supporting tool facilitates the use of GameD-
UX because it easily associates guidelines with game elements
and it makes easy to identify which game elements are in
progress and which are finished.

Although the scale for A3 was higher when using the
supporting tool (Mean=5.56) compared to the GameD-UX
(Mean=4.63), there was not a significant difference.

VI. CONCLUSIONS

This paper presents the GameD-UX method for video game
development based on UX. It is composed of a repository of
game elements (iGDD), a model to design, track and manage
user experience (GEM), and an adapted Scrum method for
game development.

The GameD-UX method induces less rework than a con-
ventional approach used to develop video games (Taylors GDD
and the agile game development with Scrum). Sections of
the iGDD and their relation to the Software Requirement
Specification (SRS) characteristics are key factors that improve
the conventional repository.

The lessons learned from initial video game developments
using GameD-UX – e.g., low productivity – were improved
with the supporting tool. The requirements developed by teams
that uses the GameD-UX consumes 13.33% less time when
using the tool.

According to the survey applied to game developers, the
complexity of use of GameD-UX was reduced with the tool.
Specifically, the GameD-UX tool: (i) allows to associate the

www.ijacsa.thesai.org 400 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Experiment A

Group A
GameD-UX

*iGDD

*GEM

*A. agile

Rework

Group B
Conventional

approach

*GDD

*Scrum

Productivity Rework Productivity

Lessons learned: iGDD

and GEM

Experiment B

Group A
GameD-UX

*iGDD

*GEM

*A. agile

Survey: Complexity

Group C

Productivity

Transformed

in a survey

Approach
Group

of study
Metrics

Lessons

learned Survey

GameD-UX

Tool

*iGDD

*GEM

*A. agile

Survey: Complexity

Fig. 3. Groups, metrics and instruments for experiments A and B.

Fig. 4. Comparison of rework for groups A and B.

guidelines (GEM) with the game elements (iGDD), and (ii)
it facilitates the identification of game elements according to
their status (finished or unfinished). The tool was designed
to track game elements and their association to guidelines
and drivers. But we believe that a better performance can
be obtained by improving the tool – e.g., including real-time
notifications of status changes to developers and reviewers.

In further works, we will extend the GEM to involve
player-centric practices – e.g., players can help to define their
profile. A more accurate understanding of the potential players,
will originate more useful game design drivers to create better
an experience for these players.

In affective and cognitive computing, we want to investi-
gate the human behavior with the video game elements in order
to achieve the desired emotion or cognition, and integrate it

Fig. 5. Comparison of productivity for groups A and B.

in the GEM the comparative results of diferent versions of
mechanics and asthetics.

REFERENCES

[1] E. S. Association et al., “Essential facts about the computer and
video game industry: 2010 sales, demographic and usage data 4
(2010),” Washington, DC. Disponı́vel em: http://www. theesa. com/wp-
content/uploads/2014/10/ESA EF 2014. pdf. Acesso em mai, 2016.

[2] J. Schell, The Art of Game Design: A book of lenses. CRC Press,
2014.

[3] F. Petrillo, M. Pimenta, F. Trindade, and C. Dietrich, “What went
wrong? a survey of problems in game development,” Computers in
Entertainment (CIE), vol. 7, no. 1, p. 13, 2009.

[4] ——, “Houston, we have a problem...: a survey of actual problems
in computer games development,” in Proceedings of the 2008 ACM
symposium on Applied computing. ACM, 2008, pp. 707–711.

www.ijacsa.thesai.org 401 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 2, 2017

Fig. 6. Comparison of complexity of use GameD-UX between groups A
(GameD-UX) and C (GameD-UX tool)

[5] M. Gonzalez-Salazar, H. A. Mitre, C. L. Olalde, and J. L. G. Sánchez,
“Proposal of game design document from software engineering re-
quirements perspective,” in Computer Games (CGAMES), 2012 17th
International Conference on. IEEE, 2012, pp. 81–85.

[6] H. Mitre-Hernandez, C. Lara-Alvarez, M. Gonzalez-Salazar, J. Mejia-
Miranda, and D. Martin, “User experience management from early
stages of computer game development,” International Journal of Soft-
ware Engineering and Knowledge Engineering, vol. 26, no. 08, pp.
1203–1220, 2016.

[7] E. Bethke, Game development and production. Wordware Publishing,
Inc., 2003.

[8] C. Taylor. (1999) MS Windows NT design document. [Online].
Available: www.designersnotebook.com/ctaylordesign.zip

[9] S. Rogers, Level Up! The guide to great video game design. John
Wiley & Sons, 2014.

[10] K. Oxland, Gameplay and design. Pearson Education, 2004.

[11] A. Rollings and E. Adams, Andrew Rollings and Ernest Adams on game
design. New Riders, 2003.

[12] M. Baldwin. (2005) MS Windows NT game
design document outline. [Online]. Available:
http://ccasummer2014.tumblr.com/post/91982395367/baldwin-game-
design-document-template-doc-file

[13] B. Bates, Game Design [Paperback]. Premier Press; 2nd Revised
edition edition, 2004.

[14] R. Rouse III, Game design: Theory and practice. Jones & Bartlett
Learning, 2010.

[15] L. Nacke, A. Drachen, K. Kuikkaniemi, J. Niesenhaus, H. J. Korhonen,
W. M. Hoogen, K. Poels, W. A. IJsselsteijn, and Y. A. De Kort,
“Playability and player experience research,” in Proceedings of DiGRA
2009: Breaking New Ground: Innovation in Games, Play, Practice and
Theory. DiGRA, 2009.

[16] E. H. Calvillo-Gámez, P. Cairns, and A. L. Cox, “Assessing the
core elements of the gaming experience,” in Game User Experience
Evaluation. Springer, 2015, pp. 37–62.

[17] S. Engl and L. E. Nacke, “Contextual influences on mobile player
experience–a game user experience model,” Entertainment Computing,
vol. 4, no. 1, pp. 83–91, 2013.

[18] C. Hochleitner, W. Hochleitner, C. Graf, and M. Tscheligi, “A heuristic
framework for evaluating user experience in games,” in Game User
Experience Evaluation. Springer, 2015, pp. 187–206.

[19] H. P. Breivold, I. Crnkovic, and M. Larsson, “A systematic review

of software architecture evolution research,” Information and Software
Technology, vol. 54, no. 1, pp. 16–40, 2012.

[20] M. R. Barbacci, R. J. Ellison, A. Lattanze, J. Stafford, C. B. Weinstock,
and W. Wood, “Quality attribute workshops,” 2002.

[21] R. L. Nord, W. G. Wood, and P. C. Clements, “Integrating the quality
attribute workshop (qaw) and the attribute-driven design (add) method,”
DTIC Document, Tech. Rep., 2004.

[22] R. Hunicke, M. LeBlanc, and R. Zubek, “Mda: A formal approach to
game design and game research,” in Proceedings of the AAAI Workshop
on Challenges in Game AI, vol. 4, no. 1, 2004.

[23] B. W. Boehm, “A spiral model of software development and enhance-
ment,” Computer, vol. 21, no. 5, pp. 61–72, 1988.

[24] K. Schwaber and M. Beedle, Agile software development with Scrum.
Prentice Hall Upper Saddle River, 2002, vol. 1.

[25] K. Beck, Extreme programming explained: embrace change. addison-
wesley professional, 2000.

[26] C. Keith, Agile game development with Scrum. Pearson Education,
2010.

[27] J. Kasurinen, R. Laine, and K. Smolander, “How applicable is iso/iec
29110 in game software development?” in International Conference on
Product Focused Software Process Improvement. Springer, 2013, pp.
5–19.

[28] A. Godoy and E. F. Barbosa, “Game-scrum: An approach to agile game
development,” Proceedings of SBGames, pp. 292–295, 2010.

[29] R. Kortmann and C. Harteveld, “Agile game development: lessons
learned from software engineering,” in Learn to Game, Game to Learn;
the 40th Conference ISAGA, 2009.

[30] C. Alexander, The timeless way of building. New York: Oxford
University Press, 1979, vol. 1.

[31] D. Martı́n, J. G. Guzmán, J. Urbano, and J. Llorens, “Patterns as
objects to manage knowledge in software development organizations,”
Knowledge Management Research & Practice, vol. 10, no. 3, pp. 252–
274, 2012.

[32] I. van de Weerd, S. de Weerd, and S. Brinkkemper, “Developing a
reference method for game production by method comparison,” in Situ-
ational method engineering: Fundamentals and experiences. Springer,
2007, pp. 313–327.

[33] H. A. Mitre-Hernández, C. Lara-Alvarez, M. González-Salazar, and
D. Martı́n, “Decreasing rework in video games development from
a software engineering perspective,” in Trends and Applications in
Software Engineering. Springer, 2016, pp. 295–304.

[34] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in software engineering. Springer Science
& Business Media, 2012.

[35] S. Pfleeger and B. Kitchenham, “Software quality: The elusive target,”
IEEE Software, pp. 12–21, 1996.

www.ijacsa.thesai.org 402 | P a g e

