
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 3, 2017 

67 | P a g e  

www.ijacsa.thesai.org 

Modified Hierarchical Method for Task Scheduling in 

Grid Systems 

Ahmad Ali AlZubi 

Computer Science Department 

King Saud University 

Riyadh, Saudi Arabia 

 

 
Abstract—This study aims to increase the productivity of grid 

systems by an improved scheduling method. A brief overview 

and analysis of the main scheduling methods in grid systems are 

presented. A method for increasing efficiency by optimizing the 

task graph structure considering the grid system node structure 

is proposed. Task granularity (the ratio between the amount of 

computation and transferred data) is considered to increase the 

efficiency of planning. An analysis of the impact on task 

scheduling efficiency in a grid system is presented. A 

correspondence of the task graph structure considering the node 

structure (in which the task is immersed) to the effectiveness of 

scheduling in a grid system is shown. A modified method for 

scheduling tasks while considering their granularity is proposed. 

The relevant algorithm for task scheduling in a grid system is 

developed. Simulation of the proposed algorithm using the 

modeling system GridSim is conducted. A comparative analysis 

between the modified algorithm and the algorithm of the 

hierarchical scheduler Maui is shown. The general advantages 

and disadvantages of the proposed algorithm are discussed. 

Keywords—directed acyclic graph (DAG); task granularity; 

hierarchical method; Maui scheduler; scheduler; scheduling 

algorithm; task manager; grid; parallelism degree 

I. INTRODUCTION 

Planning and resource allocation in grid systems are 
crucial tasks due to the heterogeneous structure, large 
dimensionality and different types of problems encountered 
[1]. A grid system typically consists of K computed nodes {ri 
|i=1,2..,K}. Each node ri includes a plurality of Pi={pj | 
j=1,2,…Ni) processors, the relations between which is given 
by the loaded Hi=(Bi,Li) graph. A vertex set Bi={bj | 
j=1,2,…Ni) represents the grid system node processors, and a 
plurality of ribs Li={lk,j | k,j=1,2,…Ni) of the graph indicates 

the relationships among the processors. Each vertex bj  Bi 
has a weight vj equal to the performance of the corresponding 

CPU pj  Pi. The performance of the complete grid system of 

the i-th node is equal    ∑   
 
     The weight si,j of ribs li,j 

determines the transmission speed of the communication 
channel between processors pk and pj. Si is the exchange rate 
within the i-th grid system node. 

In the general case, the task scheduling process in a grid 
system, which consists of a plurality of computing nodes, is 
performed as follows: for a grid system consisting of K 
computing nodes, find a node that provides the optimal 
solution for the problem in accordance with predetermined 
criteria. 

Depending on the choice of optimization criterion, the 
problem of finding an optimal node can be formulated as 
follows: 

Find the i-th node of the grid system that provides the 
minimum time to complete task Ti. Mathematically, this 
problem can be written as follows: 
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where jlit
 is the run time of j-th task in the l-th CPU of the 

i-th grid system node; 

iS  is the delivery time of the input data and application 
results to (from) the i-th grid system node; 

Tr  is the time when the task is ready to execute in the grid 
system nodes; 

iTf
 is the time then the i-th grid system node is released to 

perform the task in exclusive mode; 

1jliX
 if the j-th task executes in the l-th CPU of the i-th 

node and 
0jliX

 otherwise. 

Find the i-th node of the grid system with minimal 
computation cost that performs a given application within a 
given time (Tz). The mathematical model of this task can be 
written as follows: 
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under condition 

      
)K,i(TT

zi
1

 .                 (4) 

In formula (3) Ci is the task execution cost in the i-th node 
of the grid system. In this case, a subset of nodes is first 
determined; runtime of these nodes corresponds with 
restriction (4). A node in which a task is executed at a minimal 
cost is then selected among this subset (condition (3)). 

Find the i-th node of the grid system with the lowest cost 
that will provide the minimal total execution time of the task. 
The mathematical model of this task can be written as follows. 
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Find a grid system node that satisfies conditions (1) and (2) 
under the restriction 

     minCCi                                    (5) 

In this case, initially, in accordance with conditions (1) and 
(2), the subset of nodes is determined while ensuring that the 
execution time of the application is minimal. Among them, the 
node with the lowest cost then is selected in accordance with 
restriction (5). 

II. METHODS AND ALGORITHMS FOR TASK SCHEDULING 

Three main types of scheduling methods are used in grid 
systems: centralized, decentralized and hierarchical [2]. 

In centralized methods, all user tasks are sent to a 
centralized scheduler. The centralized scheduler forms a 
unified incoming task queue. The advantage of such methods 
is their high planning efficiency because the planner has the 
information of all available resources and the coming 
challenges. The disadvantage of centralized scheduling is 
weak scaling. Centralized methods are only suitable for grid 
systems with a limited number of nodes. 

In decentralized methods, the planning function is 
distributed across all system nodes. Decentralized methods 
provide better fault tolerance and reliability compared with 
centralized methods; however, the absence of a meta-
scheduler that has information about all tasks and resources 
reduces the scheduling efficiency. 

Hierarchical methods of the task planning process are 
subdivided into two levels: global and local. The functional 
components of the task scheduler are associated with two 
simultaneous types of data flow: information flow of user 
tasks and control task flow. 

At present, task scheduling in grid systems is mainly 
performed by hierarchical schedulers due to the large number, 
dimensionality and heterogeneity of tasks. The effectiveness 
of the hierarchical scheduling method depends on the 
efficiency of its software implementation, the planning 
strategies of low-level grid system brokers and the local 
scheduler. 

In [3,4], a review and analysis of the main scheduling 
methods in grid systems were conducted. Task scheduling in 
grid systems is an NP-complete problem [5,6], and the 
solution has different approximate methods and algorithms, 
such as heuristic algorithms [7], genetic algorithms [8,9,10], 
algorithms based on stochastic Petri networks [11], ant colony 
algorithms [12], fuzzy optimization [13], tabu search [14], 
gravitational emulation local search [15], learning automata 
[16] and combinations thereof [17,18,19,20]. In the general 
case, task scheduling is a multi-objective problem in grid 
systems. Over the last decade, significant research has been 
carried out in the field of task planning for distributed and 
parallel systems from the standpoint of minimizing task 
execution time and calculation cost and optimizing resource 
utilization [21], security [22] and fault tolerance [23]. In [24], 
the different scheduling algorithms were summarized based on 
the grid system structure, showing that the minimal 

computation value is achieved by a combination of genetic 
algorithms and other types of algorithms. 

Grid systems are used to solve the problems of high-
dimensional serial tasks, parallel tasks and parallel–serial 
tasks. Task sequences are applications that require a single 
processor for serial operations. Task sequence planning is 
performed by a single computing unit via algorithms such as 
Min–Min, Min–Max, and Sufferage  [1], which do not provide 
parallel operations. 

Parallel tasks involve the use of multiple processors for the 
simultaneous execution of operations. The development of 
computer technology for large-scale problem solving in grid 
computing is a rapidly developing area and is presented in the 
form of a workflow of series–parallel tasks with a specific 
chart of computing synchronization [25]. The computational 
tasks are represented in the form of a directed acyclic graph 
(DAG) [26, 27, 28, 29]. The presence of parallel branches in a 
DAG facilitates the simultaneous use of multiple grid system 
resources for task execution. In this case, is it crucial to 
minimize the cost of data transfer among computing grid 
system nodes. Ref. [30] provides a method for scheduling 
tasks that considers task granularity [31]—the ratio of 
computation operations to the volume of transferred data. This 
increases the efficiency of planning parallel–serial tasks in a 
grid system. A further increase in the efficiency of scheduling 
can be achieved by optimizing the structure of the DAG task 
with the structure of grid system nodes, particularly their 
granularity. Grid system node granularity is the ratio of node 
performance to the exchange rate among its components 
(CPUs). 

III. ANALYSIS OF THE INFLUENCE OF GRANULARITY ON 

THE EFFECTIVENESS OF TASK PLANNING IN GRID SYSTEMS 

Let us represent the computational task as a DAG: 
D=(A,E), vertex set A={aj | j=1,2,…M) that represents part of 
the tasks, and a set of arcs E={ei,j | i,j=1,2,…N) that 

represents the link between tasks. For each vertex aj  A, its 
weight wj is given, which is equal to the number of operations 
performed by the current task. The total number of task 

operations is   ∑   
 
     Weight qi,j of ribs li,j determines 

the amount of data transferred among the tasks over the 
communication channel between CPUs pi and pj. The total 
amount of data transmitted in solving the task is presented in 

the form of a DAG:   ∑ ∑     
 
   

 
    

The efficiency of task parallelization depends on the 
number of calculations and the amount of data transmitted: 

         
 

   
                        (6) 

Let us represent formula (1) in the form of 
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or 

           
 

    
,                (7) 

where GТ =W/Q is the task granularity. 
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With increasing task granularity, the effectiveness of its 
implementation also increases. Reducing the amount of 
transmitted data required for the problem leads to increased 
efficiency and granularity. Thus, granularity can be a criterion 
for the efficiency of parallelization. 

The task computation efficiency in the grid system node is 
determined by the ratio of the task calculation time tT to the 
exchange time between tasks tC: 

      En= tT / tC..                    (8) 

Substituting the expressions tT=W/V and tC=Q/S into 
expression (8) yields the following: 

    
   

   
 

or 

      En =GT / Gn,                      (9) 

where Gn =V /S is the granularity of the grid system node. 

Formulas (7) and (9) indicate that to achieve the maximum 
task scheduling efficiency in the grid system, it is necessary to 
choose the ratio between task granularity and node granularity 
at which the task is immersed for calculation. 

Selecting a node for task immersion will primarily depend 
on the maximum task granularity at which the condition will 
be executed (4). The granularity is increased by clustering the 
DAG task [32]. Thus, adjacent DAG vertices should be 
combined with a maximum amount of transferred data. 

In the case of an absence of grid system computational 
nodes that allow calculations to be performed in a cluster 
within a given period of time or a lack of available 
computational resources, DAG task declustering is performed. 
In declustering, the number of DAG task vertices increases, 
but their weights decrease. Thus, the task granularity is 
reduced by decreases in the weights of DAG vertices, 
increasing the amount of data transferred between them. This 
leads to decreased coefficients ET and En. It is appropriate to 
reduce the task granularity when GT > Gn. 

Increasing the number of DAG vertices allows for an 
increased degree of parallelism of the task and reduces the 
time of its decision. The following condition must be satisfied: 

       K(t) ≥D(t),                        (10) 

where D(t) is the parallelism degree of the task; 

K(t) is the number of available CPUs at time moment t. 

The parallelism degree of task D(t) is the number of CPUs 
involved in solving the task at time moment t. 

One of the key elements in achieving high performance in 
task planning is selecting an appropriate ratio between the task 
granularity and node granularity of the grid system on which it 
is immersed. Conditions (4) and (10) must be met. 

IV. MODIFIED HIERARCHICAL METHOD FOR TASK 

SCHEDULING CONSIDERING THE GRANULARITY OF TASKS AND 

GRID SYSTEM NODES 

A. Difference between the Modified Hierarchical Method for 

Task Scheduling and the Base Method of the Maui 

Scheduler 

The Maui hierarchical scheduling algorithm is examined 
as a base scheduling algorithm for review and modification 
[33]. The Maui scheduler is an optimal configurable tool that 
supports multiple resource selection policies and is able to set 
dynamic priorities, enforce ―fair‖ sharing of resources 
between users, and facilitate reservation. 

The Maui scheduler is one of the most popular and 
effective grid meta-schedulers and is used in many 
implementations of grid systems, such as IBM Tivoli [34] and 
Moab Workload Manager [35]. 

In the planning process, the Maui scheduler performs the 
following: 

 full list view of nodes in order of the optimal resource 
search (best fit); 

 preliminary calculation of time for solving the task on 
all nodes. 

The Maui scheduler uses task granularity as the primary 
metric for choosing the node for task immersion, thus 
eliminating the time-consuming search operation for the 
optimal resource. 

The elimination of the optimal resource search operation 
also entails the elimination of the time-consuming operation 
for estimating the task time execution on a resource for each 
node, thus significantly reducing the planning time. 

Instead of searching the list of system resources in the 
search for a suitable resource, it will browse the resources in 
the ring as long as the desired resource is not found. Once the 
desired resource is found, the resource will be implemented 
for immersion. The subsequent search for a resource starts 
from a list of resources after previously finding the desired 
one that has been utilized for immersion. The browsing is 
executed nonlinearly by ring, which does not lead to a linear 
increase in algorithm complexity in the case of an increasing 
number of resources. Additionally, this approach leads to a 
more balanced loading of the system because all components 
will be reviewed and will not be permanently assigned for the 
high-performance resource tasks only. These steps help to 
improve the efficiency of the scheduling procedure in a grid 
system. 

To select appropriate resources for the task, some of the 
functions will be transmitted to the resource manager, which 
has general resource information: the number of CPUs, the 
performance of a node, and the communication channel 
capacity of this node. Therefore, in determining the 
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appropriate resources for the task, the scheduler will request 
information about the availability of nodes from the manager 
at the time of the transfer of the current task data. The 
resource manager returns to the scheduler sub-list of nodes 
that are available at this moment. The scheduler will 
determine resource searching with a specific granularity value 
at a certain stage of the algorithm execution among the list of 
system resources but only on the resources that will be able to 
take the tasks immediately and execute it immediately after 
the allocation of the task to the resource. This approach 
significantly reduces the decision time regarding whether the 
resource is suitable for the task. Because of the amount of time 
during which the response request/receipt are executed from 
the resource manager, the planning time should not increase 
significantly relative to the decision time of the base 
algorithm. 

For the resources, let us determine another parameter—
resource holding time. Considering this parameter will allow 
us to avoid another disadvantage of the previous algorithm—
the possibility of assigning tasks to a resource that has not yet 
been freed, which can lead to the formation of local queues to 
resources. The scheduler calculates this parameter during the 
task immersion to a resource based on the number of 
calculations in the task, the capacity of the node channel, the 
task weight and the node performance. The parameter is stored 
for the certain resource and provided by the request to a 
scheduling manager under the condition of free resource 
availability at the required start time of the task. Based on this 
parameter, the capacity of the node channel, and the number 
of calculations in the new task—which will be given to the 
scheduler—the manager will be able to calculate whether any 
given resource is available to the point where it will be passed 
to the data. 

The ratio selection between the granularity GT of a task 
and the granularity Gn of a grid system node on which it is 
immersed is performed as follows. For the selected task to be 
executed on the grid system, the search is performed for a 
node, and the granularity Gn of each node is equal to 
granularity GT according to condition (4). In this case, the 
task is immersed on the selected node; otherwise, task 
granularity GT is corrected depending on its ratio with system 
node granularity Gn. If node granularity Gn is greater than 
task granularity GT, then clustering increases GT to a value as 
close to Gn as possible by condition (4). Then, the immersion 
on the selected node for its implementation is performed. If 

node granularity Gn is less than task granularity GT and 
condition (4) is not executed, then task granularity GT is 
reduced to meet conditions (4) and (10). 

B. Algorithm of the Modified Task Scheduler Function 

1. Begin; 

2. creation of the task queue; 

3. if the task queue is empty, then go to step 19; 

4. the selection of the next task; 

5. create an available node list at the task downloading 

time; 

6. if the node list is empty, then go to step 5; 

7. the selection of node ri с min |GT – Gn| and Ti ≤ TZ /* 

selection of the node that is most appropriate for criteria ET 

and En */; 

8. if 0.5≤ (GT| Gn ) ≤1.5, then go to step 17;  

9. if GT < Gn, then go to step 12 /* task granularity smaller 

than node granularity */;  

10. if GT is minimal, then go to step 17 /* further 

declustering impossible */; 

11. decrease of GT, then go to step 8 /* performed by 

clustering */; 

12. if GT maximum, then go to step 17 /* further 

clustering violates the condition: Ti ≤ TZ */; 

13. increase of GT /* performed by clustering */; 

14. the calculation of a Ti new value;  

15.  if Ti ≤ TZ, then go to step 8; 

16.  decrease of GT /* performed by declustering */; 

17. task immersion on node ri; 

18. go to step 2; 

19. End. 

V. ANALYSIS OF THE ALGORITHM’S EFFECTIVENESS FOR 

THE PROCESS OF SCHEDULING TASKS IN A GRID SYSTEM 

A. Simulation of the Task Scheduling Process 

The GridSim [36] modeling system, which allows different 
scheduling policies to be implemented (FCFS, Easy Backfill, 
Conservative Backfill) is selected as a tool for modeling and 
analyzing the effectiveness of the proposed algorithm. In the 
current research, GridSim has been expanded by adding new 
necessary entities for the simulation of the planning process 
and execution of workflows in the grid environment. The class 
diagrams of the implemented modules are shown in Figure 1. 
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Fig. 1. Class diagram in the modeling system

A modeling system allows for test task immersion in real 
time. The number of tasks and resources are defined by the 
user. The result of both scheduling algorithm simulations, with 
the same input data, are output data, such as average task 
downtime in the queue, total system boot time, average system 
node load, average load of communication channels, average 
scheduler decision time, and system node load chart. The node 
parameters are the number of CPUs and the performance of 
the node channel bandwidth of that node. 

The task is generated with the granularity, the task weight 
(the amount of calculations), the estimated runtime for a task 
at its maximum granularity, and the priority. The task queue is 
created after generation, sorted by priority, in which the task 
with the highest priority is at the head of the queue. The 
scheduler works in real time; all measurements are made in 
milliseconds. 

B. Simulation Results of the Base and Modified Scheduling 

Algorithm 

The modeling system generated loading charts of grid 
system nodes and communication channels. Using this 
simulation program, the loading of system nodes were 
analyzed at different ratios between the task number and grid 
system nodes. Figures 2 and 3 show the relative loading of the 
first 25 nodes and the communication channels as a 
percentage of their maximum values in the solution of 100 
tasks on 50 grid system nodes. 

A comparison of Figures 2 and 3 illustrates that the 
loading of the nodes is relatively low with a relatively small 
difference between the number of tasks and nodes. 
Furthermore, the modified algorithm provides more balanced 
and larger loading compared with the baseline algorithm. 
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Fig. 2. Relative loading of the first 25 nodes and communication channels as 

a percentage of their maximum values in the solution of 100 tasks on 50 grid 

system nodes using the base scheduling algorithm 

Figures 4 and 5 show the relative loading of the first 25 
nodes and communication channels as a percentage of their 
maximum values in the solution of 5,000 tasks on 100 grid 
system nodes. 

 
Fig. 3. Relative loading the first 25 nodes and communication channels as a 

percentage of their maximum values in the solution of 100 tasks on 50 grid 

system nodes using the modified scheduling algorithm 

 
Fig. 4. Relative loading of the first 25 nodes and communication channels as 

a percentage of their maximum values in the solution of 5,000 tasks on 100 

grid system nodes using the base scheduling algorithm 

 
Fig. 5. Relative loading of the first 25 nodes and communication channels as 

a percentage of their maximum values in the solution of 5,000 tasks on 100 
grid system nodes using the modified scheduling algorithm 

A comparison of the loading charts (Figures 2–5) with the 
increase in task queues indicates that the effectiveness of the 
modified scheduling algorithm is significantly increased due 
to the higher and more balanced loading of nodes and 
communication channels. 

Experiments were performed for a fixed node number but 
a variable task number. The base and modified algorithms 
were modeled, and a histogram was constructed based on the 
average values for the experiments with tasks as one pair of 
resources. 

Considering how to apply the base or modified scheduling 
algorithm will influence the average residence time of the task 
in queue (Figure 6), the total system loading time (Figure 7), 
and the average scheduler decision time (Figure 8). 

 
Fig. 6. Average residence time of a task in the queue based on the task 

number using the base and modified algorithms with a fixed number of 

resources of 100 
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Fig. 7. Total load time of the system with a fixed number of resources of 

100 

 
Fig. 8. Average decision-making time by the scheduler with a fixed number 

or resources of 100 

As shown in Figure 6, regardless of the task number, the 
residence time in the queue is less than that in the modified 
algorithm by an average of 20%. 

As shown in Figure 7, the total system loading time is 
significantly reduced with the modified algorithm because the 
modified algorithm selects the optimal ratio between task 
granularity and system granularity. 

The average scheduler decision time regarding the choice 
of the node for the task immersion using the modified 
algorithm is essentially independent of the task queue size, 
unlike the base method. This independence occurs because 
resource searching continues to loop as long as the desired 
resource is not found. In the base algorithm, resource 
searching starts from the beginning each time, which often 
leads the resource to be linearly dependent on the optimal task 
number search in the queue. 

Figures 9–11 show the simulation results of the base and 
modified schedulers with a fixed task number and different 
grid system node numbers. Experiments were performed for a 
fixed task number but a variable node number. We 
implemented the model using the base and modified 
algorithms, and the histograms (Figures 9–11) reflect the 
average values for the experiments with one pair of 
resources—tasks. 

As shown in Figure 9, the average task residence time in a 
queue using the modified algorithm with different amounts of 
resources is approximately 50% less than when using the base 
algorithm because the decision time using the modified 
algorithm is less than that of the base algorithm. 

 
Fig. 9. Dependence of the average task residence time in a queue with a 

different number of gird system nodes with a fixed number of tasks of 10,000 

 

Fig. 10. Total load time of the system with a fixed number of tasks of 10,000 
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Fig. 11. Average decision-making time by the scheduler with a fixed number 

of resources of 100 

C. Analysis of the Modeling Results 

The histogram shows the average task residence time in a 
queue for an increasing number of tasks and a fixed amount of 
resources and a fixed number of tasks and an increasing 
number of resources in proportion to each task and resource 
pair. Thus, the task downtime in a queue for the base 
algorithm is larger than for the proposed modified algorithm. 
When the modified scheduler does not review all resources 
when searching, it does not calculate the task execution time 
for each item in the search to achieve the optimal time. The 
histogram shows the significant time gap associated with the 
generation of each experience for a different number of 
resources with different productivity. This time gap can 
greatly increase the waiting time of task immersion for the 
resource with the base algorithm. 

The histograms show that the system load is reduced when 
using the modified scheduler because the main load is not in 
the highest-performing resource and because tasks are evenly 
distributed across system resources. This reduces the system 
time and allows many tasks to be executed earlier compared 
with the base scheduler. 

The final histogram shows that using the modified 
scheduling algorithm increases the decision-making time of 
the scheduler. Let us analyze why this occurs. The base 
scheduling algorithm is necessary for a full scan and for 
calculating the computation time of the task on each resource, 
which is a time-consuming procedure. In the modified 
algorithm, a request is sent to the resource manager for the 
sub-list of resources that will be available at the time of data 
transfer of the current task. This is the first time value in the 
total time calculation of decision making. Next, the scheduler 
waits for a response from the resource manager, which holds 
the necessary calculations to generate a list; the resource 
manager then sends a list to the scheduler. After that, the 
scheduler begins to view the issued list of resources to find the 
optimal resource for the task. When a resource is found, the 
scheduler calculates the end of the task on the resource, which 
also takes time. After these steps, if the base algorithm is 

being used, the task waits for the most productive resource 
regardless of how much time the scheduler spends deciding on 
the most favorable site node. Consequently, the task is idle, 
and the system is underutilized. This is not observed when the 
modified scheduling algorithm is used because the system 
time is considerably lower than that when using the base 
algorithm even though the decision time is longer. 

Table 1 shows the average test results. We generated 
10,000 random tasks that were immersed on 1,000 nodes. 

TABLE I. RESULTS OF THE ALGORITHMS 

Characteristic Baseline Modified 

Waiting time in the queue 52848 9506 

Total working time 17 197 200 4 248 600 

Average nodes loading, % 19 45 

Average loading of communication 

channels, % 
13 11 

Decision time, ms 2,8015 5,2316 

VI. CONCLUSION 

This paper proposes a modified hierarchical method of 
task scheduling that increases the efficiency of a grid system 
by selecting the optimal ratio between task granularity and 
grid system node granularity on a node on which a given task 
is immersed. This is accomplished by changing the task 
granularity via conversion. This ensures a uniform, more 
balanced load of processors and communication channels 
between grid system nodes and reduces the residence time of 
the task in the input task queue. The result is increased 
productivity in the grid system by an average of 20%. 

A further performance increase is related to the possibility 
of changing the granularity of grid system nodes by changing 
their structure considering the number of physical 
communication channels in the processors of a particular 
computing node and through support for a duplex mode of 
information transmission in communication channels. 
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