
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

67 | P a g e

www.ijacsa.thesai.org

Modified Hierarchical Method for Task Scheduling in

Grid Systems

Ahmad Ali AlZubi

Computer Science Department

King Saud University

Riyadh, Saudi Arabia

Abstract—This study aims to increase the productivity of grid

systems by an improved scheduling method. A brief overview

and analysis of the main scheduling methods in grid systems are

presented. A method for increasing efficiency by optimizing the

task graph structure considering the grid system node structure

is proposed. Task granularity (the ratio between the amount of

computation and transferred data) is considered to increase the

efficiency of planning. An analysis of the impact on task

scheduling efficiency in a grid system is presented. A

correspondence of the task graph structure considering the node

structure (in which the task is immersed) to the effectiveness of

scheduling in a grid system is shown. A modified method for

scheduling tasks while considering their granularity is proposed.

The relevant algorithm for task scheduling in a grid system is

developed. Simulation of the proposed algorithm using the

modeling system GridSim is conducted. A comparative analysis

between the modified algorithm and the algorithm of the

hierarchical scheduler Maui is shown. The general advantages

and disadvantages of the proposed algorithm are discussed.

Keywords—directed acyclic graph (DAG); task granularity;

hierarchical method; Maui scheduler; scheduler; scheduling

algorithm; task manager; grid; parallelism degree

I. INTRODUCTION

Planning and resource allocation in grid systems are
crucial tasks due to the heterogeneous structure, large
dimensionality and different types of problems encountered
[1]. A grid system typically consists of K computed nodes {ri
|i=1,2..,K}. Each node ri includes a plurality of Pi={pj |
j=1,2,…Ni) processors, the relations between which is given
by the loaded Hi=(Bi,Li) graph. A vertex set Bi={bj |
j=1,2,…Ni) represents the grid system node processors, and a
plurality of ribs Li={lk,j | k,j=1,2,…Ni) of the graph indicates

the relationships among the processors. Each vertex bj Bi
has a weight vj equal to the performance of the corresponding

CPU pj Pi. The performance of the complete grid system of

the i-th node is equal ∑

 The weight si,j of ribs li,j

determines the transmission speed of the communication
channel between processors pk and pj. Si is the exchange rate
within the i-th grid system node.

In the general case, the task scheduling process in a grid
system, which consists of a plurality of computing nodes, is
performed as follows: for a grid system consisting of K
computing nodes, find a node that provides the optimal
solution for the problem in accordance with predetermined
criteria.

Depending on the choice of optimization criterion, the
problem of finding an optimal node can be formulated as
follows:

Find the i-th node of the grid system that provides the
minimum time to complete task Ti. Mathematically, this
problem can be written as follows:

}{min
,1

i
Ki

T
 (1)

m

j

P

l
iijlijlii

i

}Tf,Trmax{SXtT
1 1 (2)

where jlit
 is the run time of j-th task in the l-th CPU of the

i-th grid system node;

iS is the delivery time of the input data and application
results to (from) the i-th grid system node;

Tr is the time when the task is ready to execute in the grid
system nodes;

iTf
 is the time then the i-th grid system node is released to

perform the task in exclusive mode;

1jliX
 if the j-th task executes in the l-th CPU of the i-th

node and
0jliX

 otherwise.

Find the i-th node of the grid system with minimal
computation cost that performs a given application within a
given time (Tz). The mathematical model of this task can be
written as follows:

}{min
,1

i
Ri

C
 (3)

under condition

)K,i(TT

zi
1

 . (4)

In formula (3) Ci is the task execution cost in the i-th node
of the grid system. In this case, a subset of nodes is first
determined; runtime of these nodes corresponds with
restriction (4). A node in which a task is executed at a minimal
cost is then selected among this subset (condition (3)).

Find the i-th node of the grid system with the lowest cost
that will provide the minimal total execution time of the task.
The mathematical model of this task can be written as follows.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

68 | P a g e

www.ijacsa.thesai.org

Find a grid system node that satisfies conditions (1) and (2)
under the restriction

 minCCi (5)

In this case, initially, in accordance with conditions (1) and
(2), the subset of nodes is determined while ensuring that the
execution time of the application is minimal. Among them, the
node with the lowest cost then is selected in accordance with
restriction (5).

II. METHODS AND ALGORITHMS FOR TASK SCHEDULING

Three main types of scheduling methods are used in grid
systems: centralized, decentralized and hierarchical [2].

In centralized methods, all user tasks are sent to a
centralized scheduler. The centralized scheduler forms a
unified incoming task queue. The advantage of such methods
is their high planning efficiency because the planner has the
information of all available resources and the coming
challenges. The disadvantage of centralized scheduling is
weak scaling. Centralized methods are only suitable for grid
systems with a limited number of nodes.

In decentralized methods, the planning function is
distributed across all system nodes. Decentralized methods
provide better fault tolerance and reliability compared with
centralized methods; however, the absence of a meta-
scheduler that has information about all tasks and resources
reduces the scheduling efficiency.

Hierarchical methods of the task planning process are
subdivided into two levels: global and local. The functional
components of the task scheduler are associated with two
simultaneous types of data flow: information flow of user
tasks and control task flow.

At present, task scheduling in grid systems is mainly
performed by hierarchical schedulers due to the large number,
dimensionality and heterogeneity of tasks. The effectiveness
of the hierarchical scheduling method depends on the
efficiency of its software implementation, the planning
strategies of low-level grid system brokers and the local
scheduler.

In [3,4], a review and analysis of the main scheduling
methods in grid systems were conducted. Task scheduling in
grid systems is an NP-complete problem [5,6], and the
solution has different approximate methods and algorithms,
such as heuristic algorithms [7], genetic algorithms [8,9,10],
algorithms based on stochastic Petri networks [11], ant colony
algorithms [12], fuzzy optimization [13], tabu search [14],
gravitational emulation local search [15], learning automata
[16] and combinations thereof [17,18,19,20]. In the general
case, task scheduling is a multi-objective problem in grid
systems. Over the last decade, significant research has been
carried out in the field of task planning for distributed and
parallel systems from the standpoint of minimizing task
execution time and calculation cost and optimizing resource
utilization [21], security [22] and fault tolerance [23]. In [24],
the different scheduling algorithms were summarized based on
the grid system structure, showing that the minimal

computation value is achieved by a combination of genetic
algorithms and other types of algorithms.

Grid systems are used to solve the problems of high-
dimensional serial tasks, parallel tasks and parallel–serial
tasks. Task sequences are applications that require a single
processor for serial operations. Task sequence planning is
performed by a single computing unit via algorithms such as
Min–Min, Min–Max, and Sufferage [1], which do not provide
parallel operations.

Parallel tasks involve the use of multiple processors for the
simultaneous execution of operations. The development of
computer technology for large-scale problem solving in grid
computing is a rapidly developing area and is presented in the
form of a workflow of series–parallel tasks with a specific
chart of computing synchronization [25]. The computational
tasks are represented in the form of a directed acyclic graph
(DAG) [26, 27, 28, 29]. The presence of parallel branches in a
DAG facilitates the simultaneous use of multiple grid system
resources for task execution. In this case, is it crucial to
minimize the cost of data transfer among computing grid
system nodes. Ref. [30] provides a method for scheduling
tasks that considers task granularity [31]—the ratio of
computation operations to the volume of transferred data. This
increases the efficiency of planning parallel–serial tasks in a
grid system. A further increase in the efficiency of scheduling
can be achieved by optimizing the structure of the DAG task
with the structure of grid system nodes, particularly their
granularity. Grid system node granularity is the ratio of node
performance to the exchange rate among its components
(CPUs).

III. ANALYSIS OF THE INFLUENCE OF GRANULARITY ON

THE EFFECTIVENESS OF TASK PLANNING IN GRID SYSTEMS

Let us represent the computational task as a DAG:
D=(A,E), vertex set A={aj | j=1,2,…M) that represents part of
the tasks, and a set of arcs E={ei,j | i,j=1,2,…N) that

represents the link between tasks. For each vertex aj A, its
weight wj is given, which is equal to the number of operations
performed by the current task. The total number of task

operations is ∑

 Weight qi,j of ribs li,j determines

the amount of data transferred among the tasks over the
communication channel between CPUs pi and pj. The total
amount of data transmitted in solving the task is presented in

the form of a DAG: ∑ ∑

The efficiency of task parallelization depends on the
number of calculations and the amount of data transmitted:

 (6)

Let us represent formula (1) in the form of

 ⁄
,

or

, (7)

where GТ =W/Q is the task granularity.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

69 | P a g e

www.ijacsa.thesai.org

With increasing task granularity, the effectiveness of its
implementation also increases. Reducing the amount of
transmitted data required for the problem leads to increased
efficiency and granularity. Thus, granularity can be a criterion
for the efficiency of parallelization.

The task computation efficiency in the grid system node is
determined by the ratio of the task calculation time tT to the
exchange time between tasks tC:

 En= tT / tC.. (8)

Substituting the expressions tT=W/V and tC=Q/S into
expression (8) yields the following:

or

 En =GT / Gn, (9)

where Gn =V /S is the granularity of the grid system node.

Formulas (7) and (9) indicate that to achieve the maximum
task scheduling efficiency in the grid system, it is necessary to
choose the ratio between task granularity and node granularity
at which the task is immersed for calculation.

Selecting a node for task immersion will primarily depend
on the maximum task granularity at which the condition will
be executed (4). The granularity is increased by clustering the
DAG task [32]. Thus, adjacent DAG vertices should be
combined with a maximum amount of transferred data.

In the case of an absence of grid system computational
nodes that allow calculations to be performed in a cluster
within a given period of time or a lack of available
computational resources, DAG task declustering is performed.
In declustering, the number of DAG task vertices increases,
but their weights decrease. Thus, the task granularity is
reduced by decreases in the weights of DAG vertices,
increasing the amount of data transferred between them. This
leads to decreased coefficients ET and En. It is appropriate to
reduce the task granularity when GT > Gn.

Increasing the number of DAG vertices allows for an
increased degree of parallelism of the task and reduces the
time of its decision. The following condition must be satisfied:

 K(t) ≥D(t), (10)

where D(t) is the parallelism degree of the task;

K(t) is the number of available CPUs at time moment t.

The parallelism degree of task D(t) is the number of CPUs
involved in solving the task at time moment t.

One of the key elements in achieving high performance in
task planning is selecting an appropriate ratio between the task
granularity and node granularity of the grid system on which it
is immersed. Conditions (4) and (10) must be met.

IV. MODIFIED HIERARCHICAL METHOD FOR TASK

SCHEDULING CONSIDERING THE GRANULARITY OF TASKS AND

GRID SYSTEM NODES

A. Difference between the Modified Hierarchical Method for

Task Scheduling and the Base Method of the Maui

Scheduler

The Maui hierarchical scheduling algorithm is examined
as a base scheduling algorithm for review and modification
[33]. The Maui scheduler is an optimal configurable tool that
supports multiple resource selection policies and is able to set
dynamic priorities, enforce ―fair‖ sharing of resources
between users, and facilitate reservation.

The Maui scheduler is one of the most popular and
effective grid meta-schedulers and is used in many
implementations of grid systems, such as IBM Tivoli [34] and
Moab Workload Manager [35].

In the planning process, the Maui scheduler performs the
following:

 full list view of nodes in order of the optimal resource
search (best fit);

 preliminary calculation of time for solving the task on
all nodes.

The Maui scheduler uses task granularity as the primary
metric for choosing the node for task immersion, thus
eliminating the time-consuming search operation for the
optimal resource.

The elimination of the optimal resource search operation
also entails the elimination of the time-consuming operation
for estimating the task time execution on a resource for each
node, thus significantly reducing the planning time.

Instead of searching the list of system resources in the
search for a suitable resource, it will browse the resources in
the ring as long as the desired resource is not found. Once the
desired resource is found, the resource will be implemented
for immersion. The subsequent search for a resource starts
from a list of resources after previously finding the desired
one that has been utilized for immersion. The browsing is
executed nonlinearly by ring, which does not lead to a linear
increase in algorithm complexity in the case of an increasing
number of resources. Additionally, this approach leads to a
more balanced loading of the system because all components
will be reviewed and will not be permanently assigned for the
high-performance resource tasks only. These steps help to
improve the efficiency of the scheduling procedure in a grid
system.

To select appropriate resources for the task, some of the
functions will be transmitted to the resource manager, which
has general resource information: the number of CPUs, the
performance of a node, and the communication channel
capacity of this node. Therefore, in determining the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

70 | P a g e

www.ijacsa.thesai.org

appropriate resources for the task, the scheduler will request
information about the availability of nodes from the manager
at the time of the transfer of the current task data. The
resource manager returns to the scheduler sub-list of nodes
that are available at this moment. The scheduler will
determine resource searching with a specific granularity value
at a certain stage of the algorithm execution among the list of
system resources but only on the resources that will be able to
take the tasks immediately and execute it immediately after
the allocation of the task to the resource. This approach
significantly reduces the decision time regarding whether the
resource is suitable for the task. Because of the amount of time
during which the response request/receipt are executed from
the resource manager, the planning time should not increase
significantly relative to the decision time of the base
algorithm.

For the resources, let us determine another parameter—
resource holding time. Considering this parameter will allow
us to avoid another disadvantage of the previous algorithm—
the possibility of assigning tasks to a resource that has not yet
been freed, which can lead to the formation of local queues to
resources. The scheduler calculates this parameter during the
task immersion to a resource based on the number of
calculations in the task, the capacity of the node channel, the
task weight and the node performance. The parameter is stored
for the certain resource and provided by the request to a
scheduling manager under the condition of free resource
availability at the required start time of the task. Based on this
parameter, the capacity of the node channel, and the number
of calculations in the new task—which will be given to the
scheduler—the manager will be able to calculate whether any
given resource is available to the point where it will be passed
to the data.

The ratio selection between the granularity GT of a task
and the granularity Gn of a grid system node on which it is
immersed is performed as follows. For the selected task to be
executed on the grid system, the search is performed for a
node, and the granularity Gn of each node is equal to
granularity GT according to condition (4). In this case, the
task is immersed on the selected node; otherwise, task
granularity GT is corrected depending on its ratio with system
node granularity Gn. If node granularity Gn is greater than
task granularity GT, then clustering increases GT to a value as
close to Gn as possible by condition (4). Then, the immersion
on the selected node for its implementation is performed. If

node granularity Gn is less than task granularity GT and
condition (4) is not executed, then task granularity GT is
reduced to meet conditions (4) and (10).

B. Algorithm of the Modified Task Scheduler Function

1. Begin;

2. creation of the task queue;

3. if the task queue is empty, then go to step 19;

4. the selection of the next task;

5. create an available node list at the task downloading

time;

6. if the node list is empty, then go to step 5;

7. the selection of node ri с min |GT – Gn| and Ti ≤ TZ /*

selection of the node that is most appropriate for criteria ET

and En */;

8. if 0.5≤ (GT| Gn) ≤1.5, then go to step 17;

9. if GT < Gn, then go to step 12 /* task granularity smaller

than node granularity */;

10. if GT is minimal, then go to step 17 /* further

declustering impossible */;

11. decrease of GT, then go to step 8 /* performed by

clustering */;

12. if GT maximum, then go to step 17 /* further

clustering violates the condition: Ti ≤ TZ */;

13. increase of GT /* performed by clustering */;

14. the calculation of a Ti new value;

15. if Ti ≤ TZ, then go to step 8;

16. decrease of GT /* performed by declustering */;

17. task immersion on node ri;

18. go to step 2;

19. End.

V. ANALYSIS OF THE ALGORITHM’S EFFECTIVENESS FOR

THE PROCESS OF SCHEDULING TASKS IN A GRID SYSTEM

A. Simulation of the Task Scheduling Process

The GridSim [36] modeling system, which allows different
scheduling policies to be implemented (FCFS, Easy Backfill,
Conservative Backfill) is selected as a tool for modeling and
analyzing the effectiveness of the proposed algorithm. In the
current research, GridSim has been expanded by adding new
necessary entities for the simulation of the planning process
and execution of workflows in the grid environment. The class
diagrams of the implemented modules are shown in Figure 1.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

71 | P a g e

www.ijacsa.thesai.org

Fig. 1. Class diagram in the modeling system

A modeling system allows for test task immersion in real
time. The number of tasks and resources are defined by the
user. The result of both scheduling algorithm simulations, with
the same input data, are output data, such as average task
downtime in the queue, total system boot time, average system
node load, average load of communication channels, average
scheduler decision time, and system node load chart. The node
parameters are the number of CPUs and the performance of
the node channel bandwidth of that node.

The task is generated with the granularity, the task weight
(the amount of calculations), the estimated runtime for a task
at its maximum granularity, and the priority. The task queue is
created after generation, sorted by priority, in which the task
with the highest priority is at the head of the queue. The
scheduler works in real time; all measurements are made in
milliseconds.

B. Simulation Results of the Base and Modified Scheduling

Algorithm

The modeling system generated loading charts of grid
system nodes and communication channels. Using this
simulation program, the loading of system nodes were
analyzed at different ratios between the task number and grid
system nodes. Figures 2 and 3 show the relative loading of the
first 25 nodes and the communication channels as a
percentage of their maximum values in the solution of 100
tasks on 50 grid system nodes.

A comparison of Figures 2 and 3 illustrates that the
loading of the nodes is relatively low with a relatively small
difference between the number of tasks and nodes.
Furthermore, the modified algorithm provides more balanced
and larger loading compared with the baseline algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

72 | P a g e

www.ijacsa.thesai.org

Fig. 2. Relative loading of the first 25 nodes and communication channels as

a percentage of their maximum values in the solution of 100 tasks on 50 grid

system nodes using the base scheduling algorithm

Figures 4 and 5 show the relative loading of the first 25
nodes and communication channels as a percentage of their
maximum values in the solution of 5,000 tasks on 100 grid
system nodes.

Fig. 3. Relative loading the first 25 nodes and communication channels as a

percentage of their maximum values in the solution of 100 tasks on 50 grid

system nodes using the modified scheduling algorithm

Fig. 4. Relative loading of the first 25 nodes and communication channels as

a percentage of their maximum values in the solution of 5,000 tasks on 100

grid system nodes using the base scheduling algorithm

Fig. 5. Relative loading of the first 25 nodes and communication channels as

a percentage of their maximum values in the solution of 5,000 tasks on 100
grid system nodes using the modified scheduling algorithm

A comparison of the loading charts (Figures 2–5) with the
increase in task queues indicates that the effectiveness of the
modified scheduling algorithm is significantly increased due
to the higher and more balanced loading of nodes and
communication channels.

Experiments were performed for a fixed node number but
a variable task number. The base and modified algorithms
were modeled, and a histogram was constructed based on the
average values for the experiments with tasks as one pair of
resources.

Considering how to apply the base or modified scheduling
algorithm will influence the average residence time of the task
in queue (Figure 6), the total system loading time (Figure 7),
and the average scheduler decision time (Figure 8).

Fig. 6. Average residence time of a task in the queue based on the task

number using the base and modified algorithms with a fixed number of

resources of 100

0.000

10000.000

20000.000

30000.000

40000.000

50000.000

60000.000

70000.000

80000.000

90000.000

A
v
e
r
a

g
e
 Q

u
e
u

e
in

g
 T

im
e
 f

o
r
 t

h
e

T
a

sk

Number of Tasks for Loading

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

73 | P a g e

www.ijacsa.thesai.org

Fig. 7. Total load time of the system with a fixed number of resources of

100

Fig. 8. Average decision-making time by the scheduler with a fixed number

or resources of 100

As shown in Figure 6, regardless of the task number, the
residence time in the queue is less than that in the modified
algorithm by an average of 20%.

As shown in Figure 7, the total system loading time is
significantly reduced with the modified algorithm because the
modified algorithm selects the optimal ratio between task
granularity and system granularity.

The average scheduler decision time regarding the choice
of the node for the task immersion using the modified
algorithm is essentially independent of the task queue size,
unlike the base method. This independence occurs because
resource searching continues to loop as long as the desired
resource is not found. In the base algorithm, resource
searching starts from the beginning each time, which often
leads the resource to be linearly dependent on the optimal task
number search in the queue.

Figures 9–11 show the simulation results of the base and
modified schedulers with a fixed task number and different
grid system node numbers. Experiments were performed for a
fixed task number but a variable node number. We
implemented the model using the base and modified
algorithms, and the histograms (Figures 9–11) reflect the
average values for the experiments with one pair of
resources—tasks.

As shown in Figure 9, the average task residence time in a
queue using the modified algorithm with different amounts of
resources is approximately 50% less than when using the base
algorithm because the decision time using the modified
algorithm is less than that of the base algorithm.

Fig. 9. Dependence of the average task residence time in a queue with a

different number of gird system nodes with a fixed number of tasks of 10,000

Fig. 10. Total load time of the system with a fixed number of tasks of 10,000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

74 | P a g e

www.ijacsa.thesai.org

Fig. 11. Average decision-making time by the scheduler with a fixed number

of resources of 100

C. Analysis of the Modeling Results

The histogram shows the average task residence time in a
queue for an increasing number of tasks and a fixed amount of
resources and a fixed number of tasks and an increasing
number of resources in proportion to each task and resource
pair. Thus, the task downtime in a queue for the base
algorithm is larger than for the proposed modified algorithm.
When the modified scheduler does not review all resources
when searching, it does not calculate the task execution time
for each item in the search to achieve the optimal time. The
histogram shows the significant time gap associated with the
generation of each experience for a different number of
resources with different productivity. This time gap can
greatly increase the waiting time of task immersion for the
resource with the base algorithm.

The histograms show that the system load is reduced when
using the modified scheduler because the main load is not in
the highest-performing resource and because tasks are evenly
distributed across system resources. This reduces the system
time and allows many tasks to be executed earlier compared
with the base scheduler.

The final histogram shows that using the modified
scheduling algorithm increases the decision-making time of
the scheduler. Let us analyze why this occurs. The base
scheduling algorithm is necessary for a full scan and for
calculating the computation time of the task on each resource,
which is a time-consuming procedure. In the modified
algorithm, a request is sent to the resource manager for the
sub-list of resources that will be available at the time of data
transfer of the current task. This is the first time value in the
total time calculation of decision making. Next, the scheduler
waits for a response from the resource manager, which holds
the necessary calculations to generate a list; the resource
manager then sends a list to the scheduler. After that, the
scheduler begins to view the issued list of resources to find the
optimal resource for the task. When a resource is found, the
scheduler calculates the end of the task on the resource, which
also takes time. After these steps, if the base algorithm is

being used, the task waits for the most productive resource
regardless of how much time the scheduler spends deciding on
the most favorable site node. Consequently, the task is idle,
and the system is underutilized. This is not observed when the
modified scheduling algorithm is used because the system
time is considerably lower than that when using the base
algorithm even though the decision time is longer.

Table 1 shows the average test results. We generated
10,000 random tasks that were immersed on 1,000 nodes.

TABLE I. RESULTS OF THE ALGORITHMS

Characteristic Baseline Modified

Waiting time in the queue 52848 9506

Total working time 17 197 200 4 248 600

Average nodes loading, % 19 45

Average loading of communication

channels, %
13 11

Decision time, ms 2,8015 5,2316

VI. CONCLUSION

This paper proposes a modified hierarchical method of
task scheduling that increases the efficiency of a grid system
by selecting the optimal ratio between task granularity and
grid system node granularity on a node on which a given task
is immersed. This is accomplished by changing the task
granularity via conversion. This ensures a uniform, more
balanced load of processors and communication channels
between grid system nodes and reduces the residence time of
the task in the input task queue. The result is increased
productivity in the grid system by an average of 20%.

A further performance increase is related to the possibility
of changing the granularity of grid system nodes by changing
their structure considering the number of physical
communication channels in the processors of a particular
computing node and through support for a duplex mode of
information transmission in communication channels.

ACKNOWLEDGMENT

This research is supported by King Saud University;
Author would express his appreciation to the Deanship of
Scientific Research at King Saud University for the provision
of funding.

REFERENCES

[1] F. Dong, and G. Selim, ―Scheduling Algorithms for Grid Computing:
State of the Art and Open Problems (Technical Report),‖ School of
Computing, Queen’s University, Kingston Ontario Rep. 2006–504,
2006.

[2] D. Cokuslu, A. Hameurlain, and K. Erciyes, ―Grid resource discovery
based on centralized and hierarchical architectures,‖ Int. J. Infonomics,
vol. 3, Jan. 2010.

[3] T. Ma, S. Shi, H. Cao, W. Tian, and J. Wang, ―Review on Grid Resource
Discovery: Models and Strategies,‖ IETE Technical Review, Vol. 29,
pp. 213-22, 2012.

[4] Mohammed Bakri Bashir, Muhammad Shafie Abd Latiff, Aboamama
Atahar Ahmed, Adil Yousif & Manhal Elfadil Eltayeeb, ―Content-based
Information Retrieval Techniques Based on Grid Computing: A
Review‖, IETE Technical Review, Vol. 30, pp.223- 232, 2013

[5] H. El-Rewini, T. Lewis, and H. Ali, Task scheduling in parallel and
distributed systems. Englewood Cliffs, NJ: Prentice Hall, 1994.

[6] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems, 5th ed.
New York: Springer Verlag, 2008.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 3, 2017

75 | P a g e

www.ijacsa.thesai.org

[7] F. Xhafa, and A. Abraham, ―Computational models and heuristic
methods for Grid scheduling problems,‖ Future Generation Computer
Systems, vol. 26, pp. 608–621, Apr. 2010.

[8] Y. Zomaya, C. Ward, and B. Macey, ―Genetic scheduling for parallel
processor systems: comparative studies and performance issues,‖ IEEE
Trans. Parallel Distrib. Syst., vol. 10, pp. 795–812, Aug. 1999.

[9] G. Aggarwal, M. Kamboj, C. Singh, and P. Sharma, ―A novel resource
scheduling algorithm for computational Grid,‖ Int. J. Applied
Information Systems (IJAIS), vol. 4, pp. 34–7, Sept. 2012.

[10] R. P. Prado, S. García-Galán, A. J. Yuste, and J. E. M. Expósito,
―Genetic fuzzy rule-based scheduling system for grid computing in
virtual organizations,‖ Soft Comput., vol. 15, pp. 1255–1271, Jul. 2011.

[11] M. Shojafar, Z. Pooranian, J. H. Abawajy, and M. R. Meybodi, ―An
efficient scheduling method for Grid systems based on a hierarchical
stochastic Petri net,‖ J. Comput. Sci. Eng., vol. 7, pp. 44–52, Mar. 2013.

[12] Y. Yang, G. Wu, J.Chen, and W. Dai, ―Multi-objective optimization
based on ant colony optimization in grid over optical burst switching
networks,‖ Expert Syst. Appl., vol. 37, pp. 1769–1775, Mar. 2010.

[13] C. S. Rao, and D. B. R. Babu, ―A fuzzy differential evolution algorithm
for Job scheduling on computational grids,‖ Int. J. Computer Trends
Technol., vol. 13 , pp. 72–77, Jul. 2014.

[14] B. Ekşioğlu, S. D. Ekşioğlu, and P. Jain, ―A tabu search algorithm for
the flowshop scheduling problem with changing neighborhoods,‖
Comput. Ind. Eng., vol. 54, pp. 1–11. Feb 2008.

[15] B. Barzegar, A. M. Rahmani, and K. Zamanifar, ―Advanced reservation
and scheduling in Grid computing systems by gravitational emulation
Local search algorithm,‖ Am. J. Scientific Research, no. 18, pp. 62–70,
2011.

[16] J. A. Torkestani, ―A new distributed Job scheduling algorithm for Grid
systems,‖ Cybernetics Systems, vol. 44, pp. 77–93. 2013.

[17] E. Betzar, A. Xavier, and V. M. Betzar, ―Survey on heuristics based
resource scheduling in Grid computing,‖ Indian J. Computer Science
Engineering (IJCSE), vol. 5, pp. 9–14, Mar. 2014.

[18] G. Guoning T.-L. Huang, and G. Shuai, ―Genetic simulated annealing
algorithm for task scheduling based on cloud computing environment
(Published Conference Proceedings),‖ in Int. Conf. on Intelligent
Computing and Integrated Systems, 2010, pp. 60–63.

[19] Z. Pooranian, A. Harounabadi, M. Shojafar, and J. Mirabedini, ―Hybrid
PSO for independent Task scheduling in Grid computing to decrease
Makespan (Published Conference Proceedings),‖ in Proc. Int. Conf. on
Future Information Technol., Singapore, 2011, pp. 435–9.

[20] Z. Pooranian, A. Harounabadi, M. Shojafar, and N. Hedayat, ―New
hybrid algorithm for Task scheduling in Grid computing to decrease
missed Task‖, World Academy of Science, Engineering and Technology
International Journal of Computer, Electrical, Automation, Control and
Information Engineering, Vol:5, 2011, pp. 262–268, 2011.

[21] S. K. Garg, R. Buyya, and H. J. Siegel, ―Time and cost trade-off
management for scheduling parallel applications on utility grids,‖ Future
Generation Computer Systems, vol. 26, pp. 1344–55, Oct. 2010.

[22] M. Khan, ―Design and analysis of Security aware scheduling in Grid
computing environment‖ Int. J. Comput. Sci. Inf. Technol. Research vol.
1, pp.42–50, Dec. 2013. Available: www.researchpublish.com

[23] P. Keerthika, and N. Kasthuri, ―A hybrid scheduling algorithm with load
balancing for computational Grid‖ Int. J. Advanced Science and
Technol., vol. 58, pp. 13–28, 2013.

[24] R. Aron, and I. Chana, ―Grid scheduling heuristic methods: state of the
Art,‖ Int. J. Computer Information Systems and Industrial Management
Applications, vol. 6, pp. 466–73, 2014.

[25] Hirales-Carbajal, A. Tchernykh, R. Yahyapour, J. L. González-García,
T. Röblitz, and J. M. Ramírez-Alcaraz, ―Multiple workflow scheduling
strategies with user run time estimates on a Grid,‖ J. Grid Comput., vol.
10, pp. 325–346, 2012.

[26] Forti, ―DAG Scheduling for grid computing systems,‖ Ph.D. Thesis,
Dep. Mathematics and Comp. Sci., Univ. Udine, Italy, 2006.

[27] P. Chauhan, and Nitin, ―Decentralized Scheduling Algorithm for DAG
Based Tasks on P2P Grid,‖ J. Engineering, vol. 2014, pp. 202843, 2014.
Available: http://dx.doi.org/10.1155/2014/202843.

[28] F. Pop, C. Dobre, and V. Cristea, ―Genetic algorithm for DAG
scheduling in Grid environments (Published Conference Proceedings),‖
in Proc. IEEE 5th Int. Conf. Intelligent Computer Communication and
Processing, Cluj-Napoca, 2009, pp. 299–305.

[29] R. Garg, and A. K. Singh, ―Adaptive workflow scheduling in grid
computing based on dynamic resource availability,‖ Engineering
Sci.Technol. Int. J., vol. 18, pp. 256–269, Jun. 2015. Available:
http://dx.doi.org/10.1016/j.jestch.2015.01.001.

[30] M. A. Palis, ―The granularity metric for fine-Grain real-Time
scheduling,‖ IEEE Transactions Comput., vol. 54, pp. 1572–1583, Dec.
2005.

[31] D. Konieczny, J. Kwiatkowski, and G. Skrzypczynski, ―Parallel search
algorithms for the distributed environments,‖ in Proceedings of the 16th
IASTED Int. Conf. Applied Informatics, Garmisch-Partenkirchen,
Germany, 1998, pp. 324–327.

[32] Gerasoulis and T. Yang, ―A Comparison of Clustering Heuristics for
Scheduling Directed Acyclic Graphs on Multiprocessors,‖ J. Parallel
Distributed Computing, vol. 16, pp. 276–91, Dec. 1992.

[33] Maui Scheduler™ Administrator's Guide version 3.2, Copyright ©
1999-2014, Adaptive Computing Enterprises. Available:
http://docs.adaptivecomputing.com/maui/.

[34] Tivoli Workload Scheduler Documentation, Available: http://www-
01.ibm.com/software/tivoli/

[35] Moab Workload Manager Documentation, Available:
http://www.adaptivecomputing. com/

[36] R. Buyya and M. Murshed, ―Gridsim: a toolkit for the modeling and
simulation of distributed resource management and scheduling for grid
computing,‖ Сoncurrency and Computation: Practice and Experience,
vol. 14, pp. 1175–220, Nov.-Dec. 2002.

