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Abstract—Understanding a large number of source code is
a big challenge for software development teams in software
maintenance process. Using topic models is a promising way
to automatically discover feature and structure from textual
software assets, and thus support developers comprehending
programs on software maintenance. To explore the application
of applying topic modeling to software engineering practice,
we proposed JSEA (Java Software Engineers Assistant), an
interactive program comprehension tool adopting LDA-based
topic modeling, to support developers during performing soft-
ware maintenance tasks. JSEA utilizes essential information
automatically generated from Java source code to establish a
project overview and to bring search capability for software
engineers. The results of our preliminary experimentation suggest
the practicality of JSEA.
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I. INTRODUCTION

Before performing software maintenance and extension
tasks, developers must understand what a program does and
how it does [1]. Program comprehension is the activity of
understanding how a software system or a part of it works [2].
According to Corbi [3], program comprehension accounts
for more than half of the software maintenance time. Re-
searchers and practitioners developed tools that can assist
developers in program comprehension, such as JRipples [4],
Codecrawler [5], and SonarQube [6]. However, tools applying
topic models to program comprehension has not been given as
much attention.

With the development of Information Retrieval, topic mod-
els appeared as an effective way of extracting semantic infor-
mation. Topic models are probabilistic models for uncovering
the underlying semantic structure of a document collection
based on a hierarchical Bayesian analysis of the original
texts [7]. Researchers apply topic models to mine source code
and get linguistic topics automatically. These topics extract
semantic information from programs and tend to correspond
to features implemented by the software [8]. Using these
topics appropriately, developers should be able to understand
programs more effectively.

Researchers have used topic modeling to support varied
software engineering tasks, including traceability link recov-
ery [9], concept/feature location [10], source code metrics [11],
and many other tasks [12], [13], however, the application of
using topic modeling to support interactive program compre-
hension has not got as much attention. Also, there are gaps

between knowing and doing when applying topic modeling to
software engineering practice. For instance, feature location
is the act of identifying the set of source code fragments in
a software system that implement a particular concept, but
the boundary lines and definitions of features in programs are
vague [14], so it is hard to directly locate features via automatic
topic modeling. We need to explore topic modeling and its
application on interactive program comprehension further.

In this paper, we explored the source code preprocessing
procedure of topic modeling based on the characteristic of
source code and introduced JSEA (Java Software Engineers
Assistant), an interactive program comprehension tool adopt-
ing LDA, which provides a project overview page and a search
model. JSEA aims at helping developers learn unfamiliar
source code in a faster manner to carry on software mainte-
nance and extension tasks. Considering different programming
languages have different characters, in this paper, we focus
on Java language, but the concept can be reused for other
languages.

This paper makes the following contributions: (1) Based
on the characteristic of source code, explore the procedure
of source code preprocessing to support topic modeling. (2)
Design and develop an interactive program comprehension
tool, which extracts semantic information from source code
in a useful manner, to support developers during software
maintenance. (3) Verify the practicality of JSEA through a
preliminary evaluation.

This paper is organized as follows. In the next section, we
introduce background. Then, section III detail the preprocess
procedure used for JSEA. In section IV and section V, we
introduce the interactive program comprehension tool based on
LDA and its strategies for the number of topics. In section VI,
we provide our evaluation results. Finally, the section ??
concludes and introduces future works.

II. BACKGROUND

A. Program Comprehension

Some influential theories about program comprehension
were proposed in the past, including top-down [15], [16],
bottom-up [17], and a combination of the two [18], [19].
Brooks [15] describes top-down theories of program compre-
hension as hypothesis-driven. When a program is compre-
hended, the knowledge are organized into distinct domains
which bridge between the original problem and the final pro-
gram. The program comprehension process is reconstructing
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knowledge about these domains and the relationship among
them. In button-up model, Shneiderman et al. [17] theorizes
that programmers first read source code line-by-line and the
program comprehension is accomplished by a hierarchical
chunking process that organizes several statements into a func-
tional unit. Then, these units can be organized into still higher
level units which convey the overall operation of the program.
The integrated metamodel of program comprehension have
also been proposed [18], [19], in which programmers switch
flexibly from top-down to bottom-up comprehension strategies
depending on the situation.

Furthermore, Corritore and Wiedenbeck [1] reported that
the object-oriented programmers tend to use a strongly top-
down approach to program understanding during the early
phase of familiarization with the program but use an increas-
ingly bottom-up approach during the subsequent maintenance
tasks. Koenemann and Robertson [20] argued that comprehen-
sion activities are mostly top-down in a larger program. The
tool, JSEA, is aimed at assist developers in comprehending
unfamiliar programs, especially large scale programs, so the
top-down model for JSEA is suitable. JSEA is also an interac-
tive tool, which facilitates the information exchange between
users and the system and then foster program comprehension
during software maintenance.

B. Topic Modeling

Topic models were originally developed as a means of
automatically indexing, searching, clustering, and structuring
large corpora of unstructured and unlabeled documents. Using
topic models, topics are extracted from documents and are used
to represent the corpora. A topic is a collection of terms that
co-occur frequently in the documents of the corpus, so the
documents can be clustered by topics and the entire corpus
can be indexed and organized in terms of this discovered
semantic structure [7], [13]. Latent Dirichlet Allocation (LDA)
is a popular probabilistic topic model [21].

C. LDA

Latent Dirichlet Allocation (LDA) is a popular probabilistic
topic model. It models each document as a multi-membership
mixture of K corpus-wide topics, and each topic as a multi-
membership mixture of the terms in the corpus vocabulary.
This means that there is a set of topics that describe the entire
corpus, each document can contain more than one of these
topics, and each term in the entire repository can be contained
in more than one of these topics. Therefore, LDA is able to
discover a set of ideas or themes that well describe the entire
corpus. Blei reported LDA in detail [21]. In this paper, LDA-
based topic modeling is used to mine source code and then
support developers.

III. PREPROCESSING PROCEDURE

Before topic modeling, several preprocess steps are gen-
erally taken to reduce noise and improve the modeling re-
sults [13]. Compared to natural language text, Hindle et al. [22]
reported that text extracted from source code is much more
repetitive and predictable. Based on the characteristic of source
code and prior researches [23], [24], the preprocess procedure

was customized through experimentation and brought the
following five preprocess steps:

• Remove programming language information: Char-
acters related to the syntax of the programming lan-
guage (e.g., &&, →) are removed; programming lan-
guage keywords (e.g., if, while) are removed. In this
paper, a Java language keywords list was customized
referring to Oracle official documentation [25]. At
first, the customized Java language keywords list was
same as the list that Oracle provided, then this list was
used to topic modeling and got a result. Secondly,
useless Java language keywords were selected from
the result and were added into the list. Then, this
process was repeated until the result did not have
useless Java language keywords. See Table I for a full
list. In future, the Java language keywords list can
be generated by machine learning instead of manual
processing.

• Split words: Identifier names are split into multiple
parts based on common naming conventions, such
as camel case (oneTwo), underscores (one−two), and
dot separators (one.two). According to the research
of Grant et al. [24], in this paper, we tried to put
original identifier names into the source of topic
modeling too. For instance, an identifier name called
“addMenu”, was first split into “add” and “menu”,
and then “addmenu”, “add” and “menu” were put into
the source of topic modeling. However, the results
were worse. We suppose the reason is the original
words like “addmenu” are not in natural language, so
adding original words into assets influences the results
for topic modeling. Therefore, in this step, identifier
names were just split and the original identifier names
were abandoned.

• Remove stop words: Common English-language
stopwords (e.g., the, it, on) are removed. In this
paper, the common English-language stopwords list
of MALLET LDA toolkit [26] is used. In future,
the common English-language stopwords list can be
configurable.

• Remove copyright information: For open source
code, copyright information almost exists in each
document. Topic modeling with such information will
generate a topic containing copyright information like
author, copyright, license. This kind of information is
easy to obtain without the help of topic modeling,
and it is useless for developers to get a general
understanding of programs, so copyright information
need to be removed.

• Remove nondescript information: In source code,
libraries can be imported and packages can be de-
clared, thus topics extracted from source code can
contain some common used library names and pack-
age names. However, some library names and package
names is useless for developers to acquire a general
understanding of the program and even might confuse
developers. For example, {set drawing button org init
layout panel components pane variables} is a topic
extracted from JHotDraw [27], and “org” is useless in
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TABLE I. THE CUSTOMIZED JAVA LANGUAGE KEYWORDS

abstract array arg assert boolean break byte catch case char class code continue
default ddouble do don double else enum error exception exist exists extends false
file final finally float for id if implementation implemented implements import
instanceof int integer interface interfaces invoke invokes java lead long main
method methodname methods native new null object objects overrides package
packages param parameters precison println private protected public return
returned returns short static string strictfp super switch synchronized system
this throw throws transient true try version void volatile while

∗PS: Preprocess step (see Sect. III)

Fig. 1. JSEA Overview

this topic. We define this kind of library names and
package names as nondescript information and remove
them in preprocessing.

IV. JSEA

JSEA (Java Software Engineers Assistant) is a web applica-
tion implemented in Java language, setting up in Tomcat server.
It infuses topic modeling into program comprehension in an
interactive manner, aiming at supporting developers during
software maintenance. All the data, results and source code
of JSEA is available in Github1.

A. Design

Fig. 1 provides an overview of JSEA. At the first stage,
the Source Code Pre-processor tackles the source code with
comments of a Java program, using four preprocess steps
mentioned in Sect. III. Then, the data is sent to MALLET
LDA Toolkit [26]. MALLET is a Java-based package for
statistical natural language processing, document classification,
clustering, topic modeling, information extraction, and other
machine learning applications to text. Topic modeling based
on LDA is completed in this stage. As for the parameters of
the model, it affects the practicability of JSEA in a large extent,
so the values of parameters were tuned, especially the number
of topics (See Section V), through experiments. By default,
the parameter settings are as follows: the maximum iteration
(–num-iterations) is 1000, the number of most probable words
(–num-top-words) is 10, the number of iterations between
reestimating dirichlet hyperparameters (–optimize-interval) is
10 and the initial topic model parameters are the default
values in the MALLET LDA toolkit [26]. We also allow
users to set the value of parameters as their demands. Next,
JSEA processes topic modeling results to acquire semantic and
structure information about the program as follows:

• Extracting Topics: Topic modeling directly generates
topics, so JSEA just need to store these topics with
index for the following procedure.

Fig. 2. The Screenshots of JSEA

TABLE II. AN EXAMPLE OF A TOPIC IN THE PROJECT OVERVIEW
PAGE

Top Words: 78∗ 0.00985† action menu add set bar put item tool actions open
Phrases: action action; menu item; menu bar; menu add; tool bar; action put
action; put action; menu open; action add; menu menu labels
Top 3 Documents:
src-org-jhotdraw-app-DefaultOSXApplication.java-src.txt;
src-org-jhotdraw-app-DefaultMDIApplication.java-src.txt;
src-org-jhotdraw-app-DefaultSDIApplication.java-src.txt

∗The index of topics
†The value of Dirichlet parameters

• Applying Descriptive Phrases to Topics: When using
MALLET LDA toolkit to topic modeling, the LDA
toolkit automatically summarizes related phrases for
each topic. For example, {stroke color width fill grow
basic font line shape factor} is a topic extracted from
JHotDraw [27], and the LDA toolkit adds phrases like
“fill color”, “stroke width” and “basic stroke” to this
topic. JSEA links these descriptive phrase with their
related topics, in order to increase the readability of
topics.

• Applying Documents to Topics: The probabilistic
topic distributions of documents are generated by topic
modeling. Using the distributions, JSEA assigns top
related documents to each topic.

Finally, JSEA utilizes these information to establish a
system allowing developers to explore the programs in an
interactive manner, including:

• A Project Overview Page: The Project Overview
Page is designed for helping developers get an
overview of Java projects in a short time. It shows
all topics and some related information about the
program. Which kind of information will be shown
depends on which style is selected by users. JSEA pro-
vides four styles: (1) Topics; (2) Topics and Phrases;
(3) Topics, Phrases and Top 3 Documents (Recom-
mended); (4) Topics, Phrases and More Top Docu-
ments. Note that “More Top Documents” means top
100 related documents for each topic. For example, if
users select the third style, the Project Overview Page
will be like Fig. 2(a) and Table II gives an example of
a topic in Project Overview Page. Users can select a
suitable style according to their demands and habits.

• JSEA-Search: JSEA-Search (Fig. 2(b)) is a search
model, which is designed for satisfying developer’s
immediate information need. Through JSEA-Search,
developers can obtain information semantically and
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structurally related to the search query. These infor-
mation can include topics, descriptive phrases, top
related documents for each topic and an access to
related source code, all of which can help developers
quickly determine where to start during performing
software maintenance or extension tasks. Users deter-
mine searching which kind of information through the
checkboxes below the search bar, and all checkboxes
are selected as default.

Developers can select suitable sub systems based on
their needs. JSEA-Search is more practical than the Project
Overview Page, because the latter is helpful just for developers
who want to have a general overview of projects in a short
time, but MAT-Search can effectively assist developers when
they face maintenance or extension tasks.

B. Configuration

JSEA is configured in the following steps: (1) Deploy Tom-
cat Server; (2) Configure the web.xml of JSEA; (3) Configure
MALLET LDA toolkit.

V. THE NUMBER OF TOPICS

The number of topics greatly affects topic modeling results
and thus the results of the study [13]. Too many topics assigns
related words to different topics but brings more meaningful
information, while too few topics rarely brings related words
into different topics but leads to results containing less mean-
ingful information. Therefore, the number of topics need to be
estimated.

A few articles proposed approaches determining the num-
ber of topics [28], [29], but they were task-specific. Our
paper explore the application of topic modeling in a generic
perspective other than a task-driven style, so we need to be
groping for other estimating approach. Chen et al. [13] reported
that many articles choose an optimal value of K (the number
of topics) by testing a range of K values and evaluating each
in some way. We decided to use the same strategy.

As for how to evaluate topic modeling results, a Naive
Criterion was proposed: (1) Label each topics. The categories
include functionality, Java library topic, design, repetitive,
multiple meaning and useless. The first three are positive, while
the last three are negative; (2) Calculate the percentage of each
category for each K value; (3) Compare and analysis all results
generated by varied K. The basic idea is that the result is better
when the percentage of positive label is higher.

We recommend the users of JSEA estimating the number
of topics by testing a range of K values and evaluating each
using Naive Criterion. For instance, we used JHotDraw [27],
a Java GUI framework, as our learning object. Referring to
Grant and Cordy [29], where they think 100 to 200 is the
best area for the number of topics of JHotDraw, we tested the
number of topics ranging from 50 to 250 in 10 increments
and evaluated each result using our Naive Criterion. We found
that 80 is the most optimum value for the number of topics of
JHotDraw.

TABLE III. TASK ASSIGNMENT

Systems FLT1
∗ FLT2 RT1

† RT2

JHotDraw IDE and JSEA only IDE IDE and JSEA only IDE

MALLET IDE and JSEA only IDE IDE and JSEA only IDE
∗FLT: feature location task
†RT: reuse task

Fig. 3. (a) The time spent on each task; (b) The correctness of each task.
FTL means feature location task, and RT means reuse task.

VI. EVALUATION

We conducted several experiments on two open-source
systems, in order to evaluate the utility of JSEA on software
maintenance. The overall metric of our experiments was: Does
JSEA save effort for developers when they perform tasks?

One of the open-source systems is JHotDraw version 7.0.6,
a Java GUI framework for technical and structured graphics.
Another is MALLET version 2.0.8, a Java-based package for
statistical natural language processing, document classification,
clustering, topic modeling, information extraction, and other
machine learning applications to text. JHotDraw version 7.0.6
has 54KLOC (thousands of lines of code), while MALLET
version 2.0.8 has 114KLOC, which is 2.11 times larger than
JHotDraw version 7.0.6. Note that, 170 is the most optimum
value for the number of topics of MALLET, using the same
strategy of determining the number of topics with JHotDraw
(See Sect. V).

To evaluate the practicality of JSEA, we recruited an
experienced Java developer as our volunteer to perform two
kinds of software maintenance tasks, and one of authors, who
is greatly familiar with both systems and JSEA, was asked
to evaluate the correctness of results. As for the two kinds of
software maintenance tasks, one is feature location task (FLT),
and another is reuse task (RT). For each kind of task, we
conducted two tasks for each systems. One is with the help of
commonly used IDE (IntelliJ IDEA), another is with the help
of IDE and JSEA. Table III summarizes the task assignment.
The volunteer performed tasks in Table III from left to right
and from JHotDraw to MALLET.

During experimentation, we recorded the time spent on
each task and analyzed the correctness of the results. Fig. 3(a)
shows the time spent on each task. Fig. 3(b) shows the
correctness of the results. The correctness is calculated in the
following way: We define the files that considered relevant to
each task by the author as total files, and define the intersection
of total files and the files that considered relevant to each
task by the volunteer as correct files. The correctness is the
percentage that dividing the number of correct files by the
number of total files.

In Fig. 3, the blue one means only using IDE, while the
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yellow one means using IDE and JSEA. We can see from the
left bar chart that the yellow bar is lower than the blue bar for
each pair of bars, especially the third pair and the fourth pair. It
means JSEA can save time for developers when they perform
feature location tasks and reuse tasks. Besides, JSEA is more
suitable to support developers on larger scale programs. In the
right bar chart, for each pair of bars, the yellow bar is higher
than the blue bar or is similar with the blue bar. It means
using JSEA do not affect the correctness of the results. In
conclusion, JSEA can help developers comprehend programs
and then perform tasks faster.

VII. CONCLUSION AND FUTURE WORK

In this paper, we explored the source code preprocessing
procedure of topic modeling based on the characteristic of
source code and developed JSEA (Java Software Engineers
Assistant), an interactive tool adopting LDA-based topic mod-
eling, to support developers during software maintenance.
JSEA utilizes essential information automatically generated
from Java source code to establish a project overview and to
bring search capability for developers. The preliminary exper-
imentation indicates that JSEA can effectively help developers
comprehend programs, and assist them in maintaining software
projects or developing new features with less time.

In future, we plan to integrate topic modeling of MALLET
toolkit into JSEA, and calculate the correlation between topics
and search queries. Other interesting direction for future work
would be to combine the code search system into JSEA,
assisting software engineers with more powerful functionality.
Besides, we plan to recruit developers with different profes-
sional levels as volunteers and repeat the experimentation, in
order to verify the practicality of JSEA more effectively.

REFERENCES

[1] C. L. Corritore and S. Wiedenbeck, “An exploratory study of program
comprehension strategies of procedural and object-oriented program-
mers,” International Journal of Human-Computer Studies, vol. 54, no. 1,
pp. 1–23, 2001.

[2] W. Maalej, R. Tiarks, T. Roehm, and R. Koschke, “On the compre-
hension of program comprehension,” ACM Transactions on Software
Engineering and Methodology (TOSEM), vol. 23, no. 4, p. 31, 2014.

[3] T. A. Corbi, “Program understanding: Challenge for the 1990s,” IBM
Systems Journal, vol. 28, no. 2, pp. 294–306, 1989.

[4] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, “Jripples: A tool
for program comprehension during incremental change,” in Program
Comprehension, 2005. IWPC 2005. Proceedings. 13th International
Workshop on. IEEE, 2005, pp. 149–152.

[5] M. Lanza, S. Ducasse, H. Gall, and M. Pinzger, “Codecrawler-an
information visualization tool for program comprehension,” in Software
Engineering, 2005. ICSE 2005. Proceedings. 27th International Con-
ference on. IEEE, 2005, pp. 672–673.

[6] S. S.A, “SonarQube,” https://www.sonarqube.org/, 2017, accessed 27
Feb 2017.

[7] D. M. Blei and J. D. Lafferty, “Topic models,” Text mining: classifica-
tion, clustering, and applications, vol. 10, no. 71, p. 34, 2009.

[8] P. F. Baldi, C. V. Lopes, E. J. Linstead, and S. K. Bajracharya, “A
theory of aspects as latent topics,” in ACM Sigplan Notices, vol. 43,
no. 10. ACM, 2008, pp. 543–562.

[9] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Bug localization
using latent dirichlet allocation,” Information and Software Technology,
vol. 52, no. 9, pp. 972–990, 2010.

[10] E. Linstead, P. Rigor, S. Bajracharya, C. Lopes, and P. Baldi, “Mining
concepts from code with probabilistic topic models,” in Proceedings of
the twenty-second IEEE/ACM international conference on Automated
software engineering. ACM, 2007, pp. 461–464.

[11] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N. Chrisochoides,
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