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Abstract—Applying formal methods to a group of agents
provides a precise and unambiguous definition of their behaviors,
as well as verify properties of agents against implementations.
Hybrid automaton is one of the formal approaches that are used
by several works to model a group of agents. Several logics
have been proposed, as extension of temporal logics to specify
and hence verify those quantitative and qualitative properties of
systems modeled by hybrid automaton. However, when it comes to
agents, one needs to reason about the knowledge of other agents
participating in the model. For this purpose, epistemic logic can
be used to specify and reason about the knowledge of agents. But
this logic assumes that the model of time is discrete. This paper
proposes a novel framework that formally specifies and verifies
the epistemic behaviors of agents within continuous dynamics.
To do so, the paper first extends the hybrid automaton with
knowledge. Second, the paper proposes a new logic that extends
epistemic logic with quantitative real time requirement. Finally,
the paper shows how to specify several properties that can be
verified within our framework.
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I. INTRODUCTION

Multi-agent systems (MAS) consists of several independent
agents where the task of some agents may depend on the task
of others [1]. Thus, to model intelligent systems, knowledge is
an important property to consider.This reasoning has become
one of the main concerns in artificial intelligence and MAS [2].
Reasoning is either about the agent itself or about other agents
in the MAS. Many efforts from different disciplines have
tackled issues involving reasoning about agents’ knowledge
[3], [4], [5]. To reason about knowledge of agents, several
theories and logics have been proposed. Among of them,
a logic of knowledge or the so called epistemic logic [6].
Epistemic logic is a type of modal logics [7].The suitability of
epistemic logic in a wide range of applications [8] makes it of
great importance. The main goal of using epistemic logic in
MAS is to model the agents’ knowledge either about itself or
about other agents. For example, ” if agent1 sends a message
S to agent2, then eventually, agent2 will know S” , and
agent1 knows that agent2 knows S.

To deal with specific type of applications, many techniques
have been proposed for extending epistemic logic. Examples
of these techniques are the attempts to generate temporal
epistemic logics to reason about knowledge changing over
time. In order to construct this kind of extension, epistemic

logic framework is fused into a kind of temporal logics [9].
Examples of this integration can be seen in[3], [10]. In [3],
the epistemic logic is extended with alternating time temporal
logic[11]. Also, in [10], the epistemic logic is combined with
temporal logic. Temporalization can be seen as an approach for
adding a temporal logic on top of another logic and thus having
a new logic with temporal features [12]. The importance of
reasoning about dynamic knowledge comes from its existence
in many of the real life applications. In spite of its suitability in
many applications, temporal epistemic logic is still not efficient
to be applied in a certain type of applications like robotics
and networking. Such type of applications requires a model
of time and a model of how the agents’ actions are changing
through time. Also, knowledge that has time constrains cannot
be specified by temporal epistemic logic. An example of time
constrained knowledge is agent1 knows that message S will
be received within 5 seconds.

According to [13], hybrid systems are systems with com-
bined continuous and discrete state variables. Examples are
embedded software in airplanes and medical devices. As
hybrid systems involve both the discrete and continuous dy-
namics of systems, they are naturally used to model many
application scenarios [14]. Over the past few decades, hybrid
automata [15] have been introduced as a formal model for
hybrid systems. Hybrid automata integrate differential equa-
tions and finite automata in a single formalism. Generally,
the discrete dynamics of hybrid systems are modeled using
finite automata whereas the differential equations represent the
continuous changes of physical variables. A simplified version
of hybrid automaton called timed automaton [16] is also used
to model MAS [17]. Timed (finite) automaton is a simple and
powerful way used to represent time constrains through real
valued clocks [16]. On the other hand, several logics have been
introduced in the literature to model the qualitative behaviors
of systems. The semantics of many of these logics have been
interpreted on the underline operational semantics of hybrid
automata.

In spite of the many proposed logics, these logics are
not efficient when it comes to express the agents’ knowledge
about other agents in a continuous dynamic environment.
Thus, integrating epistemic logic with qualitative logics of
hybrid systems seems to be very appropriate to overcome the
shortcomings of the existing logics. However, the epistemic
logic assumes only discrete time model which is not adequate
when modeling agents’ behaviors within continuous dynamics.
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Thus, this paper proposes a novel framework that formally
specifies and verifies the epistemic behaviors of agents within
continuous dynamics. The framework of this paper is two
fold. First the hybrid automaton is protracted with knowledge.
Second, a new logic is proposed to augment epistemic logic
with quantitative real time requirement. Furthermore, the paper
shows how to specify several properties that can be verified
within the proposed framework.

The rest of this paper is organized as follows. Section
II summarizes the related work to the problem of specifying
MAS requirements. After that, the concept of hybrid automata
is introduced and slightly redefined in section III. The formal
syntax and semantics of hybrid automata are also highlighted.
Section IV, introduces the hybrid interpreted systems that
will be used as the underline semantics of the proposed
Logic. Section V defines the syntax and semantics of the
proposed logic ERCTL. Section VI illustrates how to specify
certain requirements on an example. in section VII, the
implementation of the proposed framework using constraint
logic program (CLP) is shown. Finally, conclusion and future
work are summarized in section VIII.

II. RELATED WORK

The modal logic of knowledge was first introduced by
Hintikka in 1962 [18]. According to the logic of Hintikka,
knowledge and belief are treated as modalities. The syntax and
semantics of this logic was the core for foundation of epistemic
logic. Epistemic logic is a type of modal logic concerned
with reasoning about knowledge [19], [8]. Generally, epistemic
logic in MAS began to get more attention in the early 60th of
the previous century. Among several types of epistemic logic,
Dynamic Epistemic Logic (DTL) is widely conceived as a
logic that is able to model how agents update their knowledge
in MAS [20]. As agents in MAS evolve over time, the temporal
properties of agentsâ knowledge are of great importance.
Thus, Epistemic Temporal Logic (ETL) is employed to model
these properties [3], [9], [10]. In [3], the epistemic logic is
extended with alternating time temporal logic[11]. In [10],
epistemic logic framework is fused into a kind of temporal
logics [9]. There is a close relationship between dynamic and
temporal epistemic logics. The authors in [21] have presented
an illuminating survey about these logics.

Extensive research efforts have been seen to tackle the
problem of modeling the qualitative behaviors of systems.
Examples of these efforts are Timed Propositional Temporal
Logic(TPTL) [22], Explicit Clock Temporal Logic [23], [24],
Metric Temporal logic (MTL) [25], Metric Interval Temporal
Logic (MITL)[26], Computation Tree Logic(ICTL) [27] and
RCTL [28], Real-Time Computation Tree Logic (RTCTL)
[29], and Timed Computation Tree Logic (TCTL) [30]. These
logics are considered as extensions of temporal logics. In
contrast to this paper, the previous logics are not able to
express epistemic knowledge.

On the other hand, finite state automata provide the most
elegant model for memory structures of reasoning agents [10].
Timed automata are also proposed as extensions of finite
state automata to model time constrains [16], [31], [32]. In
order to overcome the inadequacy of epistemic temporal logics
in expressing real time behavior of agents, many real time

epistemic logic approaches have been introduced [33], [34],
[5], [4]. These logics use timed automata to express and model
the agents while the classical interpreted systems of epistemic
logic are extended by adding the operational semantics of
timed automata. Timed automaton is considered as a simplified
version of hybrid automaton which integrates differential equa-
tions and finite automata in a single formalism [15]. To specify
the behaviors of MAS situated in a dynamic environment,
many hybrid automata approaches have been presented in the
literature [35], [36], [37], [38], [39]. Our work in this paper
augments the hybrid automaton with knowledge to formally
specify and verify the epistemic behaviors of agents within
continuous dynamics. A new logic that extends epistemic logic
with quantitative real time requirement is employed for this
purpose.

III. BACKGROUND

The concept of hybrid automata along with their constrains
are introduced here in details. An example from [40] is used
for illustration. Several definitions are presented to describe
the constrains that appear within the hybrid automata.

Definition 1 (Linear Constraints and Evaluation): Let R
denotes a set of real numbers, R≥0 is a set of non-negative
real numbers, χ is a set of variables with an element x ∈ χ,
ω =

∑|χ|
i=1 ai ·xi, with xi ∈ χ, is a combination of variables in

the set χ, where ai ∈ R, and b ∈ R, ∼c∈ {>,≥=, <,≤}. The
grammar of all linear constraints Φ(χ), with a typical element
ϕ ∈ Φ(χ), is defined as follows:

ϕ ::= ω ∼c b | ϕ ∧ ϕ | true

Let v ∈ R|χ| be the values of the variables in χ and vi
be the value of the ith component of v. we call v |= ϕ if v
fulfills the constraint ϕ, and is defined using the grammar:

ϕ = true.

ϕ =
∑|χ|
i=1 ai · xi ∼c b iff

∑|χ|
i=1 ai · vi ∼c b holds.

ϕ1 ∧ ϕ2 iff v |= ϕ1 and v |= ϕ2.

Definition 2 (Dynamical Constraints and Evaluation):
Let χ̇ be a set of the first derivatives of the variables within χ
with typical element ẋ ∈ χ̇ and b 6= 0, c ∈ R, ∼d∈ {=,≤,≥}.
Let D(χ ∪ χ̇) be the set of constraints over the variables in
χ ∪ χ̇ with typical element d ∈ D. The set of all possible
dynamical constraints is defined as follows:

d ::= ẋ ∼d c | ẋ+ b · x = c | d ∧ d | true

Let f : R≥0 → R|χ| be a differentiable function and f ′(t)
be the differentiation of f with respect to time t ∈ R≥0. We
call f �∗ d, if the function f fulfills d defined by the grammar:

d = true.
d = ẋ ∼d c iff f ′(t) ∼d c holds.
d = ẋ+ b · x ∼d c iff f ′(t) + b · f(t) ∼d c holds.
d = d1 ∧ d2 iff f �∗ d1 and f �∗ d2.

Definition 3 (Hybrid Automaton): A hybrid automaton is
defined as the tuple HA = (Q,χ, Ins, F low, η, E, q0, v0)
where:

• Q is a finite set of locations.

• χ denotes a set of real variables.
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• Ins : Q → Φ(χ) denotes the function that allocates
the constraint Ins(q) for every q ∈ Q.

• Flow : Q → D(χ ∪ χ̇) is the function that allocates
the constraints Flow(q) for every q ∈ Q.

• η is a finite set of events.

• E ⊆ Q × η × Φ(χ) × 2χ ×Q is a transition relation
among control locations.

• q0 ∈ Q denotes the initial location of the hybrid
automaton.

• v0 ∈ R|χ| denotes the initial values of the variables in
χ.

Every e ∈ E is denoted as q1
a,ϕ,X−−−−→ q2, where q1 and q2 is

the start and the end locations respectively, a ∈ η is an event,
ϕ denotes the enabling condition of e, and X ⊆ χ denotes the
set of real variables to be reset.

Definition 4 (State): At any time t ∈ R≥0, a state σ ∈ Q×
R|χ|×R≥0 of HA is conventionally denoted as the tuple σ =
〈q, v, t〉, where q ∈ Q and v is the value of the real variables
at time t. A state σ = 〈q, v, t〉 satisfies a constraint ϕ ∈ Φ(χ)
at point t, conventionally written as σ |=t ϕ, iff v |= ϕ. A state
σ = 〈q, v, t〉 is called admissible iff σ |=t Ins(q). Two states
σ1 = 〈q1, v1, t1〉 and σ2 = 〈q2, v2, t2〉 are equivalent denoted
as σ1 ≡ σ2 iff q1 = q2 = q and σi |=ti Ins(q), i ∈ {1, 2}.

A labeled transition system between states is usually used
to describe the semantics of HA. The transition between any
two admissible states σ1 = 〈q1, v1, t1〉 and σ2 = 〈q2, v2, t2〉 is
defined either by a discrete or a delay transition as follows:

Discrete transition for a ∈ η, σ1
a−→ σ2 iff t1 =

t2 and there exists q1
a,ϕ1,X−−−−→ q2 ∈ E such that

v1 |= ϕ1, and v2 |= Ins(q2).
Delay transition for δ ∈ R≥0, σ1

δ−→ σ2 iff
q1 = q2, δ = (t2− t1) is the time duration passed
in location q1, there is a differentiable function
f having f �∗ Flow(q1) and f(t1) = v1 and
f(t2) = v2, and for all t ∈ [t1, t2], f(t) |=
Ins(q1).

Now, the states and the transitional rules between states are
totally defined and thus we are ready to define the dense state
space as follows:

Definition 5 (dense state space): The dense state space of
HA can be defined as the tuple (θ, σ0,−→), where θ = Q×
R|χ| × R≥0 is the set of all states, σ0 = 〈q0, v0, 0〉 is the
initial state such that v0 is the value of the variables in χ
in the control location q0 at t = 0 with v0 |= Ins(q0), and
−→⊆ θ × (η ∪ R)× θ.

When a hybrid automaton is run, a sequence of state
transitions is generated. In the following, we define the path
and the run.

Definition 6 (Path and Run): A path ρ = σ1σ2σ3, . . . , of
HA denotes a finite or infinite sequence of admissible states,
where the transition between any two consecutive states is
associated either by a discrete or delay transition. Let Π(HA)
denotes the set of all paths of HA. A run of HA denotes a
path ρ beginning with the initial state σ0.

Each path ρ ∈ Π(HA) generates infinite number of reach-
able states due to the delay transitional rules. An appropriate
method to represent those infinite state is to use a symbolic
representation using mathematical intervals. Let us call the
mathematical interval a region, and it is defined as follows:

We write a run ρ as ρ = Γ0, a1,Γ1, a2, ..., a sequence of
regions, where each Γi ⊆ Q × R|χ| × R≥0 is the maximal
sub-sequence of admissible states such that for all consecutive
states σj , σj+1 ∈ Γ, it holds that σj

δ−→ σj+1. Additionally,
a transition between two consecutive regions Γi and Γi+1,
conventionally written as Γi

a−→ Γi+1, is enabled, if there
exist two states σi ∈ Γi, σi+1 ∈ Γi+1 such that σi

a−→ σi+1.
Conventionally, Γ is writen as Γ = 〈q, V, T 〉, such that T
denotes the total duration time of all states in Γ and V denotes
the tuple of intervals values of the variables throughout the
time interval T . Let Γ0 denotes the initial region obtained from
the intial state σ0 using delay transitions.

Definition 7 (Reachability): A certain region Γi is reach-
able in a run ρ ∈ Π(HA), if Γi ∈ ρ. A state σj is reachable,
if there is a reachable region Γi with σj ∈ Γi.

Now, the dense state space can be generalized by a region
state space as follows:

Definition 8 (region state space): A region state space of
HA can be defined as the tuple (∆,Γ0,−→), where ∆ is the
set of all possible regions, Γ0 = 〈q, V, T 〉 is the initial region
formed by a delay transitions from the initial state σ0 ∈ Γ0,
and −→⊆ ∆ × η × ∆ is the transition relation defined as
Γ1 a−→ Γ2 iff there exist σ1 ∈ Γ1 and σ2 ∈ Γ2 such that
σ1 a−→ σ2.

A. Automata Composition

A MAS is generally modeled by various parallel hybrid
automata representing the agents. Communication among the
agents is achieved using synchronized events. The overall
behavior of the entire MAS can be described using the parallel
composition. A two hybrid automata can be composed as
follows:

Let HAi = (Qi, χi, Insi, F lowi, ηi, Ei, q
0
i , v

0
i ) 1 ≤ i ≤ 2

be two hybrid automata, with Q1 ∩Q2 = ∅,

Definition 9 (Parallel Composition): The parallel compo-
sition of HA1 and HA2 is a hybrid automaton HA =
(Q,χ, Ins, F low, η, E, q0, v0), where Q = Q1×Q2, χ = χ1∪
χ2, Ins = Ins1∧Ins2, Flow = Flow1∧Flow2, η = η1∪η2,
q0 = (q01 , q

0
2) v0 = (v01 , v

0
2), and a transition in E is defined

as follows: q1
a,ϕ1,X1−−−−−→ q′1 ∈ E1 and q2

a,ϕ2,X2−−−−−→ q′2 ∈ E2

• a ∈ η1 ∩ η2 is a joint event, then
(q1, q2)

a,ϕ1∧ϕ2,X1∪X2−−−−−−−−−−→ (q′1, q
′
2) ∈ E.

• a ∈ η1 \ η2, then then (q1, q2)
a,ϕ1,X1−−−−−→ (q′1, q2) ∈ E.

• a ∈ η2 \ η1, then then (q1, q2)
a,ϕ2,X2−−−−−→ (q1, q

′
2) ∈ E.

A run of any two composed automata, denoted as
∑
H1◦H2

,
is the sequence Λ0, a1,Λ1, a2, ... of compound regions, where
a transition between two regions relates according to the defini-
tion of the transitional relation defined previously. Each global
regions takes the form Λ = 〈Γ1,Γ2〉, where Γi = (qi, Vi, T ).
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Again, the regions state space (∆, γ0,−→) is similar to its
previous definition, except that each element Λ ∈ ∆ is a global
region, and γ0 is the initial global region for each automaton.

Let loci : ∆→ Qi be a function that takes a global region
and returns the current location of the agent i, and Loc : ∆→
Q a function that returns the locations of the m agents. Let
duration(Γ) :⊆ R≥0 be a relation that returns the time interval
of a region Γ; i.e for Γi = (q, V, T ), duration(Γ) = T .

IV. HYBRID INTERPRETED SYSTEM

Interpreted Systems [2] are usually used as the formal
semantics that describe the temporal epistemic language.
Therefore, the interpreted systems is extended to be adapted
on hybrid automata as well.

Let AG denotes a set of m agents such that each
agent is represented as a hybrid automaton HAi =
(Qi, χi, Insi, F lowi, ηi, Ei, q

0
i , v

0
i ), 1 ≤ i ≤ m, and their

parallel composition in HA = (Q,χ, Ins, F low, η, E, q0, v0).
Let Propi be a set of Propositional variables for each agent
1 ≤ i ≤ m, and Prop =

⋃
Propi. Let V ali : Qi → 2Propi

be the valuation functions for the ith agent, which assigns the
truth value of Propi to the locations. Let V al : Q→ 2Prop is
the valuation function for the m agents, such that V al(q) =⋃
V ali(qi). Then, the hybrid interpreted system is defined as

follows:

Definition 10 (Hybrid Interpreted System): A hybrid in-
terpreted system is the tuple M = (∆,Γ0,−→,'1,'2

, . . . ,'m, ν) , where

• ∆,Γ0,−→ are defined as the definition in region state
space.

• 'i⊆ ∆×∆ is the epistemic indistinguishably (acces-
sibility) relation for agent i defined by Γ1 ' Γ2 iff
loc(Γ1) = loc(Γ2) and for each state σj ∈ Γ1 there
exists a state σk ∈ Γ2, such that σj ≡ σk. 'i is an
equivalence relation.

• ν : ∆→ 2Prop is the valuation function that is defined
by extending the definition of V al such that ν(Γ) =
V al(loc(Γ).

The epistemic relation ' defined previously is standard
in epistemic logic under interpreted systems. More details
and examples about this relation can be found in [41]. The
knowledge of a group of agents can be defined as:

Definition 11 (Group epistemic relation): Let AG be a set
of m agents, and κ ⊆ AG, we define a group epistemic
relations on a group of agents κ as follow:

• Everybody knows: 'Eκ =
⋃
i∈κ 'i. We have Γ 'Eκ Γ

′

iff for all i ∈ κ, then Γ 'i Γ
′
.

• Distributed knowledge: 'Dκ =
⋂
i∈κ 'i. We have

Γ 'Dκ Γ
′

iff there exists i ∈ κ, then Γ 'i Γ
′
.

• Common knowledge: 'Cκ = ('Eκ )+, where + denotes
the reflexive transitive closure of the underlying rela-
tion.

V. THE PROPOSED LOGIC (ERCTL)

The syntax and semantics of the proposed ERCTL are
formally described in this section. As previously mentioned,
the proposed ERCTL extends the logic RCTL [28] by adding
knowledge operators. We first begin by describing timed
variables that might appear in a formula to quantify its timing.

Definition 12 (Clocks): Let T ⊆ χ denotes a set of non-
negative real variables called clocks, and Φ(T) denotes a set
of constraints over T. Let ξ : T→ R≥0 denotes the valuation
ξ of the clocks T. For π ∈ Φ(T), we call ξ |= π, if ξ satisfies
π.

A. Syntax of ERCTL

Let L denotes a set of propositions representing the loca-
tions, η denotes a set of propositions representing the events,
χ denotes a set of real variables, T ⊆ χ denotes a set of
clocks, Φ(χ) and Φ(T) denote the set of all constraints on the
variables in χ,T respectively. Let AG be a set of m agents,
with κ ⊆ AG. Let y ∈ T, l ∈ L, a ∈ η, φ ∈ Φ(χ), π ∈ Φ(T),
i ∈ AG, and κ ⊆ AG.

Definition 13 (ERCTL Formulas): The set of ERCTL for-
mulas is defined inductively as follows:

Ψ ::= p |a |φ |y.Ψ |π |¬Ψ |Ψ1 ∧Ψ2|∃(Ψ1UΨ2) |∀(Ψ1UΨ2)|
KiΨ|EκΨ | DκΨ | CκΨ

In addition to the standard Boolean connectives, the
previous syntax includes the path quantifiers ∀, denoted
in all possible paths, and ∃, denotes that there exists a
path (more details about path quantifiers can be found
in [42]). Furthermore, the syntax of ERCTL defines
two fragments: RCTL and an epistemic one. The RCTL
fragment includes formulas of the form y.Ψ representing
”the formula Ψ is true at certain time represented by the clock y”.
The epistemic fragment of ERCTL includes
formula of the form KiΨ to represent
”agent i knows that Ψ”, EκΨ to represent
”everyone in group κ knows that Ψ”, DκΨ to represent
”it is distributed knowledge in group κ that Ψ is true”, and
CκΨ standing for ”it is common knowledge in group κ that Ψ”.

The other common formulas are defined as follows:

• ∃♦Ψ is equivalent to the formula ∃(true UΨ).

• ∀♦Ψ is equivalent to the formula ∀(true UΨ).

• K̄iΨ is equivalent to the formula ¬Ki¬Ψ.

• ĒκΨ is equivalent to the formula ¬Eκ¬Ψ.

• D̄κΨ is equivalent to the formula ¬Dκ¬Ψ.

• C̄κΨ is equivalent to the formula ¬Cκ¬Ψ.

B. Semantics of ERCTL

Let AG denotes a set of m agents such that each
agent is represented by a hybrid automaton HAi =
(Qi, χi, Insi, F lowi, ηi, Ei, q

0
i , v

0
i ), 1 ≤ i ≤ m, and their

parallel composition in HA = (Q,χ, Ins, F low, η, E, q0, v0).
Let M = (∆,Γ0,−→,'1,'2, . . . ,'m, ν) be a hybrid in-
terpreted system. Let Π(HA) denotes the set of all regions
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produced from the runs of hybrid automaton with a typical
region Γ = (q, V, T ) ∈ Π(HA)

Definition 14 (Satisfaction Relation ERCTL ): Let Ψ is a
ERCTL formula, The satisfaction relation 〈M,Γ〉 � Ψ denotes
that Ψ is true at a region Γ in the model M and is defined as
follows:

- 〈M,Γ〉 � p iff p ∈ ν(Γ).
- 〈M,Γ〉 � a iff there is Γ′ ∈ Π(HA) with Γ

a−→ Γ′.
- 〈M,Γ〉 � φ iff there is σk = (qk, vk, tk) ∈ Γ, σk |=t φ.
- 〈M,Γ〉 � y.Ψ iff there is σ = 〈q, v, t〉 ∈ Γ

such that Evl(y) = t and σ |=t φ.
- 〈M,Γ〉 � π iff there is ξ ∈ duration(Γ) such that ξ � π.
- 〈M,Γ〉 � ¬Ψ iff 〈M,Γ〉 2 Ψ.
- 〈M,Γ〉 � Ψ1 ∧Ψ2 iff 〈M,Γ〉 � Ψ1 and (M,Γ) � Ψ2.
- 〈M,Γ〉 � ∃(Ψ1UΨ2) iff there is a run Π ∈ Π(HA),Π = Γ0,Γ1, · · · ,

with Γ=Γ0, for some j ≥ 0,
〈M,Γj〉 � Ψ2, and 〈M,Γk〉 � Ψ1 for 0 ≤ k < j.

- 〈M,Γ〉 � ∀(Ψ1UΨ2) iff for every run Π ∈ Π(HA),Π = Γ0,Γ1, · · · ,
with Γ=Γ0,for some j ≥ 0,
〈M,Γj〉 � Ψ2, and 〈M,Γk〉 � Ψ1 for 0 ≤ k < j.

- 〈M,Γ〉 � KiΨ iff for all Γ
′ ∈ ∆ with Γ

′ 'i Γ

then 〈M,Γ
′〉 � Ψ.

- 〈M,Γ〉 � EκΨ iff for all Γ
′ ∈ ∆ with Γ

′ 'Eκ Γ then 〈M,Γ
′〉 � Ψ.

- 〈M,Γ〉 � DκΨ iff for all Γ
′ ∈ ∆ with Γ

′ 'Dκ Γ then 〈M,Γ
′〉 � Ψ.

- 〈M,Γ〉 � CκΨ iff for all Γ
′ ∈ ∆ with Γ

′ 'Cκ Γ then 〈M,Γ
′〉 � Ψ.

Intuitively, the formula KiΨ holds in a region Γ within the
hybrid interpreted system M if Ψ holds in all regions that are
indistinguishable for the agent i from Γ. The formula EκΨ
holds in a region Γ within the hybrid interpreted system M
if Ψ is true in all regions that a group κ of agents is unable
to distinguish from the Γ.The formula DκΨ holds in a region
Γ within the hybrid interpreted system M if the combined
knowledge of all agents in κ implies Ψ. The formula CκΨ
holds in a region Γ within the hybrid interpreted system M if
everyone knows that Ψ holds at Γ, and everyone knows that
everyone knows that Ψ holds at Γ, etc.

Definition 15 (Satisfiability of Formulas): Let AG denotes
a set of m agents such that each agent is represented as a
hybrid automaton HAi = (Qi, χi, Insi, F lowi, ηi, Ei, q

0
i , v

0
i ),

1 ≤ i ≤ m, and their parallel composition in HA =
(Q,χ, Ins, F low, η, E, q0, v0). Let M = (∆,Γ0,−→,'1,'2

, . . . ,'m, ν) be a hybrid interpreted system, A ERCTL for-
mula Ψ is satisfiable in M iff 〈M,Γ0〉 � φ, where Γ0 ∈ Π(HA)
is the initial region.

VI. SPECIFICATION OF REQUIREMENTS

As the proposed ERCTL combines the expressive power
of RCTL and epistemic logic, we will focus on the expressive
power of ERCTL to specify those properties that combine
both logics together. To exemplify the expressive power of the
proposed ERCTL, we specify properties on a slightly modified
version of railroad crossing system found in [43]. More details
about this illustrative example can be found in [40].

A. Example

The example shown in figure 1 consists of three agents,
namely the Train, the Gate, and the Controller. The main goal
is to track the trains crossing an intersection. The gate guards
the intersection and it closes or opens based on a train status
which is approaching or leaving the intersection. The gate is
completely monitored by the controller. The controller receives
signals from the train and accordingly sends lower or raise

commands to the gate. Let the train is initially 1000 meters
away from the gate and moves at a speed of 50 m/s. There is
a sensor positioned at a distance of 500 meters on the track.
The sensor detects that the train is approaching and thus sends
an app signal to the controller. After sending the app signal,
the train slows down according to the differential equation
ẋ = − x

25 − 30. After a duration of 5 seconds, the controller
sends a lower command to the gate, which in turn starts to
lower down at a rate of -20 degrees per second. After the
train crosses the gate, it accelerates following the differential
equation ẋ = x

5 +30. Another sensor is positioned at a distance
of 100 meters after the crossing to detect the train when it is
leaving. This sensor sends an exit command to the controller.
After 5 seconds, the controller starts to raise the gate to its
normal position.

By using ERCTL, we can specify a property Ψ that cannot
be expressed by the standard RCTL or epistemic logic. To
clarify more, we consider the following example:

Ψ = ∃♦KTrain(t1.app ∧ ∃♦(¬t2.to close ∧ t2 ≤ t1 + 10))
(1)

Formula 1 specifies that there exists a behavior in the
system such that the Train knows a situation in which it sends
app and then the Gate eventually will not be closed within 10
sec.

Ψ = Kcontroller(t1.lower → ∀♦(to close∧t2 ≤ t1+5)) (2)

Formula 2 specifies that the Controller agent knows that
when it sends a lower command, the agent Gate will send
to close command within 5 sec. and thus the agent Gate
eventually will not be closed within 10 sec.

Ψ = ∀�KTrain(t1.app→ ∀�(t2.(x > 100) ∧ t2 ≤ t1 + 5))
(3)

Formula 3 specifies that the agent Train always knows
that whenever it approaches the gate, its distance to the gate
is always greater than 100 meters for 20 time units.

In order to formally verify a certain property using model
checking within the proposed ERCTL, we should focus on
fragment of ERCTL that can be checked with reachability.
Several requirements of interest can be specified as kind of
reachability. Generally, a formula Ψ is reachable, if it is
possible to reach a state holding Ψ. Thus the reachability of
the property Ψ aims to find if it is possible to find a region
within the run of agents in which the formula Ψ is satisfiable?.
This can be achieved using ERCTL as follows:

init→ ∃♦Ψ (4)

init in formula 4 indicates the conjunctions of the initial
states of the system under investigation. The reachability of
a certain formula is usually computed starting with the initial
region of a region-space exploration of a model and extending
the reachability on transitions until reaching fixed regions. In
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Fig. 1. Modeling of the train gate controller Example as hybrid automata [40].

[44], a semi-decision algorithm for computing the reachability
of regions of a hybrid automaton is introduced by one of the
authors. This algorithm is shown in Fig. 2. In Fig. 2, if the
initial region is Γ0, produce(R) denotes the set of reached
regions attached to the region R with a discrete step.

W :=produce(Γ0)
Reachable := Γ0

while W 6= ∅ do
take R from W
if R /∈Reachable then Reachable :=
Reachable ∪ R
end if
W := W ∪ (produce(R)\ W)
end while

Fig. 2. Computation of the reachability analysis [44] .

Checking the reachability for a property within the un-
derline transition system of hybrid automata is generally
undecidable except for certain classes of hybrid automata[45].
Consequently, the decidability problem is inherited in ERCTL.

VII. REACHABILITY AS CLP

In this section the implementation of the proposed frame-
work using constraint logic program (CLP) [46] is shown. CLP
has been chosen to implement the proposed framework for
many reasons. First, hybrid interpreted system can be described
as a constrained system. These constraints represent the con-
tinuous dynamics e.g., the invariants, the flows, and transitions.
Second, constraints can be used to represent specific parts of
the state space easily. Third, there are operational semantics
similarities between CLP and the hybrid Interpreted System.
Moreover, constraints allow us to concisely represent regions
symbolically as mathematical intervals where an appropriate
constraint solver used to reason about the reachability of
a particular state inside this interval. Moreover, the Logic

programming parts allows us to implement the knowledge
efficiently.

The implemented prototype is built using ECLiPSe Prolog
[47]. The definitions of both the formal syntax and semantics
of hybrid automata and the enrichment of knowledge are
followed. An overview of the implementation is given here.
Let’s start with modeling the locations and their constraints
using the predicate epistemicAutomaton as shown in fig.3. epis-
temicAutomaton denotes the epistemic automaton and Location
denotes the current location of the automaton. V ars represents
the variables participating in epistemic automaton and V ars0
represents their corresponding initial values. Ins(V ars) is the
list of invariant constraints on the variables in V ars within
the control location. Whereas, Flow(vars) represents the list
of constraints flows on the variables V ars with respect to
initial time T0 at the start of the continuous flow and Time.
initKnow represents knowledge at the location. The knowledge
remains unchanged during the continuous evolution. finally,
Event represents the fired event during the run.

The transition systems are then encoded into the predicate
evolve as shown in fig.4, that describes the two kind of
transitions. The automaton evolves with either continuous or
discrete transitions depending on the occurring constraints
during the run. It is important to note that , within the discrete
step, the knowledge is updated from a state to another by
appending the knowledge of the first state Know1 with the
shared knowledge Shared, coming from the other automata, to
produce the knowledge know2. Once the epistemic automata
have been modeled, an overall state machine is constructed
with the aim to execute the model. To achieve this goal, a
reachability predicate is implemented as shown in Fig. 5.

The reachability is a state machine employed to generate
the behaviors of the concurrent epistemic hybrid automata. It
starts with the definition of each participating epistemic hybrid
automaton with its initial variables, timing, and knowledge. As
soon as the reachability has been defined, the entire model is

www.ijacsa.thesai.org 442 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

epistemicAutomaton(Location,Vars,Var0,T0,Time,initKnow,Event):- Flow(Vars), Ins(Vars),Time $>=T0,
initKnow=[automaton knowledgeshared knowledge],Event &::event.

Fig. 3. Epistemic automaton definition

evolve(epistemicAutomaton(State,Startstate,Know),(State,Newstartstate,Know),Shared,T0,T,Event) :-
continuous(epistemicAutomaton(State,Startstate,Know),(State,Newstartstate,Know),Shared,T0,T,Event);
discrete(epistemicAutomaton(State,Startstate,Know1),(State,Newstartstate,Know2),Shared,T0,T,Event);

Fig. 4. Transition system implementation

reachability((L1,Var01,know1),(L2,Var02,know2),...,(Ln,Var0n,known),T0,[Reg|NxtReg],PastReg)
:- epistemicAutomaton(L1,Var01,Know1),(State1,Newstartstate1,Know11), Shared,T0,T,Event),
epistemicAutomaton(L2,Var02,Know2),(State2,Newstartstate2,Know12), Shared,T0,T,Event), ....,
epistemicAutomaton(Ln,Var0n,Known),(Staten,Newstartstatne,Know1n), Shared,T0,T,Event),
evolve(epistemicAutomaton(L1,Startstate,Know1),(State1,Newstartstate1,Know), Shared,T0,T,Event),
evolve(epistemicAutomaton(L2,Startstate,Know2),(State2,Newstartstate2,Know), Shared,T0,T,Event), .....,
evolve(epistemicAutomaton(Ln,Startstate,Known),(Staten,Newstartstaten,Know), Shared,T0,T,Event),
reachability((State1,Newstartstate1,Know11),(State2,Newstartstate2,Know12),..,(Staten,Newstartstaten,Know1n),
Newstarttime,PastReg)).

Fig. 5. A reachability to the execution of epistemic hybrid automata.

invoked for the purpose of running and verification. By using
the CLP model, we are able to verify the properties described
in VI.

VIII. CONCLUSION

In this paper, we have introduced a new logic called
ERCTL that extends the logic RCTL with epistemic modali-
ties. This extension allows us to formally specify several qual-
itative epistemic requirements of MAS evolving in continuous
dynamical environment. The fundamental underline Interpre-
tation model of the logic was hybrid automata. The later, were
extended to produce the so-called interpreted hybrid system
that forms the basic Interpretation model for both the epistemic
part and the real time continuous dynamic part. The paper
showed how to specify several interesting requirements using
ERCTL. To put the formal verification into consideration, we
showed how to implement the proposed work using constraints
logic programming CLP. As converting a model to CLP is a
tedious work, it’s worth developing to incorporate the ERCTL
in the model checking tool [48].
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