
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

Dynamic Programming Inspired Genetic
Programming to Solve Regression Problems

Asim Darwaish
National University of Computer

and Emerging Sciences FAST
Islamabad, Pakistan

Hammad Majeed
NUCES-FAST

Islamabad, Pakistan

M. Quamber Ali and Abdul Rafay
NUCES-FAST

Islamabad, Pakistan

Abstract—The candidate solution in traditional Genetic Pro-
graming is evolved through prescribed number of generations
using fitness measure. It has been observed that, improvement
of GP on different problems is insignificant at later generations.
Furthermore, GP struggles to evolve on some symbolic regression
problems due to high selective pressure, where input range is
very small, and few generations are allowed. In such scenarios
stagnation of GP occurs and GP cannot evolve a desired solution.
Recent works address these issues by using single run to reduce
residual error which is based on semantic concept. A new
approach is proposed called Dynamic Decomposition of Genetic
Programming (DDGP) inspired by dynamic programing. DDGP
decomposes a problem into sub problems and initiates sub runs
in order to find sub solutions. The algebraic sum of all the
sub solutions merge into an overall solution, which provides
the desired solution. Experiments conducted on well known
benchmarks with varying complexities, validates the proposed
approach, as the empirical results of DDGP are far superior
to the standard GP. Moreover, statistical analysis has been
conducted using T test, which depicted significant difference on
eight datasets. Symbolic regression problems where other variants
of GP stagnates and cannot evolve the required solution, DDGP
is highly recommended for such symbolic regression problems.

Keywords—Genetic Programming; Evolutionary Computing;
Machine Learning; Fitness Landscape; Semantic GP; Symbolic
Regression and Dynamic Decomposition of GP

I. INTRODUCTION

Since the inception of Genetic Programming by Koza [1],
it is being used in various domains of Medical, Engineering
and Computer science. GP is inspired by human biological
evolution process. The leverage of Genetic Programming over
some other inductive logic programming techniques is as it
does not require any human interaction and domain specific
knowledge. Comparatively GP is still a young field in research
and has attracted substantial research community. Varieties
of problems are being solved by genetic programming. For
example: designing the robot controllers, discovering new
quantum algorithms and continuous optimization problems etc.
One of the important strength of Genetic Programming is its
ability to find the solution of problem which human would
probably never consider. On the other hand GP still persist
some problems for instance scalability issues, GP Bloat are
the most commonly concerned for research community.

It has been observed that GP struggles to evolve on
different symbolic regression problems and stagnation occurs.
The reason of stagnation and insignificant improvement is high
selective pressure. In some problems where input ranges are

very small and fewer generations are allowed the stagnation
occurs and GP can not evolve the required solution. The
primary goal of this research work is to overcome these afore-
said problems for example GP stagnation etc. This research
work also diverts the focus of GP in order to overcome GP
struggle and stagnation. Furthermore, it has been also observed
when stagnation occurs in GP, the size of tree is continuously
increasing with less or no performance improvement with
respect to fitness. The same problem associated with GP is
also reported by Maarten Keijzer and had mentioned that due
to very small range of inputs the traditional GP struggles to
evolve or cannot evolve a model for some symbolic regression
problems [2]. It has also been reported in literature that the
curve of performance improvement of GP is much higher at
early generations as compared to later generations. As the
number of generation increases there is minor improvement in
performance with respect to fitness [3], [4]. The said scenario
is termed as GP bloat which is defined as the growth of GP tree
increases without improvement in fitness or with insignificant
improvement in fitness.

Substantial portion of research has been conducted in
Genetic Programming to overcome aforesaid problems like
semantic GP by Moraglio [6] and Sequential Symbolic Re-
gression SSR [7]. In order to tackle state of the art problems, a
novel approach has been proposed named Dynamic Decompo-
sition of Genetic Programming (DDGP). DDGP has some sim-
ilarities with SSR and semantic GP. However, in order to find
a particular solution, proposed approach decomposes the GP
run into number of dynamic runs instead of using single run.
The cumulative sum of these sub-runs are then merged to get
the final solution of a problem. Keeping in view, the aforesaid
problems, proposed approach got an inspiration form dynamic
programming. In which previously found sub-solutions helps
in finding the final solution. Empirical results mentioned in
section V depicted that DDGP is much better than SGP in
term of fitness improvement. It is highly recommended to use
DDGP in the problems where standard GP struggles to evolve
and stagnation occurs. DDGP is the main contribution of this
research work, which is comprised of small runs instead of
single independent run of GP. In DDGP the succession of
these sub-runs participates in finding the final solution. DDGP
simply add these sub-runs and reaches upto desired solution.
DDGP incorporated the dynamic decomposition with the help
of special parameter named error change parameter. The paper
is organized as follow: section II comprises of literature review
and study of previous approaches to dynamic fitness landscape
in GP section III describes Dynamic Decomposition of GP;

www.ijacsa.thesai.org 478 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

; section IV comprises of experimental setup and symbolic
regression problems suited for this approach. Section V ; sum-
marizes the results and significance of DDGP; in last, section
VI concludes the achievements of DDGP and highlights the
future work directions.

II. LITERATURE REVIEW

The first and most popular approach for creating sub
modules was coined by Koza named Automatically Defined
Function in (1994). Koza proposed ADF for exploring the
regularities and modularities of the search space when dealing
with complex problems in context of GP. The proposed archi-
tecture decomposed the problem into simpler sub problems.
Koza has implemented these steps within the run of GP. The
architecture proposed by koza exploits the problem regularities
through modularization. Problem decomposition is being done
manually such as number of ADFs, number of arguments for
each ADF. Moreover, interactions of ADFs were restricted
by user defined value. In addition to this all these should be
specified prior to the run of GP. Another limitation of this
approach is that there is single decomposition step. It may be
possible more complex problem with respect to GP require
many decomposition steps.

Ahmed Kattan and Alexandar et al [5] performed unsuper-
vised problem decomposition using genetic programming at
two levels. At top level GP evolves way of splitting the fitness
cases in each subset. At lower level GP evolves the program
that solves the fitness cases in each subset. The objective of
their contribution was to reduce complexity and to discover
regularities in problem space. Two main steps of their work
was training and testing. In training the system learn to divide
the training cases into different group based on similarity.
Training is further split into re-sampling and solving phase.
Re-sampling tries to discover best decomposition of problem
and solving phase tries to solve the problem by solving sub
problem independently discovered in re-sampling phase.

Otero and Johnson [9] proposed a sequential covering strat-
egy for problem decomposition specific to Boolean domain.
Prior to Otero and Johnson, focus of previous research was
on discovery of modules rather than the use of modules in
problem decomposition [9]. They had introduced three distinct
steps as like ADF. First one is decomposition of the problem,
second is searching for a sub problem solution and third one is
combination of sub solutions into a complete solution. SCGP
is started with an empty solution by considering all the input
cases and evolves the partial solution. SCGP add this partial
solution to a solution tree. Next step is the removal of input
cases for which SCGP predicts accurately and repetition of
process until all input cases are removed. The removal of input
cases, after each iteration changes the search space effectively
for next iteration and allows GP to evolve different parts of
the problem. They have used mask selector based on semantic
crossover to combine the partial solutions from solution tree
to final solution. Experiments were conducted on two Boolean
benchmark problems namely even parity and multiplexer. Their
work is only limited to Boolean domain and does not deal in
real domain. Moreover, they gave no idea of generalization for
unseen input cases.

Nabi and et al [8] have proposed automatic problem
decomposition for increasingly complex problems called dif-

ferential grouping. It is based on divide and conquers approach.
According to Nabi the growth in dimensions impacted the
performance of evolutionary algorithms adversely. The differ-
ential grouping uncovers the underlying interaction of decision
variable and form subcomponent with minimum number of
interdependencies. Nabi highlighted the drawback of previous
approaches of unequal distribution of computational budget
among subcomponents. They have allocated the computational
budget according to the contribution of subcomponents [8].
This work also showed that near optimal decomposition is
beneficial and along with contribution based approach can
improve the performance in large scale optimization with up to
1000 decision variables. They have used additively separable
function [8] for differential grouping based on two stages
namely grouping stage and optimization stage. As mentioned
earlier in grouping stage the interaction of underlying variable
structure is identified and in optimization stage the subcom-
ponent discovered in grouping stage are optimized in round
robin fashion. The experiments conducted on IEEE CEC 2010
benchmark and used 20 benchmarks functions in order to
evaluate the performance and compared with CCVIL. The
results gave 100 percent accuracy on 13 benchmarks out of
20 benchmarks.

Luiz Otavio V.B. Oliveira et al [7] proposed a framework
to deal with complex problems using GP named sequen-
tial symbolic. Their main contribution was transformation of
original problem into potentially simpler problems based on
semantic distance and semantic crossover. Luiz Otavio work
is inspired from sequential covering strategy SCR, same to one
proposed by Otero and Johnson [9]. The difference between
SSR and SCR is of transformation and reduction, In SSR
the problem is transformed into simpler problem, while in
SCR the problem is reduced, after each iteration. In SCR
the training cases covered by an iteration are removed which
results in reducing the size of problem. Iterative solution in
SSR allows GP to focus on different aspect of original problem
and combines the individual solution (sub problems) using
GSC. After generating a sub optimal function the residual is
approximated by another function [7].

The concept of semantic Genetic operator SGP is coined
by Moraglio [6]. As Moraglio work combines individual at
random therefore, exponential growth is reported in SGP. SSR
has overcome this flaw by finding the individual with minimum
error on desired output vector. SSR does not need to keep all
the solution in memory. Experiments of SSR are conducted
using 8 univariate polynomial function of degree 3 to 10 with
real valued coefficient [-1,1] same as Moraglio et al [6]. The
results of SSR are same as GP but better than SGP along
with better generalization than SGP. However, the critical part
of SSR is the setting of different parameter and it does not
reduce the fitness budget effectively. Moreover, SSR has not
been validated in more complex Symbolic regression problems
for example the GP benchmarks (white et al, 2013) yet.

Tomasz P. Pawlak and Krzysztof et al [10] proposed
semantic backpropagation for designing search operators in
Genetic Programming. According to them inversion of pro-
gram execution can generate the subtasks from the original
task. These sub tasks can be solved using exhaustive search
in constraint set of programs [10]. For the sake of desired
intermediate output, their algorithm can heuristically inversed

www.ijacsa.thesai.org 479 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

the execution of evolving program. With the help of inverse
operator they can get desired output of any sub sequent node.
The proposed algorithm randomly selects any node and gets
desired output. After obtaining desired output the algorithm
searches for a program with a match or very close match in
the repository. Tomasz P et al have introduced two kinds of
operators for this purpose namely Random Desired Operator
(RDO) and Approximately Geometric Semantic Crossover Op-
erator (AGX). RDO is useful for Boolean and regression prob-
lems and for unknown target output due to some confidential
reasons, AGX operator is used. The empirical results showed
that their works helps the evolution at identifying the desired
intermediate states and also improve the search process and
make it more efficient [10]. Moreover, they have introduced the
program semantic in order to analyze the program behavior.
Their results showed that the inversion of program can be a
feasible for automatic programming algorithm, including GP,
with property of problem decomposition [10].

Amin Lamine et al [11] conducted a study on finding
solution to constrained optimization problems (COPs). COPs
are generally considered as NP-Hard problems. The proposed
technique is S&D (solve and decompose). It uses depth-
first iteration technique based on decomposition of problem.
The proposed strategy uses the solution of COP which is
feasible, that is found by any exact technique, which is further
decomposed into smaller sub problems. To strengthen the cost
based filtering it uses values of feasible solution as the bound
to be added to sub problems. Exploitation of feasible solution
(promising region of search tree) is done for finding sub
problems that show more promise in finding good solutions.
Heuristic is needed that may be adaptive for comparison of two
sub problems for finding better one to improve whole solution
because, the objective function is linear .Depth first approach
is used for their exploration. This whole process is continued
in proposed work until some criteria is reached where further
decomposition is stopped. After this Branch and Bound type
of exact methods are used to solve these sub problems in
optimal way. Experiment results for the S&D approach show
that improvements in order of three magnitudes were achieved
in comparison with Branch and Bound methods, with respect
to their runtime.

David Medernach et al [20] proposed a novel approach
named Wave GP. Wave is the form of semantic genetic pro-
gramming which works on periods. Periods are short genetic
programing runs. This work shares some similarities with
methods such as Sequential Symbolic Regression. The main
idea of this work is to run succession GP periods and produce
cumulative solution by training on the basis of previous
residual errors. The algebraic sum of best evolved period is
called final solution. New periods are started when the rate
fitness gain slows down. Residual errors are optimized for
each successive period on the basis of previous Heterogeneous
configuration is applied across the periods, which results in
different generation span for different periods on the basis
of their progression. Partial population is renewed with 80%
new individuals at the beginning of every new successful
period. Wave performs equal or better than standard GP with
or without linear scaling. It performs significantly better than
GSGP.

start 

Consumed all 
resources 

Process Generation 

Initialize Random 
Population 

Stopping criteria 
/  Best Ind 
Improve 

End 

Yes 

Yes 

No 

Store all States 

Update Target 
Values 

Start new Sub 
Run 

Adjust Setting for 
New sub Run 

Fig. 1. Flow chart of Proposed Approach DDGP is depicted.

III. DYNAMIC DECOMPOSITION OF GP

Dynamic decomposition of genetic programming is an idea
inspired from dynamic programming. The symbolic regression
problems where standard GP struggles and stagnation occurs,
DDGP is quiet successful in such problems. Moreover, DDGP
is also beneficial to avoid GP bloat. The DDGP decomposes
the original GP run into number of sub-runs (problem de-
pendent) in order to find the final solution, which cannot
be found by traditional GP. Proposed approach incorporates
divide and conquer strategy, which is quiet helpful in those
areas where standard GP struggles. DDGP starts like a tra-
ditional GP and tries to find the solution with the help of
fitness function. DDGP used a special parameter named error
change parameter. The purpose of error change parameter is
to monitor the best individual after each generation. If the best
individual does not improve in term of fitness for x number
of consecutive generations, then decomposition comes into
an action. The proposed methodology stores all the states of
current run and initiates a new run. The new run requires
some parameter adjustments for example modification of target
values and number of generations. The recursive process of
this mechanism either yields required final solution or end up
with termination criteria. At the end of each sub-run, DDGP
stores the best individual. On the basis of this, target values
are updated which lead to change in fitness landscape. This
mechanism changes the target value for the subsequent run.
In the end, the final solution is the cumulative sum of all the
linear sub runs. The flow chart of proposed DDGP is shown
in figure 1.

Pertaining to the proposed idea of DDGP, it is deemed
appropriate to mention a mechanism which decides, when
decomposition will incorporate. For the sake of this, error
change parameter has been used as mentioned above. This
special parameter works on the basis of best individual of
every generation. For intelligent stopping mechanism the er-
ror change parameter monitors the best individual of each
generation. If the performance of best individual does not
improve or remain same for X number of consecutive gen-
eration, then current run is halted and all states are stored.

www.ijacsa.thesai.org 480 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

The argument is supported by stasis introduced by Blackburn
(1995). The stasis is the time period in human biological
evolution process, when no change occurs for some time
period in human biological evolution. Similarly to this when
best individual does not improve, current run is halted and
incorporates the decomposition by introducing new sub runs.
For above mentioned stopping mechanism some threshold
could have been used but DDGP did not use this option. After
intelligent stopping and saving the states, new run is initiated.
The proposed approach repopulates and uses the same desired
parameter setting except number of generations. For number
of generations, DDGP subtracts the number of generations
consumed by previous run from total allocated generations as
given below: Mf =M1 +M2............Mn

GMi
= Gt −GMi−1 (1)

Where M1 to Mn are the number of decomposed models
or sub models which are dynamic in DDGP and depends upon
the nature of problem while Mf is the final model. Gt is the
total number of allocated generations and GMi

is the number
of generations for current sub run or sub model and GMi−1 is
the number of generations consumed by previous sub run or
sub model.

When the best individuals does not improve or remain
same for x number of consecutive generations, the intelligent
stopping criteria stops the current run and stores all the states.
For new sub-run target value is modified by subtracting the
obtained output of a previous sub run from the desired target
value. This lead to change in fitness landscape for subsequent
runs. The procedure for updating the target value is given as
under:

OMi
= Ot −OMi−1 (2)

Where OMi is the target output for current run and Ot

is the desired output against the input cases and OMi−1 is
the output model evolved by the previous sub-run. the final
solution will be the algebraic sum of all the sub runs or sub
models i-e.

Final(Solution) =
n∑

i=1

Mi (3)

The proposed ideal help us in finding the target solu-
tion using algebraic sum of all the runs. Moreover, it also
overcomes the GP stagnation and bloat problem because of
the mechanism, which is monitoring the performance of best
individual after each generation for fitness improvement. Due
to which DDGP eradicates the chance of stagnation and GP
bloat. Moreover, DDGP also improves the speed and accuracy
of standard GP, the empirical results mentioned in section IV
are evidence to this argument.

A. DDGP Algorithm

Algorithm 1 presents the high level pseudo-code fo DDGP.
Fitness cases comprised of inputs / outputs usually provided
to algorithm 1. It starts with empty solution S and constructs
the required solution iteratively just like traditional GP. If the
required solution is found at k-th generation, the required
solution is added to S. Otherwise proposed approach mon-
itors the best individual after each generation using Error-
change(BestIndividual, Gen). If fitness does not improve for

Input: fitness cases (T), DDGP Parameters, Stopping
Criteria

Input← (t1, t2, ...., tnfortk ∈ T );
Output← (O(t1), O(t2), ..., O(tn)forO(tk) ∈ T );
/* Construction of Required Solution

Iteratively */
S ← 0;
while While stopping criteria does not reach do

Mi ← RunGp(input, output);
if (MSError(M,output) ≤ 0.001) then

S ← AddSolution(Mi);
else

ErrorChange←
FitnessImprovement(BestIndividual, Gen);

Return ErrorChange;
end
/* Set Threshold according to

nature of problem and resources
*/

ε← value;
if ErrorChange ≥ ε then

StopCurrentRun;
Runi ←
StoreSt(UpTarget(output, Parameters);
S ← AddPartialSol(Runi);
Mi ← RunGp(input, updatedoutput);
Go to Step 6 and Repeat the process ;

else
Go to Step 5;

end
end

Algorithm 1: Algorithm for Dynamic Decomposition of GP

x number of consecutive generations, Algorithm 1 stops the
current run and updates the target vector. The partial solution
evolved by recently stopped run is subtracted from desired
output and new target vector is updated for subsequent run.
Moreover, the partially evolved solution is added to S. Now
algorithm 1 runs on original inputs and updated target vectors
and process is repeated until termination criteria is met. Finally
the algebraic sum of all the partially evolve solutions are
merged and final solution can be achieved, which was difficult
to obtain using single run or using standard GP.

B. Running Example

Lets take a look at example of divide and conquer approach
used by DDGP in table I for solving equation 4. The first
columns contains the input value shown as x ranging from
[-1,1]. The second column contains output value shown as
y. It can be seen from the table that the difference between
input and desired output values are very large. In these cases
where this difference between desired output and input is very
large, Standard GP struggles and stagnates. Stagnation can be
referred as condition where GP is unable to improve the fitness
and gets stuck at some value despite further evolution occur
over the generations. In table I third column shows the evolved
model M1. It can be seen from table I that GP was suppose
to evolve output y of 499 against input value -1 of x, but it
was unable to achieve it, instead it stagnated at the output

www.ijacsa.thesai.org 481 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

value of 202.1. In standard GP there is no way to overcome
stagnation in problems where there is huge difference between
input and desired output values along with small generation
sizes. In proposed approach when stagnation happens divide
and conquer strategy is used. As shown in table I in first
row third column M1 is 202.1 this is the evolved model
until stagnation happened. At this point in DDGP new desired
output y’ is evolved by subtracting M1 from original desired
output y. Column four show the new desired output value y’
of 296.9. DDGP starts the sub run and the new value of y’
is evolved as it is still large as compared to input x, it results
in stagnation and DDGP stops after evolving M2 model with
value of 150.1 . At this stage new desired value output y” is
evolved using model M2. Again DDGP is started with input
x = -1 and desired output y” value of 146.8. Again same
process is repeated and new modal is evolved using divide and
conquer strategy until desired outcome or termination criteria
is achieved. In table I value of y” is 48.7, and at this stage
DDGP evolved model M4 with value 48.69 which is equal to
the desired value resulting in termination of DDGP. At this
stage all the partially evolved models are combined to form
complete solution to the problem. In the example cumulative
result is formed by adding partial solutions of M1, M2, M3,
M4 as shown in 5 . By using this approach DDGP overcomes
the problem of stagnation which standard GP is unable to
solve.

Y = 500 + x (4)

Y =M1 +M2 +M3 +M4 (5)

TABLE I. EXAMPLE OF DIVIDE AND CONQUER STRATEGY USED IN
DDGP

X Y=
f(x)

M1 Y=
Y-M1

M2 Y=Y-
M2

M3 Y=
Y-M3

M4

-1 499 202.1 296.9 150.1 146.8 98.1 48.7 48.69
-0.99 499.1 202 297.1 150.2 146.9 98.2 48.7 48.7
-0.98 499.2 201.9 297.3 150.3 147 98.3 48.7 48.7
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
... ... ... ... ... ... ... ... ...
1 501 201 300 152 148 100 48 48

IV. EXPERIMENTS

A. Dataset

This paper targets the symbolic regression problems to
perform variety of experiments. The symbolic regression tasks
are of varying difficulties in order to test the proposed GP
variant named DDGP and methods over wide range of dataset
with varying complexities.

B. Symbolic Regression

An opposed to traditional regression, symbolic regression
does not make any assumption regarding underlying relation-
ship between dependent and independent variable [7].Symbolic
regression try to find a model which completely satisfy all the
inputs and outputs. The model in symbolic regression is com-
posed of mathematical expression which describes the relation-
ship among one dependent and multiple / single interdependent

variables. The purpose of traditional regression techniques is
to seek optimization of parameters for already specified model.
While in symbolic regression goal is to find the model which
is a mathematical expression, in short symbolic regression find
both model structure and model parameters.

C. Experimental Setup

The experimental setup for DDGP is Symbolic regression
problems. Symbolic regression is usually solved by genetic
programming and is supervised learning. In GP, the system
is presented with data points from which GP construct a
mathematical modal which fit all the inputs and outputs points
in the dataset. Usually the fitness function use for obtaining
this model accurately is Means Squared error [12].

Selection of good set of problems for conducting exper-
iments on symbolic regression is difficult task. Because no
well-formed established benchmarks has been formulated. This
paper takes most of the problems from past papers that perform
improvement on symbolic regression. Keeping in view the
stagnation problem associated with GP, following symbolic
regression are used for experimental setup. First three sym-
bolic regressions problems are chosen from Maarten Keijzer’s
benchmark and other 8 symbolic regression are comprises of
8 univariate polynomial function of degree 2 to 9 .

f(x) = 0.3xsin(2x) (6)

f(x) = x3exp− xcos(x)sin(x)(sin2(x)cos(x)1) (7)

f(x) = Sqrt(x) (8)

f(x) = x2 + 500 (9)

f(x) = 200 + x2 (10)

f(x) = x4 + 4x+ 700 (11)

f(x) = f(x) = x5 + x2 + sin(x) + 400 (12)

f(x) = x6 + 7x3 + 2x2 + cos(x) + 300 (13)

f(x) = x7 + 5x4 + 3x3 + cos(x) + 600 (14)

f(x) = x8 + 3x6 + 2x4 + sin(x) + 900 (15)

f(x) = x9 + 9x7 + 5x5 + cos(x3) + 450 (16)

The common parameter setting for experimental setup
involves the population size which is set to 5000 for all
symbolic regression problems in suited experiment setup for
DDGP. Different generation size is set for different problems
as specified in Maarten keijzer paper for fair comparative
analysis. The input range of all problems is from [-1,1] to
support keijzer argument. According to keijzer when input
range is very small and few generations are allowed, selection
pressure for selecting the right range is so high on GP. Due
to this GP spends most of the time for finding the particular
value and if found in some cases, the diversity has dropped
substantially. The functional set comprises of arithmetic and
logarithmic functions. Crossover probability is set to 0.7,
mutation is set to 0.2 and 0.1 is set for reproduction. Minimum
depth of tree allowed is 2 and maximum allowed depth is
set to 16. According to DDGP the error change parameter
is set to five for intelligent stopping criteria, which means if
the best individual does not improve or remain same for five

www.ijacsa.thesai.org 482 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

consecutive generations. The algorithm stops the current run
and initiates a new run. The question is how much runs would
be there for any problems? In case of DDGP it is dynamic;
depend upon the nature of problem and termination criteria.
The detailed configuration for all the symbolic regression
problems suited for DDGP’s experimental setup is given in
table II.

GP System used for this research work is LIL GP devel-
oped by Dr Bill punch and Douglas Zongker at Michigan State
University. It is written in C language for the sake of high
execution speed, modularity, ease of use and support number of
other options. Lil GP code is modified according to proposed
methodology. Necessary changes and modifications are made
in standard LIL GP code in order to examine DDGP. The
naming convention used in this paper are given as; the ”Pop”
means the population size; ”Gen No” means the total number
of generations allowed for a problem at start of run. Input
ranges are used from [-1,1] and two hundred fitness cases have
been used for testing each regression problem. ECP stands for
error change parameter which is used to monitor the stopping
criteria of intermediate run as stated above.

TABLE II. GP: PARAMETER SETTINGS

Problem Name Pop Size Gen
No’s

ECP Range Fitness cases

Equation No 6 5000 30 5 [-1,1] 200
Equation No 7 5000 30 5 [-1,1] 200
Equation No 8 5000 25 5 [-1,1] 200
Equation No 9 5000 50 5 [-1,1] 200
Equation No 7 5000 30 5 [-1,1] 200
Equation No 11 5000 30 5 [-1,1] 200
Equation No 12 5000 35 5 [-1,1] 200
Equation No 13 5000 35 5 [-1,1] 200
Equation No 14 5000 35 5 [-1,1] 200
Equation No 15 5000 35 5 [-1,1] 200
Equation No 16 5000 35 5 [-1,1] 200

V. RESULTS AND DISCUSSION

In experimental phase, the proposed approach (DDGP) is
tested on suited symbolic regression problems from Maarten
keijzer benchmarks and on eight univariate polynomials from
2 to 9. It is imperative to mention that both SSR and Moraglio
[6] have the same benchmark for their experimental setup
(Polynomials from 2 to 9). DDGP is close to the work
performed, by Luiz and Otero in SSR. They have performed
transformation of original problem into simpler problem, while
this paper performed dynamic decomposition. The problem
of stagnation and GP struggles on different problems was
also highlighted by Maarten Keijzer. However, his work was
related to linear scaling. The results of experiments depicted
that DDGP outperforms the standard GP.

For monitoring stagnation and incorporating decomposition
the value of error change parameter can be x number of
generations. In all the experiments, performed on Maartin
Keijzer’s benchmarks and eight univariate problems the values
of x is set to five. However, error change parameters is also
tested on the values 3,4,5,6. The behavior of DDGP was
relatively better on using x = 5 for error change parameter.
Due to this x was set to five during evaluation of DDGP in
context of error change parameter.

A. Suited Benchmarks

In experimental setup the first three mathematical equa-
tions are taken form keijzer paper. Same parameter set-
tings are used as mentioned by keijzer, for fair and
transparent comparative analysis. The mathematical expres-
sions were f(x) = 0.3xsin(2x) , f(x) = x3exp −
xcos(x)sin(x)(sin2(x)cos(x)1) and f(x) = Sqrt(x). The
input range for all these equations was between [-1, 1] as
specified by keijzer. The error change parameter in DDGP
was set to five. Two hundred fitness cases are chosen for each
equation that are generated at regular intervals between the
range [-1,1]. Thirty independent runs of SGP are conducted on
30 different seeds for each equation of keijzer. Same seeds are
used for 30 runs of DDGP on above mentioned three problems.
The results produced by DDGP were many times better than
SGP. The figure 2a showed the average fitness of SGP and
DDGP for 30 runs. From the figure 2a it is clearly obvious
that DDGP beats the SGP and the average maximum fitness of
DDGP was 0.188797 while in case of SGP it was 0.071755133
for equation 6 of Keizjer. Moreover, it can be noted from the
figure 2a that in case of SGP after second generation the
best individual is no more improving upto 30th generation
and stagnation occurred. Due to stagnation The SGP is not
able to solve the problem. While DDGP helps to remove the
stagnation of GP and it is improving in fitness graph as shown
in figure 2a.

For second and third equations of keijzer the experiment
comprises of 30 independent runs for both SGP and DDGP on
different seeds as like for equation (6) . The results in a figure
3a and 4a showed that DDGP outperforms the Standard GP.
Moreover, the scenarios where the input range is so small and
few generations are allowed, the standard GP cannot find the
solution due to stagnation and high selective pressure. While
in those scenarios the DDGP performs far better than SGP.
Furthermore, speed and performance of DDGP is better than
standard GP and also overcomes the problem of GP bloat.

B. 8 univariate Polynomials

In this phase of experiments evaluation of proposed ap-
proach DDGP is done on eight univariate polynomials [7]
and Moraglio [6] from degree 2 to 9. Thirty independent
runs have been conducted for each polynomial (from 2 to
9) using both Standard GP and DDGP. Each polynomial
consists of 200 input fitness cases between the range of [-
1, 1]. Other parameter settings are specified in table II. The
error change parameter is used to monitor the best individual
after each generation and for intelligent stopping of current
run, when stagnation occurred. The decompositions of models
were dynamic. The results of each polynomial 2 to 9 showed
that DDGP performs better than Standard GP. Moreover, using
proposed approach GP bloat problem can be minimized and
it has been observed from empirical results that, performance
in term of fitness and speed of DDGP is much better than
Standard GP. The figure 5a, figure 6a, figure 7a, figure 8a,
figure 9a, figure 10a, figure 11a and figure 12a are evidence
that the performance of DDGP is better than Standard GP.

C. Statistical Analysis

Student T Test has been conducted on all the datasets
(polynomial 2 to 9) and (suited Keizjer’s benchmark equa-

www.ijacsa.thesai.org 483 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = 0.3xsin(2x) between range -1 to
1. 1

(b) T Test of Keizjer’s benchmark equation 1 f(x) =
0.3xsin(2x) after each generation between DDGP and
SGP

Fig. 2. DDGP and SSGP Comparison with respect to fitness and T Test for
Kezijer’s benchmark equation 1

tions). The purpose of student T test is to determine the
significant difference between the results obtained by DDGP
and SGP. The T test has been performed on the best individual
obtained after each generation by DDGP and SGP. As in
experimental setup 30 independent runs are conducted for
each dataset. The T test examine the significant difference
between the best individual obtained through DDGP and SGP
after each generations of all 30 runs on all datasets. The T
Test shows that the fitness improvement on seven datasets
(2b,4b,6b,5b,8b,9b,10b) are significant improvement with 95%
confidence and more while, on four datasets (3b,7b,11b,12b)
the improvement is not quiet significant. However,results are
better than SGP.

(a) Average fitness of DDGP and SGP over
30 independent runs for dataset f(x) =
x3expxcos(x)sin(x)(sin2(x)cos(x)1) between
range -1 to 1 1

(b) T Test of Keizjer’s benchmark equation 2 f(x) =
x3exp − xcos(x)sin(x)(sin2(x)cos(x) − 1) after each
generation between DDGP and SGP

Fig. 3. DDGP and SSGP Comparison with respect to fitness and T Test for
Kezijer’s benchmark equation 2

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = Sqrt(x) between range -1 to 1

(b) T Test of Keizjer’s benchmark equation 3 for dataset
f(x) = Sqrt(x) after each generation between DDGP and
SGP

Fig. 4. DDGP and SSGP Comparison with respect to fitness and T Test for
Kezijer’s benchmark equation 3

www.ijacsa.thesai.org 484 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset Y = x3 + 500 between range -1 to 1

(b) T Test on Polynomial 3 Y = x3 + 500 after each
generation between DDGP and SGP

Fig. 5. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 3

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset Y = x2 + 200 between range -1 to 1

(b) T Test on Polynomial 3 Y = x2 + 200 after each
generation between DDGP and SGP

Fig. 6. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 2

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = x4 + 4x+ 700 between range -1
to 1

(b) T Test on Polynomial 4 f(x) = x4 + 4x+ 700 after
each generation between DDGP and SGP

Fig. 7. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 4

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = x5 +x2 + sin(x)+400 between
range -1 to 1

(b) T Test on Polynomial 4 f(x) = x5+x2+sin(x)+400
after each generation between DDGP and SGP

Fig. 8. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 5

www.ijacsa.thesai.org 485 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = x6 +7x3 +2x2 + cos(x) + 300
between range -1 to 1

(b) T Test on Polynomial 4 f(x) = x6 + 7x3 + 2x2 +
cos(x) + 300 after each generation between DDGP and
SGP

Fig. 9. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 6

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = x7 +5x4 +3x3 + cos(x) + 600
between range -1 to 1

(b) T Test on Polynomial 4 f(x) = x7 + 5x4 + 3x3 +
cos(x) + 600 after each generation between DDGP and
SGP

Fig. 10. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 7

(a) Average fitness of DDGP and SGP over 30 independent
runs for dataset f(x) = x8 +3x6 +2x4 + sin(x) + 900
between range -1 to 1

(b) T Test on Polynomial 4 f(x) = x8 + 3x6 + 2x4 +
sin(x) + 900 after each generation between DDGP and
SGP

Fig. 11. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 8

(a) Average fitness of DDGP and SGP over 30
independent runs for dataset f(x) = x9 + 9x7 +
5x5 + cos(x3) + 450 between range -1 to 1

(b) T Test on Polynomial 4 f(x) = x9+9x7+5x5+
cos(x3) + 450 after each generation between DDGP
and SGP

Fig. 12. DDGP and SSGP Comparison with respect to fitness and T Test for
Polynomial 9

www.ijacsa.thesai.org 486 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

VI. CONCLUSION

This paper has proposed a novel approach called Dynamic
Decomposition of Genetic Programming DDGP. The inspi-
ration for this idea was dynamic programming. It has been
reported several time in literature that prolong evaluation of
GP cause the GP bloat or extra growth without significant
improvement in fitness. Moreover, it has been also reported,
when input ranges are very small and few generations are
allowed. Traditional GP cannot evolve the required solution
and stagnation occurs. Keeping in view, the aforementioned
problems a new system is developed named DDGP to address
state of the art problems.

DDGP involves the decomposition of original GP by
introducing the special parameter which is known as Error
change parameter. This parameter decides the stopping criteria
for a sub run or sub model. By using this parameter the
fitness of best individual is monitored at each generation. If
fitness of best the individual does not change for x number of
consecutive generations. DDGP saves all the states of currently
halted run and initiate a new run. Before initializing the new
run the target values are updated for new run by subtracting the
values obtained by currently halted run from the desired target
values. In this way, the final solution is the algebraic sum of all
the successive runs. Some parameter setting is also performed
when new sub runs come into an action. DDGP is tested on
Maarten Keijzer’s benchmarks (2003) and on eight univariate
polynomials 2 to polynomial 9. The empirical results showed
that DDGP outperforms the standard GP. Moreover, DDGP
helps in reducing the GP bloat problem by introducing the
small sub runs as decomposition. The speed and performance
of DDGP is much better than standard GP.

A. Future Work and Directions

Although DDGP has been tested on numerous symbolic
regression problems and all of these aforesaid problems involve
single variable. DDGP has not been tested on multivariate
symbolic regression problems. In future DDGP is require to
evaluate on multivariate SR problems. Moreover, error change
parameter is used as stopping criteria for monitoring the best
individual for x consecutive generations. A certain threshold
can be used as stopping criteria for instance, if the fitness
of an individual is not improving from specified threshold
for specific number of generations. This mechanism of using
some threshold for stopping criteria is not tested and left for
future work. Moreover, how DDGP will behave, when specific
threshold will be used as a stopping criteria.

REFERENCES

[1] Koza, John R. Genetic programming: on the programming of computers
by means of natural selection. volume-1, publisher MIT press, 1992.

[2] Maarten Keijzer. Improving symbolic regression with interval arithmetic
and linear scaling European Conference on Genetic Programming, 70–
82, 2003

[3] Arnaldo, Ignacio and Krawiec, Krzysztof and O’Reilly, Una-May. Mul-
tiple regression genetic programming. Proceedings of the 2014 Annual
Conference on Genetic and Evolutionary Computation, pages, 879–886,
Publisher ACM, 2014.

[4] Langdon, William B and Poli, Riccardo. Fitness causes bloat. Soft
Computing in Engineering Design and Manufacturing, pages 13–22,
publisher Springer, 1998.

[5] Ahmed Kattan, A. and R. Poli. Unsupervised problem decomposi-
tion using genetic programming. European Conference on Genetic
Programming,122-133, 2010.

[6] Moraglio, Alberto and Krawiec, Krzysztof and Johnson, Colin G. Ge-
ometric semantic genetic programming International Conference on
Parallel Problem Solving from Nature,21-31, Springer, 2012.

[7] Luiz Otavio V.B, Oliveira, F. E. O. G. L. P. and J. Albinati . Sequential
symbolic regression with genetic programming. Genetic Programming
Theory and Practice XII, 73–90, Springer, 2015.

[8] Mohammad Nabi Omidvar, X. L. and Y. Meili. Cooperative co-
evolution with differential grouping for large scale optimization. IEEE
Transactions on Evolutionary Computation, 378–393, 2014.

[9] Otero, F. E. B. and C. G. Johnsoni . Automated problem decomposition
for the boolean domain with genetic programming. 16th European
Conference, EuroGP 2013, Vienna, Austria on Genetic Programming,
Vol-7831, pp 169–180. Springer, 2013.

[10] Tomasz P. Pawlak, Bartosz Wieloch, K. K. Semantic backpropagation
for designing search operators in genetic programming. IEEE
Transactions on Evolutionary Computation, Vol-19, pp, 326–340, 2015.

[11] Amine, Mahdi, Brahim Hnich, Habib. Solving constrained optimization
problems by solution-based decomposition search. Journal of Combi-
natorial Optimization,pp, 1–24, Springer, 2015.

[12] Garg, A and Sriram, S and Tai, K. Empirical analysis of model selection
criteria for genetic programming in modeling of time series system.
IEEE conference on computational intelligence for financial engineering
& economics (CIFEr) pages, 90–94, 2013.

[13] Robyn F francon, Marc Schoenauer. Memetic Semantic Genetic Pro-
gramming Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation GECO -2015, pp, 1023–1030, 2015.

[14] EKLUND, S. E. A massively parallel GP engine in VLSI Proceedings
of the 2002 Congress on Evolutionary Computation CEC2002. IEEE
Press ,pp, 629–633, 2002.

[15] BANZHAF, W,S. Forrest, Ed., Morgan Kaufman. Genetic programming
for pedestrians. Proceedings ofthe5th International Conference on Ge-
netic Algorithms,ICGA-93 (University of Illinois at Urbana-Champaign)
pp, 628, 1993.

[16] POLI. R, D.B.Fogel, M. A.El-Sharkawi, X. Yao, G. Greenwood. Dis-
covery of symbolic, neuro-symbolic and neural networks with parallel
distributed genetic programming. University of Birmingham, School
of Computer Science, Presented at 3rd International Conference on
Artificial Neural Networks and Genetic Algorithms,Aug. 1996.

[17] BISHOP, C. M, D.B.Fogel, M. A.El-Sharkawi, X. Yao, G. Greenwood.
Pattern Recognition and Machine Learning (Information Science and
Statistics). Published in Springer-Verlag New York, Inc. Secaucus, NJ,
USA, 2006.

[18] CHEROWITZO, B. Lecture notes. Pattern Recognition and Ma-
chine Learning (Information Science and Statistics). http://www-
math.cudenver. edu/wcherowi/courses/m5410/exeucalg.html

[19] CHITTY, D. M. A data parallelapproachto geneticprogramming using
programmable graphics hardware. GECCO 07: Proceedings of he 9th
annual conference on Genetic and evolutionary computation (New York,
NY, USA, 2007) pp.156–1573, 2007.

[20] Medernach, David and Fitzgerald, Jeannie and Azad, R and Ryan,
Conor A New Wave: A Dynamic Approach to Genetic Programming
Proceedings of the 2016 on Genetic and Evolutionary Computation
Conference,757–764, 2016. ACM

[21] LANGDON, W. B., AND POLI, R. Foundations of Genetic Program-
ming. Published in Springer-Verlag, 2002.

[22] DAIDA, J. M., BERTRAM, R. R., POLITO, J. A. Analysis of single-
node (building) blocks in genetic programming. Advances in genetic
programming Journal, Published by MIT press. Vol- 3 pp. 217–241,
1999.

[23] HOLLAND, J. H. Adaptation in Natural and Artificial Systems: An
Introductory Analysis with Applications to Biology, Control and Artificial
Intelligence. MIT Press, Cambridge, MA, USA, 1992.

www.ijacsa.thesai.org 487 | P a g e


