
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

PaMSA: A Parallel Algorithm for the Global
Alignment of Multiple Protein Sequences

Irma R. Andalon-Garcia and Arturo Chavoya
Department of Information Systems
Guadalajara University – CUCEA

Guadalajara, Jalisco, Mexico

Abstract—Multiple sequence alignment (MSA) is a well-known
problem in bioinformatics whose main goal is the identification
of evolutionary, structural or functional similarities in a set of
three or more related genes or proteins. We present a parallel
approach for the global alignment of multiple protein sequences
that combines dynamic programming, heuristics, and parallel
programming techniques in an iterative process. In the proposed
algorithm, the longest common subsequence technique is used to
generate a first MSA by aligning identical residues. An iterative
process improves the MSA by applying a number of operators
that were defined in the present work, in order to produce more
accurate alignments. The accuracy of the alignment was evaluated
through the application of optimization functions. In the proposed
algorithm, a number of processes work independently at the same
time searching for the best MSA of a set of sequences. There
exists a process that acts as a coordinator, whereas the rest of the
processes are considered slave processes. The resulting algorithm
was called PaMSA, which stands for Parallel MSA. The MSA
accuracy and response time of PaMSA were compared against
those of Clustal W, T-Coffee, MUSCLE, and Parallel T-Coffee
on 40 datasets of protein sequences. When run as a sequential
application, PaMSA turned out to be the second fastest when
compared against the nonparallel MSA methods tested (Clustal
W, T-Coffee, and MUSCLE). However, PaMSA was designed
to be executed in parallel. When run as a parallel application,
PaMSA presented better response times than Parallel T-Cofffee
under the conditions tested. Furthermore, the sum-of-pairs scores
achieved by PaMSA when aligning groups of sequences with an
identity percentage score from approximately 70% to 100%, were
the highest in all cases. PaMSA was implemented on a cluster
platform using the C++ language through the application of the
standard Message Passing Interface (MPI) library.

Keywords—Multiple Sequence Alignment; parallel program-
ming; Message Passing Interface

I. INTRODUCTION

A fundamental research subarea of bioinformatics is bi-
ological sequence alignment and analysis, which focuses on
developing algorithms and tools for comparing and finding
similarities in nucleic acid (DNA and RNA), and amino
acid (protein) sequences [1]. The sequence similarities found
are used for identifying evolutionary, structural or functional
similarities among sequences in a set of related genes or
proteins [2]. The set of sequences to be aligned are assumed to
have an evolutionary relationship. Sequence alignment plays a
central role in several areas of biology, such as phylogenetics,
structural biology, and molecular biology.

Multiple sequence alignment (MSA) can be defined as the
problem of comparing and finding which parts of the sequences
are similar and which parts are different in a set of three or

more biological sequences. The resulting alignment can be
used to infer sequence homology. Homologous sequences are
sequences that share a common ancestor and usually also share
common functions.

Multiple sequence alignment is a well-known problem in
computer science. A number of strategies have been applied to
obtain MSAs, such as progressive alignment methods [3][4],
iterative methods [5][6], dynamic programming [7], genetic
algorithms [8], greedy algorithms [9], Markov chain processes
[10], and even simulated annealing methods [11]. Currently,
MSAs are obtained via two main approaches. The most popu-
lar alternative is the progressive multiple sequence alignment
method. The main drawback with progressive alignments is
that errors in the initial alignments of the most closely re-
lated sequences are propagated to the final multiple sequence
alignment. The second most common approach to accomplish
MSAs is the use of heuristic methods, which are more efficient
than dynamic programming, but that do not guarantee finding
an optimal alignment.

The main contribution of the present work is the devel-
opment of a parallel algorithm—PaMSA, which stands for
Parallel MSA—for the global alignment of multiple protein
sequences. The strategies applied in PaMSA to obtain an MSA
of a set of sequences differ from those of other currently
used MSA algorithms in several ways. The PaMSA algorithm
is not a progressive-alignment approach, as all sequences
are aligned simultaneously. In contrast to existing heuristic
alignment methods, which start from completely unaligned
sequences, the PaMSA algorithm generates an initial MSA
of the sequences based on a Longest Common Subsequence
(LCS) of the set of sequences to be aligned. In addition, in the
PaMSA algorithm several processes work independently at the
same time searching for the best MSA of a set of sequences.
Thus, the PaMSA algorithm combines a number of strategies
to produce the sequence alignment.

The PaMSA algorithm was implemented as a parallel
program that runs on a cluster platform; however it is not
necessary to have a cluster environment to execute the appli-
cation, as it can run even on a single processor. Currently, only
protein sequences are aligned by PaMSA, but it is possible to
adapt the implementation to align nucleic acid sequences as
well.

Our implementation of PaMSA was compared against the
currently used MSA algorithms Clustal W [3], T-Coffee [4],
MUSCLE [5], and Parallel T-Coffee [12]. The comparison
against the first three methods was done using a sequential

www.ijacsa.thesai.org 513 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

version of PaMSA, as these methods are non-parallel imple-
mentations of the respective algorithms. The comparison in all
cases was through the application of the sum-of-pairs function
[13]. PaMSA was faster than Parallel T-Coffee, whereas the
sequential version of PaMSA was the second fastest when
compared against the nonparallel methods.

The remainder of this article is organized as follows.
Section II describes the PaMSA algorithm and the metrics
used to evaluate the alignments, whereas Section III specifies
the protein sets and the conditions for the runs. Results are
presented in Section IV with a discussion of their relevance.
Finally, Section V presents the conclusions and future work.

II. THE PAMSA ALGORITHM

Our parallel approach for the global alignment of multiple
protein sequences, PaMSA [14], combines dynamic program-
ming, heuristics, and parallel programming techniques in an it-
erative process. Dynamic programming techniques are applied
for setting up an initial alignment. The algorithm improves the
initial MSA in an iterative manner by applying a number of
operators that move, delete or realign gaps. The algorithm ends
when the termination criteria are reached.

The PaMSA algorithm was implemented on a cluster
platform. Hence, in this approach a number of processes
work in parallel for the search of the best MSA of a set
of sequences. If np is the number of processes used by the
algorithm, the number of possible different MSA solutions
is equal to np. For example, if np = 2, there will be 2
independent processes searching for the best alignment. As
the number of processes increases, the number of solutions
increases as well. A consecutive integer 0, 1, 2, . . . , np − 1
is assigned to each process, which acts as an identification
number (id) for the process. There exists a process that acts as
a coordinator, whereas the rest of the processes are considered
slave processes. The id for the coordinator process is always
equal to zero. Slave processes have a consecutive integer id,
which goes from 1 to the total number of processes minus
one. The algorithm was implemented to be run on a cluster,
however it works also on a nonparallel environment. In order
to evaluate the quality of the MSA, a number of objective
functions were implemented.

A. General structure

As mentioned above, the PaMSA algorithm is not a
progressive-alignment approach, as all sequences are aligned
simultaneously. In contrast to existing heuristic alignment
methods, which start from completely unaligned sequences,
PaMSA generates an initial MSA of the sequences based on a
Longest Common Subsequence (LCS) of the set of sequences.
The proposed algorithm follows a strategy analogous to a
parallel genetic algorithm. The main steps in the general
structure of a simple genetic algorithm (GA) are followed
in the basic PaMSA algorithm procedure (Fig. 1). In PaMSA
there is a population of initial MSAs, whereas in a GA there is
a population of random initial solutions. In PaMSA, alignments
are given a score, whereas in a GA, individual solutions are
evaluated by an optimization function. An alignment is im-
proved by applying operators in PaMSA, whereas individuals
in a population evolve by applying operators in a GA. Finally,

Fig. 1. The basic PaMSA algorithm procedure.

in both algorithms, operators are applied in an iterative process
until a predefined condition is satisfied.

PaMSA combines a number of strategies to produce the
sequence alignment, which are briefly described next and
explained in more detail in the following sections. First, a well-
known LCS technique for two sequences that uses dynamic
programming was adapted and implemented to obtain an LCS
of more than two sequences. In this approach, a number of
processes work in parallel, so that each process calculates an
LCS of the sequences. Even though all processes apply the
same algorithm to the same set of sequences, the resulting
LCSs are possibly different, because the calculations are based
on a different order of sequences and there exists the possibility
of having more than one LCS for the same sequences. Second,
an algorithm is applied to the set of sequences in order to
generate a first MSA by aligning identical residues, as well as
similar residues, as much as possible. This algorithm uses the
LCS generated at each process, which can be different from
the LCSs in the other processes. This approach allows various
potential solutions to be running in separate processes. Third,
after the first MSA is generated in each process, the quality of
the MSA is evaluated using a set of objective functions (OFs).
Each process evaluates its MSA, and the slave processes send
the scores of four of the OFs to the coordinator—the ID, the
SY, the SP, and the PWS scores, described below—, which
receives the scores and determines what process has the best
MSA for all four OFs. The coordinator then propagates the id
of the process with the best scores to all the slave processes.
If the alignment has not shown improvement in all processes
in two consecutive iterations, or if a predefined number of
iterations is reached, the algorithm ends and the process with
the best alignment of the sequences provides the resulting
MSA. Otherwise the alignment is improved at each process by
iteratively applying a number of operators that move, delete or
realign gaps in the sequences following specific rules. These
proposed operators perform a search along the length of the

www.ijacsa.thesai.org 514 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

sequences with the aim of finding an opportunity to improve
the alignment. The search is focused on the detection of gaps
in order to minimize their number. The operators accept a
certain number of parameters. Therefore, the operators can act
differently in the sequences of the separate processes in order
to have a variety of potential solutions. After each iteration,
the resulting MSA is evaluated in all processes. This procedure
is repeated until the termination criteria mentioned above are
met.

B. The LCS technique

Given a sequence Si = si1si2 . . . sim, a subsequence of Si

is a sequence S′ = s′1s
′
2 . . . s

′
p, defined by s′k = sirk , where

m is the length of sequence Si, r1 < r2 < rp, p is the number
of selected items from sequence Si, 1 ≤ k ≤ p, and p ≤ m;
i.e. S′ can be obtained by deleting m − p (not necessarily
contiguous) symbols from Si without changing its order.

Let S1 = s11s12 . . . s1m and S2 = s21s22 . . . s2n be two
sequences of length m and n, respectively. The sequence
S′ = s′1s

′
2 . . . s

′
p is a common subsequence of S1 and S2,

if S′ is a subsequence of both sequences. The LCS of S1

and S2 is the longest sequence S′ that is a subsequence of
both S1 and S2. In general, the LCS problem consists of
finding the maximal-length subsequence—i.e. there exists no
other subsequence that has greater length—that is a common
subsequence of the sequences.

Let S1 and S2 be the above defined sequences of length
m and n, respectively. The algorithm implemented to obtain
the LCS of two sequences [15] uses dynamic programming
and requires calculating the LCS table (LCST) as

LCST (i, j) =


0 if j = 0 or i = 0

LCST (i− 1, j − 1) + 1 if i > 0, j > 0 and s1i = s2j ,

max(LCST (i, j − 1), LCST (i− 1, j)) if i > 0, j > 0 and s1i 6= s2j

where i = 1, 2, . . . ,m and j = 1, 2, . . . , n. The number of
rows and columns in LCST are m+1 and n+1, respectively,
whereas the cell LCST (i, j) is the element in the LCS table
at row i and column j. The LCS table stores numbers which
correspond to the actual length of the LCS. After filling the
LCS table, the lower right cell in the table contains the length
of the LCS. The longest common subsequence can be found by
tracing back from the cell at LCST (m,n). Each time a match
is found, it is appended to the longest common subsequence
and a movement is made to cell LCST (i − 1, j − 1). When
the symbols do not match, a movement is made to the cell
with max(LCST (i− 1, j), LCST (i, j − 1)) in order to find
the next match. In general, there may be several such paths,
because the LCS is not necessarily unique, i.e. it is possible
to have more than one LCS. For example, let S1=“MFVFS”
and S2=“MVFVS”. After application of the previous rules, the
subsequence “MFVS’ is the LCS of the sequences. However, if
we placed the sequences in the inverted order, the subsequence
“MVFS” would be the LCS of the sequences.

C. Parallel LCS strategy

Let S = {S1, S2, . . . , Sn} be a set of n protein sequences,
where Si = si1, si2, . . . , simi , mi is the length of Si for

i = 1, 2, . . . , n, and sik is the kth residue in the sequence Si.
Let np be the number of processes used by the algorithm. In
this step, each process calculates an LCS of the set S. First,
sequences are read and saved into an array. The procedure
in this step is as follows: the ith process applies the LCS
algorithm to all possible pairs of sequences LCS(Si, Sj) in
the set S that result from the combination of sequence Si

for i = 1, 2, . . . , n with the rest of the sequences Sj , for
j = 1, 2, . . . , n and i 6= j. Even though all processes apply
the same algorithm to the same set of sequences, the resulting
LCSs are possibly different, because the calculations are based
on a different order of sequences and there exists the possibility
of having more than one LCS for the same sequences, as
previously noted. For example, in the first iteration of this
step, Process 1 applies the algorithm to the following pairs of
sequences:

LCS(S1, S2), LCS(S1, S3), . . . , LCS(S1, Sn).

In the same manner, Process 2 will apply the algorithm to
the following pairs of sequences:

LCS(S2, S1), LCS(S2, S3), . . . , LCS(S2, Sn),

and a similar strategy is applied for the rest of the np
processes.

The results obtained from this first iteration are saved in
order to create a new set of sequences. Thus, this new set of
sequences contains the LCSs of the pairs of sequences in the
original set S and its size will be n − 1. Next, the process
repeats this iterative procedure with the obtained LCSs until
there remains only one LCS. When this happens, it means that
the LCS of the sequences in the set S has been found.

D. Setting up an initial MSA

After the LCS is obtained, an algorithm is applied to the set
of sequences in order to generate a first MSA. This algorithm
aligns identical residues of the sequences by using the resulting
LCS. In general, the algorithm aligns identical residues, as well
as similar residues, as much as possible.

Let A be an array of strings, with the sequences to be
aligned, and n the number of rows (sequences) in array A,
with Ai = ai1, ai2, . . . , aimi

the ith row in array A, mi the
length of sequence in Ai, for i = 1, 2, . . . , n, and aij the jth

element (residue) in row Ai (sequence i), for j = 1, 2, . . . ,mi.
Moreover, let R = r1r2 . . . rp be a string with the LCS of
the sequences in array A, with p the length of string R. The
algorithm initiates with j = 1 (pointing to the first column
in array A) and k = 1 (pointing to the first element in string
R). The element rk in string R is compared with all elements
aij in A for i = 1, 2, . . . , n. The resulting comparison can fall
into one of the following three cases:

Case A. All elements aij in A match the element rk in R.
No gap is inserted in the sequences of array A, so identical
residues are aligned, and k is increased for k = 1, 2, . . . , p, in
order to point to the next element rk+1 in string R.

Case B. None of the elements aij in A match the element
rk in R. No gap is inserted in the sequences of array A, so
residues at this position are aligned, and k is increased for

www.ijacsa.thesai.org 515 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

k = 1, 2, . . . p in order to point to the next element rk+1 in
string R.

Case C. Only some elements aij in A match the element rk
in R. An iterative procedure introduces a gap in the sequences
of array A at position aij , if aij = rk for i = 1, 2, . . . , n.

In all the previous cases, j is increased in order to point to
the next residue of sequences in array A, for j = 1, 2, . . . ,m.
The iterative procedure is repeated until the last element rp
in string R is processed. The maximum length of sequences
in array A is calculated, and this length is established as
the length of the initial MSA. Finally, gaps are inserted if
needed at the end of sequences having a smaller length than
the maximum length calculated, so that all sequences have the
same length. As a result of the previous calculations, a matrix
is created containing an initial MSA.

The procedure described above uses the LCS generated
at each process, which could be different from the LCSs in
the other processes. This approach allows various potential
solutions to be running in separate processes.

E. MSA assessment

The accuracy of PaMSA—i.e. the quality of the
alignment—is evaluated using the following five optimization
functions (OFs):

OFs =


ID(MSA)
SY (MSA)
SP (MSA)
PWS(MSA)
NG(MSA)

,

where ID measures the identity percentage score, SY
evaluates the similarity percentage score, SP calculates the
sum-of-pairs score, PWS obtains a pairwise score of the
sequences compared with the first sequence in the alignment,
and NG counts the number of gaps in the alignment.

1) Identity percentage (ID): In our implementation, the
identity percentage score among the sequences being aligned
is calculated as

ID(A) =

 r∑
j=1

n∑
i=1

aij

 ∗ 100
 /r , (1)

where A is the array with the MSA as previously defined,
r is the length of the aligned sequences in A, n is the number
of sequences aligned, and

∑n
i=1 aij is counted only if all the

aij are identical for i = 1, 2, . . . , n in the jth column of the
MSA for j = 1, 2, . . . , r. In general, the higher the identity
percentage score, there better the alignment.

2) Similarity percentage (SY): The similarity percentage
score is calculated using the same formula used to calculate
the identity percentage score. However, the sum

∑n
i=1 aij is

counted only if all the aij in the jth column of the MSA are
similar—i.e. not necessary identical but imperatively different
from a gap. In general, the higher the similarity percentage
score, the better the alignment.

3) Sum of pairs (SP): The sum-of-pairs score is a metric
for measuring MSA accuracy, based on the number of correctly
aligned residue pairs, where the score of all pairs of sequences
in the multiple alignment is added to the overall score. The SP
score is calculated as

SP (A) =
r∑

i=1

sp(ai) , (2)

sp(ai) =
∑

1≤k<l≤n

s(aki, ali) , (3)

where A is the array with the MSA as previously defined,
r is the length of the aligned sequences in A, n is the number
of rows (sequences) in array A, and s(aki, ali) is the score
obtained by comparing the kth row in the ith column of the
MSA with the lth row in the same ith column of the MSA
for k = 1, 2, . . . , n − 1 and for l = 2, 3, . . . , n. This score is
calculated using the following general formula:

s(aki, ali) =


1 if aki = ali
−1 if aki 6= ali
−2 if aki = gap XOR ali = gap
0 if aki = gap AND ali = gap

.

The value of the sum-of-pairs score depends on the number
of sequences aligned, the length of the sequences aligned, and
the similarity among the sequences aligned. Therefore, there
is not a pre-established range of values for this score. The
higher the sum-of-pairs score of a particular set of sequences,
the better its alignment. It is possible to use a substitution
matrix to compare the residues among sequences in order to
obtain better alignments. The BLOSUM62 matrix is provided
in our implementation as it is the de facto standard in protein
database searches and sequence alignments [16].

4) Pairwise score (PWS): The pairwise score of sequences
was included in the evaluation of our algorithm. In our
implementation, this pairwise score obtained among all pairs
of sequences is calculated as

PWS(A) =
r∑

i=1

n∑
j=2

s(a1i, aji) , (4)

where A is the array with the MSA as previously defined,
r is the length of the aligned sequences in A, n the number
of rows (sequences) in array A, and s(a1i, aji) is the score
obtained by comparing the first row in the ith column of
the MSA with the jth row in the same ith column of A.
The same comparison evaluation criteria as in SP are used.
The value of the pairwise score depends on the number of
sequences aligned, the length of the sequences aligned, the
similarity among the sequences aligned, and the first sequence
in the alignment. Hence, there is not a pre-established range
of values for this score. In general, the higher the sum-of-pairs
score of a particular set of sequences, the better the alignment.

www.ijacsa.thesai.org 516 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

Fig. 2. Communication topology used among processes.

5) Number of gaps (NG): The number of gaps is an
additional score, which is calculated using the formula

NG(A) =

r∑
j=1

n∑
i=1

aij , (5)

where A is the array with the MSA as previously defined,
r is the length of the aligned sequences in A, n is the number
of rows (sequences) in array A, and aij is counted only if it is
a gap. The value of the number of gaps depends on the number
of sequences aligned, the length of the sequences aligned,
and mainly on the similarity among the sequences aligned.
Therefore, there is not a pre-established range of values for
this score. The fewer the number of gaps of a particular set of
sequences, the better the alignment.

After the first MSA is generated in each process, the
alignment is evaluated using the implemented OFs. Each slave
process evaluates its MSA and sends the scores of four of the
OFs to the coordinator—the ID, the SY, the SP and the PWS
scores—, which receives the scores and determines which
process has the best MSA for all four OFs (Fig. 2). The
Number of Gaps (NP) score is calculated and displayed in
the screen output, but it was left out of the selection criterion,
as preliminary results suggested that the other four OFs were
sufficient to evaluate the alignment.

After the coordinator process receives the OFs scores from
the slave processes, it propagates the id of the process with
the best scores to all the slave processes. If the scores of all
four OFs of the MSA have not shown improvement in two
consecutive iterations or if a predefined number of iterations
is reached, the algorithm ends and the process with the
best alignment of the sequences provides the resulting MSA.
Otherwise the alignment is improved by iteratively applying a
number of operators that move, delete or realign gaps in the
sequences following specific rules.

F. Improvement of the MSA

In order to improve the MSA, sixteen operators were
defined in the present work. In the current version of PaMSA,
there exist two main groups of operators: the basic operators,
and the refinement operators, both shown in Table I. The

main differences between the two groups of operators are
that refinement operators can be applied even when only one
sequence of the two sequences has the gaps, and that some of
them are applied only in the last iteration of the algorithm—
i.e. when the number of generations was reached or if there
was no improvement in the alignment after two consecutive
iterations—, in contrast to basic operators which are applied
only when both sequences have gaps. The proposed operators
perform an exhaustive search along the total length of all
sequences with the aim of finding an opportunity to improve
the alignment. The search is focused on the detection of gaps
and identical or similar residues that are not totally aligned.

TABLE I. ALIGNMENT IMPROVEMENT OPERATORS

Operator Function Type
mGapRF 3 Moves three gaps in 1st sequence to the right BS
mGapRS 3 Moves three gaps in 2nd sequence to the right BS
mGapRF 2 Moves two gaps in 1st sequence to the right BS
mGapRS 2 Moves two gaps in 2nd sequence to the right BS
mGapRF 1 Moves a gap in 1st sequence to the right BS
mGapRS 1 Moves a gap in 2nd sequence to the right BS
mGapRF G Moves a gap in 1st sequence to the right BS
mGapRS G Moves a gap in 2nd sequence to the right BS

rGaps Removes an MSA column if all elements are gaps BS
mGapRF 3S Realigns three gaps in 1st sequence to the right RF
mGapRS 3S Realigns three gaps in 2nd sequence to the right RF
mGapRF 2S Realigns two gaps in 1st sequence to the right RF
mGapRS 2S Realigns two gaps in 2nd sequence to the right RF
mGapLF 1S Realigns a gap in 1st sequence to the right RF
mGapLS 1S Realigns a gap in 2nd sequence to the right RF

mGapn Moves a residue in 2nd sequence n columns RF

Type: BS = Basic, RF = Refinement.

The operators are always applied to pairs of sequences.
At every iteration, operators are applied—when necessary—
to each of the potential solutions running in the independent
processes. An assessment method marks columns of sequences
in the MSA when their elements are totally aligned, so that
the algorithm will not apply the operators to those columns
in future iterations. This strategy improves the performance of
the algorithm.

1) Basic operators: There are nine basic operators (Table
I), which mainly move gaps trying to minimize their number by
eliminating columns that only contain gaps. The mGapRF 3
operator moves three gaps to the right in the first sequence
of a pair of sequences being compared in the alignment. This
operator is applied in order to align identical residues. The
mGapRS 3 operator acts in a similar way as the mGapRF 3
operator, but in this case the operator is applied to the second
sequence of the pair of sequences being compared. In the
same manner, the mGapRF 2 and the mGapRS 2 operators
move two gaps to the right in the first and second sequence,
respectively. These operators are also applied in order to align
identical residues. Similarly, the mGapRF 1 operator moves
a gap to the right in the first sequence of a pair of sequences
with the aim of aligning identical residues. The mGapRS 1
operator moves a gap to the right in the second sequence of the
pair of sequences being compared in order to align identical
residues.

The mGapRF G and the mGapRS G operators move a
gap to the right in the first or second sequence, respectively,
of a pair of sequences. These operators are applied in order
to reduce the number of gaps by aligning similar—i.e. non-
identical—residues.

www.ijacsa.thesai.org 517 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

The rGaps operator is used to remove a column from the
alignment when all the residues in the column are gaps. This
operator is applied after the application of any of the other
operators. Once the rGaps operator has been applied, a new
assessment of the MSA is made in order to update the MSA
scores.

2) Refinement operators: As can be seen in Table I,
there are seven refinement operators. The mGapRF 3S and
mGapRS 3S operators move three gaps to the right in the first
and the second sequence, respectively, of a pair of sequences
being compared. These operators are applied in order to align
identical residues. Unlike the mGapRF 3 and mGapRS 3
operators, these refinement operators are applied even when
only one of the sequences has the gaps. The mGapRF 2S
and mGapRS 2S operators act similarly as the mGapRF 3S
and the mGapRS 3S operators, but in this case the refinement
operators realign only two gaps to the right.

The three remaining refinement operators, mGapLF 1 ,
mGapLS 1 , and mGapn , move a gap to the left in order
to align identical residues in the alignment. Because these
operators are the only ones that move gaps to the left, they
are applied at the last iteration of the algorithm.

III. METHOD

The implementation of the PaMSA algorithm was devel-
oped on a computer cluster provided by Intel Corporation,
which contained 10 nodes, each node with two Intel Xeon
5670 6-core 2.93 GHz CPUs, 24 GB of 1066 MHz DR3
RAM, and two 274 GB 15K RPM hard drives. The operating
system used was Red Hat Enterprise Linux 5 Update 4 with
Perceus 1.5 Clustering Software and Server 5.3 running Intel
MPI 3.2. An implementation of PaMSA can be downloaded
from http://www.bioinformatics.org/pamsa.

The Message Passing Interface (MPI) library was used in
our implementation of the algorithm. MPI defines the syntax
and semantics of a set of functions in a library designed to
exploit the existence of multiple processors, and it provides the
synchronization and communication needed among processes.
Synchronous communication operations were used in this work
to handle communication and synchronization among tasks.
When a synchronous operation is invoked, a process sends a
message and then waits for a response before proceeding with
the process flow. Object-oriented and structured programming
paradigms were applied using C++ as the programming lan-
guage. The PaMSA algorithm was implemented on a cluster
platform using the Linux operating system; however, PaMSA
can be run on a nonparallel environment.

Results presented in this work were obtained from align-
ments performed on the Hybrid Cluster Supercomputer Xiuh-
coatl of the General Coordination of Information and Commu-
nications Technologies (CGSTIC) at CINVESTAV, in Mexico
City. This cluster contained 88 nodes, each node with 1056
Intel X5675 CPUs, 2112 GB of RAM, and 22000 GB in local
hard disk drives.

Table II presents the 40 datasets of protein sequences
that were used in the present work in order to analyze the
performance of PaMSA and the other MSA methods tested.
Each protein dataset was chosen according to its number of

sequences, identity percentage, and length average. Datasets
were organized in eight groups of five sequence clusters each,
named from A to H (i.e. Group A, Group B, and so on). The
groups of sequences were obtained from the UniProt Refer-
ence Clusters (UniRef) contained in the UniProKB protein
database. At this site, sequences are classified in groups—
called clusters—according to their identity percentage; thus,
similar sequences can be obtained through a database query.
Sequences that belong to a specific cluster are called cluster
members.

TABLE II. CLUSTER GROUPS USED FOR THE ALIGNMENTS

Group Dataset Cluster Number of Average Minimum
name sequences length identity (%)

A

1 C1CIT9 10 100 100.0
2 P15020 52 100 100.0
3 E5G6P9 98 100 100.0
4 Q8XA92 129 100 100.0
5 A7X428 177 100 100.0

B

6 B5Y0W9 40 80 100.0
7 B5XNF9 40 127 100.0
8 Q5HNW5 40 210 100.0
9 B5XZH9 40 309 100.0

10 Q5HPT8 40 467 100.0

C

11 Q5HP42 37 468 100.0
12 C1HFG3 45 597 100.0
13 A0A1X4 50 757 100.0
14 B3BQU1 83 843 100.0
15 Q5HG69 114 914 100.0

D

16 O53454 48 369 98.9
17 Q833H5 66 228 98.2
18 Q6GIG7 37 354 97.4
19 A7WZ82 128 100 91.0
20 P10321 18 355 90.7

E

21 Q2YIT5 55 231 87.3
22 A0A084 14 326 85.8
23 A0B0S7 13 407 83.5
24 Q9KTA3 72 303 81.8
25 K0HNA3 77 193 79.8

F

26 A0AZ41 25 169 76.6
27 A0A2S1 20 129 78.2
28 A0A125 14 47 75.5
29 A0A0A7 10 147 75.9
30 A0A1U6 9 124 70.0

G

31 A0A0X0 7 374 69.9
32 A0B092 21 264 68.2
33 Q3SZ22 5 279 66.3
34 A0AZ19 23 116 65.7
35 A0B0W2 13 174 61.6

H

36 A0A092 19 294 60.6
37 A0A0T0 25 228 53.7
38 A0A9I3 31 308 52.1
39 A0A132 20 50 52.3
40 A0A194 48 119 50.4

The Identity score shown is the minimum of all methods tested for each cluster. These
protein datasets can be found at http://www.uniprot.org/uniref/.

The number of iterations of the PaMSA algorithm can be
modified by the user as a parameter, the default value being
five. A file with the resulting MSA was created with sequences
in clustal format. The MSA output file has the same name as
the input file but with the pamsa extension. Basic validations
are implemented, such as verification of the existence of the
input file with the sequences to be aligned, the creation of the
output file, the correct introduction of the parameters given,
and the verification of the FASTA format of the sequences
to be aligned. PaMSA was compared against the following
versions of the MSA programs: MUSCLE v3.7, Clustal W
v2.0.10, T-Coffee v9.03r1318, and Parallel T-Coffee v1.913,
all of them running in Linux.

IV. RESULTS AND DISCUSSION

In this section we present results obtained from alignments
using PaMSA, as well as comparisons made against several
methods commonly used for MSA, namely MUSCLE, Clustal

www.ijacsa.thesai.org 518 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

W, T-Coffee, and Parallel T-Coffee—a parallel implementation
of T-Coffee. Of particular note is the Parallel T-Coffee method,
which runs on a cluster platform and uses the MPI library, just
as our implementation of the PaMSA algorithm. The variables
used for evaluating the performance of the methods tested were
the MSA accuracy (quality of the alignment), and the response
time.

A. MSA accuracy results

The sum-of-pairs score was used in the present work for
evaluating the quality of the alignments, as it is a simple and
sensitive measure for assessing the accuracy of alignments and
has been widely used [17]. The greater the sum-of-pairs score,
the better the alignment obtained; thus, the alignment with the
highest sum-of-pairs score is considered the most accurate (the
best) MSA of all the alignments obtained. The sum-of-pairs
scores for all dataset groups and MSA methods are presented
in Table III.

TABLE III. SUM-OF-PAIRS SCORES OF RESULTING MSAS

Group Dataset MUSCLE Clustal W T-Coffee PaMSA Parallel
T-Coffee

A

1 4500* 4500* 4500* 4500* 4500*
2 132600* 132600* 132600* 132600* 132600*
3 475300* 475300* 475300* 475300* 475300*
4 825600* 825600* 825600* 825600* 825600*
5 1557600* 1557600* 1557600* 1557600* 1557600*

B

6 62400* 62400* 62400* 62400* 62400*
7 99060* 99060* 99060* 99060* 99060*
8 163800* 163800* 163800* 163800* 163800*
9 241020* 241020* 241020* 241020* 241020*
10 364260* 364260* 364260* 364260* 364260*

C

11 311688* 311688* 311688* 311688* 311688*
12 591030* 591030* 591030* 591030* 591030*
13 927325* 927325* 927325* 927325* 927325*
14 2868730* 2868730* 2868730* 2868730* 2868730*
15 5803340* 5803340* 5803340* 5803340* 5803340*

D

16 413408* 413408* 413408* 413408* 413408*
17 481125* 481125* 481125* 481125* 481125*
18 233649* 233649* 233649* 233649* 233649*
19 803395* 803395* 803395* 803395* 803395*
20 50301* 50301* 44567 50301* 50301*

E

21 305824 305824 305894* 305894* 305894*
22 25766* 25766* 22003 25766* 25766*
23 27094 27094 23018 27100* 22765
24 721444* 721444* 721444* 721444* 721444*
25 493975* 493975* 493975* 493975* 493975*

F

26 43936 42690 44148* 44148* 40559
27 21960* 21960* 21960* 21960* 21960*
28 3291* 3291* 2758 3291* 2980
29 4637* 4637* 3769 4637* 4637*
30 3467* 3467* 3467* 3467* 3467*

G

31 5951* 5951* 4093 5951* 5951*
32 47610* 47434 43219 47144 45592
33 1742* 1734 1062 1727 1046
34 23312 23312 23312 23314* 23314*
35 9934* 9934* 8804 8610 8659

H

36 30864* 30864* 27440 30639 27168
37 50765* 50765* 46414 45218 46442
38 137083* 137083* 127785 136413 127467
39 5598* 5598* 4856 5598* 4975
40 119868* 119868* 119868* 119868* 119868*

* = Best alignment obtained.

As can be seen, all algorithms achieved the optimal MSA—
the alignment with the highest sum-of-pairs score—and 100%
of identity percentage, when datasets of protein sequences
from Groups A, B, and C were used (Table III). The datasets
from these groups had originally 100% of identity percentage
among them; thus, the LCS found by the PaMSA algorithm
corresponded exactly to the sequences to be aligned, making
it simple in this case to find the MSA with a perfect identity
percentage.

In the MSA accuracy results obtained from alignments

using datasets of protein sequences from Group D (clusters
with an identity percentage score within the range from 90%
to 99%), the T-Coffee method achieved the best MSA in 4 out
of 5 cases tested (Table III). The PaMSA, MUSCLE, Clustal
W and Parallel T-Coffee methods obtained the best alignment
in all datasets of this group, based on the sum-of-pairs scores.

Clusters of sequences with an identity percentage score
approximately within the range from 80% to 89% were used
in alignments with sequences from Group E. Datasets from
this group have slightly dissimilar sequences. The sum-of-pairs
scores obtained using the PaMSA algorithm were the highest in
all cases tested (Table III), i.e. the PaMSA algorithm obtained
the best alignment in this group of alignments. The MUSCLE,
Clustal W and T-Coffee methods obtained the best MSA in 3
out of 5 cases tested, whereas Parallel T-Coffee achieved the
best MSA in 4 out of 5 cases.

The MSA accuracy results obtained in alignments using
Group F (with an identity percentage score approximately
within the range from 70% to 79%) were similar to the results
obtained with Group E—the PaMSA algorithm also obtained
the best alignment in all the cases tested. Datasets from this
group have more variable sequences than the previous groups.
The T-Coffee and Parallel T-Coffee methods achieved the best
MSA in 3 out of 5 cases. The MUSCLE and Clustal W
methods obtained the best MSA in 4 out of 5 cases tested.

The PaMSA algorithm obtained less accurate alignments,
according to the sum-of-pairs score, than the MUSCLE and
Clustal W methods in at least four cases tested from Group
G (clusters with an identity percentage approximately within
the range from 60% to 69%) and Group H (clusters with an
identity percentage approximately within the range from 50%
to 59%). However, the MSA accuracy results obtained by the
PaMSA algorithm were equal or better than those obtained by
the T-Coffee and Parallel T-Coffee methods using these groups
of sequences.

In general, results show that the MUSCLE method had the
best MSA accuracy of the methods tested, as it obtained the
best alignments (according to the sum-of-pairs score) in all
but four of the 40 cases tested. The Clustal W method and
the PaMSA algorithm were a close second place in accuracy,
achieving the best alignment in 34 out of 40 cases tested. The
Parallel T-Coffee method obtained the best alignment in 30
of the cases tested, against the 26 achieved by the T-Coffee
method.

With the exception of MUSCLE, PaMSA and the other
tested MSA methods had trouble finding accurate alignments
when using datasets with an identity percentage lower than
70%. Nevertheless, even in this case PaMSA was able to find
the best alignment in 4 out of 10 datasets.

B. Response time results of nonparallel methods

This section presents the execution time results obtained
from alignments using PaMSA and three common nonparallel
methods for MSA: MUSCLE, Clustal W and T-Coffee. For
these alignments, PaMSA and the other three methods were
executed in a nonparallel environment. It should be mentioned
that the results shown are the best execution times achieved
from a set of five runs. Alignments were made under the

www.ijacsa.thesai.org 519 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

same conditions for all the methods compared—i.e. computer,
environment, operating system, and timer.

Table IV presents the execution time results in seconds
obtained from alignments for all dataset groups. As can be
seen, in Group A the MUSCLE method achieved the best
response times, whereas the PaMSA algorithm had better
response times than the Clustal W and T-Coffee applications
for all datasets in this group. The performance results obtained
using Group B were similar to the results from alignments
using Group A, i.e. the MUSCLE method achieved the best
response times and the PaMSA algorithm was the second best.
The performance results obtained using Group C were similar
to the results from the previous group, with the MUSCLE and
the PaMSA methods in first and second place, respectively.

TABLE IV. SINGLE-PROCESSOR EXECUTION TIME RESULTS IN
SECONDS

Group Dataset MUSCLE PaMSA Clustal W T-Coffee

A

1 0.033* 0.034 0.053 0.398
2 0.184* 0.445 0.532 2.208
3 0.446* 1.521 1.709 7.094
4 0.686* 2.614 2.903 12.615
5 1.139* 4.934 5.446 25.833

B

6 0.107* 0.188 0.235 1.280
7 0.173* 0.389 0.502 1.691
8 0.311* 0.908 1.249 2.637
9 0.533* 1.813 2.565 4.009

10 0.968* 3.920 5.675 6.583

C

11 0.891* 3.358 5.089 5.531
12 1.633* 7.886 11.427 11.365
13 2.715* 15.422 22.097 22.451
14 5.944* 52.515 71.605 65.168
15 9.954* 113.462 149.945 154.006

D

16 0.859* 3.628 5.050 7.196
17 0.655* 2.856 3.638 7.389
18 0.595* 2.024 2.968 4.084
19 0.679* 2.604 2.843 12.483
20 0.411* 0.477 0.817 1.282

E

21 0.626* 1.958 2.574 5.403
22 0.295 0.282* 0.468 0.884
23 0.227* 0.320 0.630 0.976
24 1.089* 4.869 7.433 12.050
25 0.769* 3.015 3.397 7.984

F

26 0.176* 0.252 0.366 1.038
27 0.095* 0.102 0.164 0.646
28 0.026* 0.026* 0.042 0.448
29 0.049* 0.049* 0.077 0.465
30 0.041 0.032* 0.063 0.401

G

31 0.104 0.094* 0.211 0.512
32 0.268* 0.388 0.612 1.132
33 0.110* 0.134 0.168 0.800
34 0.058 0.036* 0.086 0.372
35 0.097 0.094* 0.145 0.514

H

36 0.374 0.342* 0.631 1.151
37 0.288* 0.359 0.619 1.336
38 0.811* 0.945 2.363 3.021
39 0.035* 0.039 0.048 0.533
40 0.214* 0.500 0.611 2.200

* = Best execution time.

From the execution time results obtained using Group D,
there are no differences with previous results regarding the
order of the best two methods, i.e. the MUSCLE method
also achieved the best response times, whereas the PaMSA
algorithm had better response times than the Clustal W and
T-Coffee applications. The performance results obtained using
Group E were similar to those of the previous alignments, with
the exception of Dataset 22, with which PaMSA achieved the
best response time. In the rest of the datasets from this group,
the MUSCLE method achieved the best response times. The
PaMSA algorithm showed once again with this group better
response times than the Clustal W and T-Coffee methods. The
performance results obtained using Group F were different
from those of the previous alignments; in alignments using this
group, PaMSA achieved the best response time when using

Fig. 3. Parallel execution times of PaMSA and Parallel T-Coffee using
datasets from Group A. The times shown are the best of five runs for each
dataset.

Dataset 30, whereas this algorithm and MUSCLE method
reached a tie in best execution time in two instances. The
PaMSA algorithm was again superior to the Clustal W and
T-Coffee methods when testing this group of sequences. The
response times obtained by the PaMSA algorithm using Group
G were superior to those of the other methods tested in
three out of five alignments, whereas the MUSCLE algorithm
achieved the best response time in the other two cases. Finally,
using Group H, the MUSCLE method obtained the best
response time in all but one of the cases tested in this group of
alignments, whereas the PaMSA algorithm was again superior
to the Clustal W and T-Coffee programs.

As can be seen, in most of the MSAs with the datasets
presented in Table II, the MUSCLE method achieved the best
execution time results. However, the PaMSA algorithm was
superior or equal to the MUSCLE method in some cases. On
the other hand, the execution times achieved by the PaMSA
algorithm were better (i.e. lower) than the results obtained
using the Clustal W and T-Coffee programs in all the cases
tested.

C. Response time results of parallel methods

In this section we present the execution time results
achieved by comparing the PaMSA algorithm against Parallel
T-Coffee—a parallel version of the T-Coffee method. Align-
ments using these two methods were executed in a cluster
environment under the same conditions (cluster type, number
of processes, MPI library, operating system, and timer). Table
V shows the execution times in seconds of Parallel T-Coffee
and PaMSA. The times shown are the best of five runs for
each dataset.

Fig. 3 graphically shows the execution time results
achieved by the PaMSA algorithm and the Parallel T-Coffee
method when using datasets of protein sequences from Group
A; similar results were found for the rest of the groups. In
all the cases tested, execution times achieved by PaMSA were
superior to the results obtained with the parallel version of
T-Coffee.

In order to confirm the superiority in performance of
the PaMSA algorithm over the Parallel T-Coffee method, the

www.ijacsa.thesai.org 520 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

TABLE V. EXECUTION TIME RESULTS OF PARALLEL T-COFFEE AND
PAMSA IN SECONDS

Group Dataset Parallel T-Coffee PaMSA Speedup
time (s) time (s)

A

1 0.767 0.338 2.3
2 5.913 0.749 7.9
3 21.794 1.887 11.5
4 39.303 2.947 13.3
5 78.133 5.344 14.6

B

6 2.658 0.515 5.2
7 5.555 0.715 7.8
8 14.774 1.247 11.8
9 30.149 2.152 14.0
10 72.149 4.253 17.0

C

11 60.319 3.745 16.1
12 148.757 8.304 17.9
13 304.629 16.065 19.0
14 1113.234 53.668 20.7
15 2510.508 116.098 21.6

D

16 53.413 4.397 12.1
17 57.237 3.577 16.0
18 40.496 2.493 16.2
19 38.118 3.316 11.5
20 10.586 0.848 12.5

E

21 37.36 2.429 15.4
22 4.452 0.585 7.6
23 4.713 0.671 7.0
24 151.67 5.627 27.0
25 44.113 3.785 11.7

F

26 3.144 0.617 5.1
27 1.628 0.413 3.9
28 0.643 0.332 1.9
29 0.919 0.367 2.5
30 0.748 0.359 2.1

G

31 1.481 0.413 3.6
32 4.643 0.75 6.2
33 1.11 0.353 3.1
34 1.516 0.466 3.3
35 1.371 0.419 3.3

H

36 6.641 0.671 9.9
37 4.346 0.721 6.0
38 17.966 1.484 12.1
39 0.733 0.359 2.0
40 6.833 0.886 7.7

speedup for all datasets in all groups was computed by dividing
the execution time of the Parallel T-Coffee method by the
execution time of the PaMSA algorithm. Results showed that
the PaMSA algorithm had better response time than Parallel T-
Coffee in all the cases tested, as seen in Table V. The PaMSA
algorithm was at least 1.9 and up to 27 times faster than
Parallel T-Coffee, depending on the number and length of the
sequences to be aligned.

A multi-factor ANOVA was done by group in order to
statistically compare the execution times of the PaMSA and
Parallel T-Coffee algorithms. Two factors were considered
for the eight groups. Seven of the eight groups considered
the algorithm and the number of the sequences as factors,
whereas in Group B the algorithm and the average length of
sequences were considered as factors. Table VI shows the p-
valued obtained for each group.

TABLE VI. ANOVA p-VALUES BY CLUSTER GROUP

Group p-value
A 0.998
B 0.0933
C 0.1473
D 0.0084
E 0.1547
F 0.0733
G 0.0589
H 0.0745

Based on their p-values, Table VI shows that in five of
the eight groups (A, B, F, G, and H) there was a statistically

Fig. 4. Multi-factor ANOVA plot of means by group. The panel letters
correspond to the protein sequence group being analyzed. Group B used the
algorithm and the average length of sequences as factors, whereas the rest of
groups considered the algorithm and the number of the sequences as factors.

significant difference between the execution time for the two
algorithms at 90% of confidence, and in one of them (Group
D) at 99% of confidence. In order to analytically discern which
algorithm had better response time, a plot of means by group
was performed. Fig. 4 graphically shows the plot of means by
group. Insets 4A, 4B, 4D, 4F, 4G, and 4H show that PaMSA
was statistically better than the Parallel T-Coffee algorithm in
the corresponding groups, whereas Insets 4C and 4E show that
PaMSA was statistically equal to Parallel T-Coffee in Groups
C and E. Thus, statistically PaMSA was as fast or faster than
the Parallel T-Coffee algorithm for all eight groups tested when
the mentioned factors were considered.

V. CONCLUSION

The focus of this research project was to propose a parallel
solution for the global multiple alignment problem of protein
sequences by combining dynamic programming, heuristics,
and parallel programming techniques in an iterative process.
The resulting algorithm was named PaMSA, which stands
for Parallel MSA. Execution time results obtained using the
PaMSA algorithm compared against those of the Parallel T-
Coffee method indicated that the PaMSA algorithm had equal
or better performance in all the cases tested. Accordingly, a
multi-factor ANOVA analysis was performed in order to con-
firm this tendency. Results of the statistical analysis indicate
that PaMSA is as fast or faster than Parallel T-Coffee when
considering the algorithm, and either the number of sequences

www.ijacsa.thesai.org 521 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 4, 2017

or the average length of sequences (in Group B) as factors.
It can be concluded that the PaMSA algorithm achieved in
general better execution time results than the Parallel T-Coffee
method under the conditions tested.

As for the comparison of execution times of the PaMSA
algorithm against the sequential MSA methods tested, PaMSA
was run as a one-processor application in a nonparallel en-
vironment and the results were compared against those of
MUSCLE, T-Coffee and Clustal W. In 80% of the tested
cases the MUSCLE method achieved shorter response times.
However, the PaMSA algorithm was faster than the MUSCLE
method in 15% of the cases. On the other hand, the execution
times achieved by the PaMSA algorithm were better than the
results obtained by Clustal W and T-Coffee in all the cases
tested. It can be concluded that the PaMSA algorithm was the
second faster of the methods under the nonparallel conditions
tested.

As for the accuracy of the alignments, results achieved
with the PaMSA algorithm in clusters of very similar protein
sequences (within a range from 90% to 100% of identity
percentage score, approximately) were at least as accurate
as the alignments obtained with the other methods tested.
It can be concluded that the PaMSA algorithm, along with
the MUSCLE, Clustal W, and Parallel T-Coffee methods,
achieved the best overall MSA accuracy results when using
these groups of sequences. In general, when aligning closely
related sequences, all the tested methods obtained the best—or
close to the best—alignment. When using clusters of sequences
with an identity percentage score of approximately 70% to
89%, PaMSA found the best alignment in all cases—according
to the sum-of-pairs score—, whereas MUSCLE, Clustal W, T-
Coffee, and Parallel T-Coffee could not find the best MSA
in at least three cases. It can be concluded that the results
achieved by the PaMSA algorithm were better than the other
methods tested with these groups of sequences. It is possible
to assume that when aligning more dissimilar sequences, not
all methods can obtain the best alignment. Finally, when
using clusters with approximately 50% to 69% of identity
percentage score, the PaMSA algorithm achieved less accurate
alignments than the MUSCLE and Clustal W methods in 6
out of 10 datasets in both cases. However, the alignments
obtained by the PaMSA algorithm were equal or even better
than the alignments obtained by the T-Coffee and Parallel T-
Coffee methods in 8 out of 10 cases tested in these groups of
sequences. According to our results, no single MSA method
can always obtain the best alignment for all sets of sequences.

Future work will focus on further improvement of accuracy
of the alignments obtained by PaMSA using benchmark pro-
tein databases, such as BAliBASE, PREFAB and SABmark.
Additional MSA methods, such as MaFFT, will also be con-
sidered for comparison. As for improvement in performance,
more work remains to be done by studying and applying
other parallel optimization techniques in order to obtain better
response times. One of the main problems in the evaluation of
MSA methods is that it is possible to obtain different MSAs
having the same assessment score, making it difficult to discern
which of them is the best, especially when aligning very
dissimilar sequences. In this case, it is necessary to conduct
a thorough analysis to achieve the best results in terms of
accuracy. The long-term goal of the present work is to provide

researchers with state-of-the-art algorithms and software tools
that can help them advance in their field in a more efficient
manner.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Cuauhtémoc López-
Martı́n for his help in the statistical analysis, and Dr. Luis
Delaye for his useful comments on the design of our algorithm.

REFERENCES

[1] D. Mount, Bioinformatics: sequence and genome analysis. New York:
Cold Spring Harbor Laboratory Press, 2004.

[2] T. L. Bailey, “Discovering sequence motifs,” in Bioinformatics: Data,
Sequence Analysis and Evolution, ser. Methods in Molecular Biology,
J. M. Keith, Ed. Totowa, New Jersey: Humana Press, 2008, vol. 452,
pp. 231–251.

[3] J. D. Thompson, D. G. Higgins, and T. J. Gibson, “Clustal W:
improving the sensitivy of progressive multiple sequence alignment
through sequence weighting, position-specific gap penalties and weight
matrix choice,” Nucleic Acids Research, vol. 22, no. 22, pp. 4673–4680,
1994.

[4] C. Notredame, D. G. Higgins, and J. Heringa, “T-Coffee: a novel method
for fast and accurate multiple sequence alignment,” J. Mol. Biol., vol.
302, no. 1, pp. 205–217, 2000.

[5] R. C. Edgar, “MUSCLE: multiple sequence alignment with high accu-
racy and high throughput,” Nucleic Acids Research, vol. 32, no. 5, pp.
1792–1797, 2004.

[6] B. Morgenstern, “DIALIGN: multiple DNA and protein sequence
alignment at BiBiServ,” Nucleic Acids Research, vol. 32, pp. Web Server
Issue W33–W36, 2004.

[7] Y. Bilu, P. K. Agarwal, and R. Kilodny, “Faster algorithms for op-
timal multiple sequence alignment based on pairwise comparisons,”
IEEE/ACM Transactions on Computational Biology and Bioinformatics,
vol. 3, no. 4, pp. 408–422, 2006.

[8] C. Notredame and D. Higgins, “SAGA: sequence alignment by genetic
algorithm,” Nucleic Acids Research, vol. 24, no. 8, pp. 1515–1524,
1996.

[9] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller, “A greedy algorithm
for aligning DNA sequences,” Journal of Computational Biology, vol. 7,
no. 1/2, pp. 203–214, 2000.

[10] J. Pei and N. Grishin, “MUMMALS: multiple sequence alignment
improved by using hidden markov models with local structural infor-
mation,” Nucleic Acids Research, vol. 34, no. 16, pp. 4364–4374, 2006.

[11] J. Zola, D. Trystram, A. Tchernykh, and C. Brizuela, “Parallel multiple
sequence alignment with local phylogeny search by simulated anneal-
ing,” in Proc. IEEE Int. Workshop on High Performance Computational
Biology (HiCOMB), 2006.

[12] J. Zola, X. Yang, S. Rospondek, and S. Aluru, “Parallel T-Coffee: A
parallel multiple sequence aligner,” in Proc. of ISCA PDCS-2007, 2007,
pp. 248–253.

[13] C. B. Do and K. Katoh, “Protein multiple sequence alignment,” in Func-
tional Proteomics: Methods and Protocols, ser. Methods in Molecular
Biology, J. D. Thompson, C. Schaeffer-Reiss, and M. Ueffing, Eds.
Totowa, New Jersey: Humana Press, 2008, vol. 484, pp. 379–413.

[14] I. R. Andalon-Garcia, A. Chavoya, and M. E. Meda-Campaña, “A
parallel algorithm for multiple biological sequence alignment,” in Infor-
mation Processign in Cells and Tissues, ser. Lecture Notes in Computer
Science, M. Lones, S. Smith, S. Teichmann, F. Naef, J. Walker, and
M. Trefzer, Eds. Cambridge, U.K.: Springer-Verlag, 2012, vol. 7223,
pp. 264–276.

[15] R. Wagner and M. Fischer, “The string-to-string correction problem,”
ACM, vol. 21, no. 1, pp. 168–173, 1974.

[16] M. P. Styczynski, K. L. Jensen, I. Rigoutsos, and G. Stephanopoulos,
“BLOSUM62 miscalculations improve search performance,” Nature
Biotechnology, vol. 26, no. 3, pp. 274–275, 2008.

[17] O. Gotoh, “Significant improvement in accuracy of multiple protein-
sequence alignments by iterative refinement as assessed by reference to
structural alignments,” J. Mol. Biol, vol. 264, no. 4, pp. 823–838, 1996.

www.ijacsa.thesai.org 522 | P a g e


