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Abstract—Since the software community has realised the 

importance of adopting coding standards during the 

development process for improved software quality, many coding 

standards have been proposed and used during the software 

development. The main objective of this paper is to explore the 

association between Java Programming Language (JPL) coding 

standard and fault density of classes in object-oriented software. 

For this purpose, a set of metrics that quantify the violations of 

coding standards has been proposed. An exploratory study was 

then conducted in which data were collected from six open source 

software systems. The study involved principal component 

analysis, bivariate correlation analysis, and univariate regression 

analysis. The principle component analysis has shown that many 

of the proposed metrics fall into the first two components which 

in turn reflects the importance and diversity of these metrics. 

Furthermore, associations between some metrics and fault 

density have been observed across all systems, and thus indicate 

that these metrics can be useful predictors for improved early 

estimation of faulty density of object-oriented classes.  

Keywords—Coding standard; Software faults; Software quality; 

Exploratory study 

I. INTRODUCTION 

Coding standards and programming styles form a set of 
pre-defined formal rules which are internally shared among 
software project team members, and enforced by software 
projects managers by applying static analysis during the source 
code writing [1]. The rules of these standards are typically 
based on expert’s opinions, and reflect different concerns that 
affect different aspects of source code writing with the aim of 
improving many quality attributes of the underlying software 
system [2]. 

The usage of coding standards and tools for enforcing their 
rules is becoming a popular trend in software development 
especially during the writing of code lists [3]. Coding 
standard’s rules can be targeted towards different software 
quality attributes and hence are believed to improve quality [2]. 
However, there is no empirical evidence on the relationship 
between coding standard’s rules violations at the class level of 
object-oriented software and the presence of faults and their 
density. 

This research paper mainly aims to find an answer to the 
following question: Does the violation of coding standard’s 
rules have a relationship with the existence of faults in 
software products? The paper focuses on the class-level of 
object-oriented software and adopts the Java Programming 

Language (JPL) coding standard [4] for the purpose of 
conducting the exploratory study. A set of metrics that quantify 
the violations of coding standards has been proposed. 

The rest of the paper is organised as: Section 2 reviews 
related work. Section 3 describes JPL coding standard. Section 
4 describes the coding standards’ violation-based metrics. 
Section 5 describes the conducted exploratory study and 
reports its findings. Finally, Section 6 provides concluding 
remarks. 

II. RELATED WORK 

Boogerd and Moonen [3] applied the MISRA-C:2004 [5] 
coding standard to measure the quality of source code of two 
commercial projects before and after bug fixes during the 
development of two embedded C applications. They propose 
simple metric called violations density which is the number of 
violations divided by the number of lines of code of the 
corresponding unit (project, module, and file). They considered 
89 coding rules belonging to different coding categories. As a 
result, they found that only 10 rules from the considered 89 
rules are significant predictors for fault locations. Those 10 
rules were found to be positively correlated with fault 
proneness. 

In another work, Boogred and Moonen [2] applied the 
MISRA-C:2004 [5] coding standard against all the revisions of 
two commercial software projects. To build a body of 
empirical knowledge to understand the relationship between 
coding standard’s violations and faults density, they used two 
metrics called violations density metric (the number of 
violations per version divided by the number of KLOC for that 
version) and fault density metric (the number of faults per 
version divided by the number of KLOC for that version) at the 
system level. Their study considered only 72 rules out of 141 
rules of MISRA-C:2004 standard. As a result of their study, 
they found that there is a positive correlation between 
violations density and faults density only for 12 rules. 

Basalaj and Beuken [6] used a coding standard’s violations 
metric as a measure of internal quality of software source code. 
Their study measured the number of coding guidelines 
violations in 18 closed source products written in C and C++ of 
two software production companies. Among the 900 rules of 
high-integrity C++ [7], MISRA-C:2004 [5], they found a 
positive correlation between coding rules’ violations and faults 
only for 12 rules out of the mentioned 900 rules. In addition to 
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faults they also found that the compliance to a coding standard 
has a positive impact on the portability of software products. 

In their study, Kawamoto and Mizuno [8] evaluated the 
relationship between the length of identifiers and the existence 
of software faults in a software module. To investigate such 
relation, they built a model to determine faulty-module using a 
machine learning technique from the number of occurrences of 
the identifiers. Their study tested two metrics Oc(L) which is 
the number of the occurrences of identifiers with length L in a 
module (they considered the length of the identifier as one of 
the characteristics of identifier’s naming rules) and TN which 
is the total number of identifiers found in a module against two 
open source projects. As a result for their experimentation, they 
showed that there is a certain relationship between the length of 
identifier and the existence of software faults and they also 
specified the best length the identifiers should have. 

There are server limitations with previous studies. Most of 
them have focused on the highest code granularity level which 
is the software system as a whole in terms of its releases. This 
makes it difficult to identify which portion of the software 
system needs to be reviewed or refactored. Moreover, even in 
those studies that have used the coding standards violations-
based metrics at the class level, the researchers used them in a 
limited way. For example, Elish and Offutt [9] conducted a 
controlled small-scale experiment that tries to determine to 
which extent the open source Java programmers adhere to a 
small set of coding practices. Similarly, Kawamoto and 
Mizuno [8] used as coding standards violations-based metrics, 
only one metric called the number of occurrences of identifiers 
with length L in a class which collect the violations for only 
one rule related to the naming conventions. Another limitation 
of previous studies is that the target set of systems under study 
was small which in turn restrict the generalisation of the 
obtained results. Although Basalaj and Beuken [6] used 18 
closed source products in their study. They used only one 
metric which is the number of coding standard’s violations per 
software product in terms of versions, which in turn makes the 
prediction models unsatisfactory. 

III. JPL CODING STANDARD 

Since the software community realises the importance of 
adopting coding standards during the software development 
process, many coding standards have been proposed and used 
during the software development. Some of these coding 
standards are general and applicable for several programming 
languages, while others are dedicated for specific language. 
Furthermore, some standards are well known and widely used 
by the software community like Sun Java coding standard 1999 
[10] presented by Sun Micro-Systems (the first owner of Java 
language), while others are self-imposed and developed by 
special software production companies. Some standards are 
targeted towards several software quality attributes, while 
others are targeted at certain quality attribute. Among the 
proposed and published coding standards, this research 
selected the Java Programming Language (JPL) coding 
standard [4] due to many reasons: (1) The primary purpose of 
JPL standard is reducing faults which is the addressed quality 
attribute by this study. (2) It is one of the most recent published 
standards. (3) It is published by a reliable and reputable 

institution. (4) It is supported by the available static analysers. 
(5) It is dedicated for Java programming language which is the 
underlying programming language of this study.   

JPL coding standard comprises a set of 53 rules expressing 
bad programming practices and bugs patterns that mostly have 
to be avoided during writing code lists. These rules are 
categorised into 11 categories reflecting the usage of Java 
language constructs. It is worth here to mention that the 
developers of this standard do not prioritise the rules. 
Furthermore, they recommend using these rules as guidelines 
and they mentioned that some rules have exceptions and should 
not be followed to the extreme.  

Although there has been developed a dedicated rule 
checker called semmle static analyser which implements the 
rules of JPL standard. This research experiments used 
FindBugs, PMD and CheckStyle rules checkers due to these 
reasons: (1) Those static analysers are well known and widely 
used by Java community. (2) Those static analysers are 
recommended by the authors of JPL standard as alternatives for 
semmle static analyser. (3) The semmle static analyser is a 
commercial tool. 

JPL standard’s rules are presented in Table 1 with their 
inspection possibility by the static analysers used in this study. 
Since the aim is to empirically study the relationship between 
coding standard’s rules violations and faults at the granular 
level of classes, this study ignores the JPL standard’s rules that 
are targeted towards higher levels such as packages or systems 
as a whole. Such ignored rules are marked with a single 
asterisk (*) symbol in Table 1. Some other rules are ignored 
due to the lack of support for such rules by the used static 
analysers. Those rules are marked with double asterisks (**) in 
Table 1. This means that among the 53 rules of the underlying 
standard, 43 rules are checked, which means almost 82% 
coverage of the JPL standard. 

IV. CODING STANDARD’S VIOLATIONS-BASED METRICS 

Coding standards violations-based metrics are suite of 
metrics computed using the data collected from the software 
source code artefacts by means of some tools called static 
analysers. Among the functionalities provided by such tools is 
coding rules violations detection. Those tools inspect the 
source code looking for the violations of coding standard’s 
rules. 

The coding standard’s violations-based metrics can be 
defined at the standard’s level, category’s level or at the rule’s 
level. These metrics can also be gathered at different 
granularity levels such as line’s level, method’s level, class’s 
level, package’s level or system’s level. In this research, we 
defined and gathered these metrics at the class level. 
Reviewing the research works that have been done in the 
literature, it was found that almost all previous research works 
used metrics based on the total number of violations and 
violations density. Those metrics used in the literature suffer 
from many limitations such as, the lack of distinguishing 
between violations diversity at the standard level, the lack of 
distinguishing between violations diversity at the category 
level, the lack of distinguishing between categories of 
violations and the lack of distinguishing between violations 
severity.
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TABLE I.  JPL STANDARD’S RULES WITH THEIR INSPECTION POSSIBILITY BY THE STATIC ANALYSERS 

JPL Category JPL Rule 

P
M

D
 

C
h

e
c
k

S
ty

le
 

F
in

d
B

u
g

s 

Process 

“R01: compile with checks turned on.” *    

“R02: apply static analysis.” *    

“R03: document public elements.”    

“R04: write unit tests.” *    

Names 
“R05: use the standard naming conventions.” √ √ √ 

“R06: do not override field or class names.” √ √  

Packages, Classes and  

Interfaces 

“R07: make imports explicit.” √ √  

“R08: do not have cyclic package and class dependencies.” *    

“R09: obey the contract for equals().”  √ √ 

“R10: define both equals() and hashCode().” √ √ √ 

“R11: define equals when adding fields.”   √ 

“R12: define equals with parameter type Object.”  √ √ 

“R13: do not use finalisers.” √ √  

“R14: do not implement the Cloneable interface.” √ √  

“R15: do not call non-final methods in constructors.” √  √ 

“R16: select composition over inheritance.” **    

Fields 

“R17: make fields private.” √   

“R18: do not use static mutable fields.” √  √ 

“R19: declare immutable fields final.” √   

“R20: initialize fields before use.” √   

Methods 

“R21: use assertions.”   √ 

“R22: use annotations.” √  √ 

“R23: restrict method overloading.”**    

“R24: do not assign to parameters.” √ √ √ 

“R25: do not return null arrays or collections.” √  √ 

“R26: do not call System.exit.” √  √ 

Declarations and  

Statements 

“R27: have one concept per line.” √ √  

“R28: use braces in control structures.” √ √  

“R29: do not have empty blocks.” √ √ √ 

“R30: use breaks in switch statements.” √ √ √ 

“R31: end switch statements with default.” √ √ √ 

“R32: terminate if-else-if with else.” **    

Expressions 

“R33: restrict side effects in expressions.” √   

“R34: use named constants for non-trivial literals.” √ √  

“R35: make operator precedence explicit.”   √ 

“R36: do not use reference equality.” √ √ √ 

“R37: use only short-circuits logic operators.”   √ 

“R38: do not use octal values.” √   

“R39: do not use floating point equality. √  √ 

“R40: use one result type in conditional expressions.”  √  

“R41: do not use string concatenation operator in loops.”   √ 

Exceptions 
“R42: do not drop exceptions.”   √ 

“R43: do not abruptly exit a finally block.” √   

Types 

“R44: use generics.”   √ 

“R45: use interfaces as types when available.” √ √  

“R46: use primitive types.”   √ 

“R47: do not remove literals from collections.” **    

“R48: restrict numeric conversions.” √  √ 

Concurrency 

“R49: program against data races.”   √ 

“R50: program against deadlocks.”   √ 

“R51: do not rely on the scheduler for synchronization.” **    

“R52: wait and notify safely.” √  √ 

Complexity “R53: reduce code complexity.” √ √  

The results of the static analysers’ inspection are violations 
reports for the coding rules whose equivalent or correspondent 
tools’ rules are turned on. The violations report contains 
information about the coding rule’s being violated in the 
inspected module such as the module name, the violated rule, 
and the code line number in which the rule is violated. The 

violations report for each class is inserted into the violations 
database. At this point, the metrics values can be calculated and 
retrieved from the database by means of SQL queries. The 
following proposed metrics are derived according to the coding 
rules’ categorisation presented and adopted by the JPL coding 
standard. 
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a) M1: The percentage of standard’s rules being 

violated per class (PSRV). 

b) M2: The percentage of standard’s rules being 

violated normalised by the class code size (PSRVD). 

c) M3: The percentage of category’s rules being 

violated in a class.  

 M3.1: The percentage of names category’s rules being 
violated in a class (PNCRV). 

 M3.2: The percentage of packages, classes and 
interfaces category’s rules being violated in a class 
(PPCICRV). 

 M3.3: The percentage of fields category’s rules being 
violated in a class (PFCRV). 

 M3.4: The percentage of methods category’s rules 
being violated in a class (PMCRV). 

 M3.5: The percentage of declarations and statements 
category’s rules being violated in a class (PDSCRV). 

 M3.6: The percentage of expressions category’s rules 
being violated in a class (PExpCRV). 

 M3.7: The percentage of exceptions category’s rules 
being violated in a class (PExcCRV). 

 M3.8: The percentage of types category’s rules being 
violated in a class (PTCRV). 

 M3.9: The percentage of concurrency category’s rules 
being violated in a class (PConCRV). 

 M3.10: The percentage of complexity category’s rules 
being violated in a class (PComCRV). 

d) M4: The percentage of category’s rules being 

violated in a class, normalised by the class code size. 

 M4.1: The percentage of names category’s rules being 
violated in a class normalised by the class code size 
(PNCRVD). 

 M4.2: The percentage of packages, classes and 
interfaces category’s rules being violated in a class 
normalised by the class code size (PPCICRVD). 

 M4.3: The percentage of fields category’s rules being 
violated in a class normalised by the class code size 
(PFCRVD). 

 M4.4: The percentage of methods category’s rules 
being violated in a class normalised by the class code 
size (PMCRVD). 

 M4.5: The percentage of declarations and statements 
category’s rules being violated in a class normalised by 
the class code size (PDSCRVD).  

 M4.6: The percentage of expressions category’s rules 
being violated in a class normalised by the class code 
size (PExpCRVD).  

 M4.7: The percentage of exceptions category’s rules 
being violated in a class normalised by the class code 
size (PExcCRVD).  

 M4.8: The percentage of types category’s rules being 
violated in a class normalised by the class code size 
(PTCRVD).    

 M4.9: The percentage of concurrency category’s rules 
being violated in a class normalised by the class code 
size (PConCRVD).    

 M4.10: The percentage of complexity category’s rules 
being violated in a class normalised by the class code 
size (PComCRVD).    

e) M5: The percentage of standard’s categories being 

violated in a class (PSCV). 

f) M6: The percentage of standard’s categories being 

violated in a class normalised by the class code size (PSCVD). 

V. EXPLORATORY STUDY 

This section describes the conducted exploratory study and 
reports its findings. 

A. Evaluated Systems 

The coding standards violations-based metrics were 
collected from six open source software systems: (1) Ant-1.7.0, 
(2) Apache-Camel-1.6.0, (3) Poi-3.0, (4) Synapse-1.2, (5) 
Velocity-1.6.1, and (6) Xalan-2.6.0. All systems are long-lived, 
of reasonable size in terms of the number of classes, and from 
different application domains. Working on long-lived systems 
prevents results from being biased by the potential data 
fluctuations experienced during short period of time [11]. 
Additionally, selecting a bigger set of systems from different 
domains makes the obtained findings more generalisable. 
Furthermore, investigating reasonable-size systems in terms of 
the number of classes increases the number of data points 
which is considered a good feature for statistical analysis [12]. 
Some descriptive statistics about the evaluated systems are 
reported in Table 2. As shown in the table, each system has 
different code size, different numbers of classes and faults, and 
percentages of faulty classes. 

TABLE II.  DESCRIPTIVE STATISTICS OF THE EVALUATED SYSTEMS 

System 

Name 

System 

Code Size 

(LOC) 

Fault 

Count 

Number of 

Classes 

Number 

(Percentage) of 

Faulty Classes 

Synapse-

1.2 
19554 145 256 86 (33.98%) 

Velocity-
1.6.1 

25241 190 229 78 (34.06%) 

Poi- 

3.0 
51402 500 439 281 (63.43%) 

Xalan-
2.6.0 

151485 625 885 411 (46.44%) 

Camel-

1.6.0 
56444 500 933 188 (20.15%) 

Ant- 
1.7.0 

87741 338 745 166 (22.28%) 
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B. Data Collection 

To calculate the coding standards violations-based metrics, 
three static analysis tools called (1) FindBugs 2.0.3, (2) PMD 
5.0.2, and (3) CheckStyle 5.6.1 were used. These tools are 
popular and widely used for inspecting Java source code. They 
are powerful, yet intuitive and easy to use. These tools can be 
used in three different ways: (1) as a command line, (2) an 
Eclipse plugin or (3) an Ant target element with almost any 
operating system platform. FindBugs and PMD provide an 
extra feature in which users can export the violations reports 
into an XML or Excel files for further processing. However, to 
the best of our knowledge, CheckStyle lacks such feature 
which in turn imposes manual processing for its generated 
reports. 

Furthermore, all of these three tools provide some sort of 
severity for their rules or checks. Unfortunately, some conflicts 
are found between the prioritisation of equivalent rules of these 
tools. These conflictions in severity of tools’ rules was the 
reason behind discarding rules’ severity to be one of this 
research objectives in which the JPL standard’s rules will be 
prioritised from the point of view of fault density. These tools 
also enable users to configure their inspection according to the 
adopted coding standard, bugs patterns or bad practices they 
looking for. 

Since the underlying coding standard of this study was JPL 
coding standard for Java programming language, the 
experiments’ settings enabled totally 176 rules from different 
categories of rules for each tool. From the totally enabled rules, 
the tools’ portions was 55, 73, 48 rules for FindBugs, PMD and 
CheckStyle, respectively. Another important point that 
deserves to be mentioned here is, although each tool has its 
own categorisation for its rules, this research ignored these 
categorisations and adopted the categorisation provided by the 
JPL coding standard. 

For the coding standards violations-based metrics to be 
collected, the analysis and report were focused on the tools 
being used from the Eclipse plugin. The plugin for each tool 
comes with its own perspective. Since both CheckStyle and 
PMD works only on source code (not byte code), the Java open 
source projects were imported into the eclipse to be analysed 
by CheckStyle and PMD. The generated violations reports by 
both tools were then inserted into the coding rules violations 
database using the developed tool for further analysis. 
Regarding FindBugs, instead of importing the source code 
from of the systems under study, the executable forms (.Jar) of 
the systems were imported into the Eclipse to be analysed by 
FindBugs because it works only on the Byte code (not source 
code). The generated violations report was then inserted into 
the coding rules violations database for the purpose of doing 
further analysis. Having all generated coding standard 
violations data in the database, the coding standards violations-
based metrics can be retrieved as SQL queries for each class of 
each open source project. At this point, the coding standards 
violations-based metrics data were then plugged into MS Excel 
sheets for further analysis. 

The faults data for each class of the systems under study 
was collected from the PROMISE software engineering 
repository [13]. Additionally, the class code size data extracted 

by the understand tool was used to calculate the faults density 
in each class of the target set of systems. The density data for 
each class was then combined with the coding standard 
violations-based metrics data and plugged into CSV file 
format. Each class in the CSV file represents a data point or 
observation. 

C. Results and Analysis 

The obtained results from this conducted exploratory study 
are reported and analysed next. 

1) Principal Component Analysis 
Principal component analysis (PCA) refers to the process 

by which principal components (PCs) are computed for the 
subsequent use of these components in understanding the data 
[14]. In other words, PCA is a standard technique to derive a 
small number of linear combinations (principal components) of 
a set of variables that retain as much of the information in the 
original variables as possible. If a group of variables in a data 
set are strongly correlated, these variables are likely to measure 
the same underlying dimension. The sum of the squares of the 
coefficients of the standardised variables in one linear 
combination is equal to one. In order to identify these 
variables, and interpret the PCs, the rotated components are 
considered. As the dimensions are independent, orthogonal 
rotation is used. There are various strategies to perform such 
rotation. This research used the Varimax rotation, which is the 
most frequently used strategy in literature [15]. 

The PCA results are presented in Table 3, which indicate 
that the dimensions captured by the coding standard violations-
based metrics can be classified into the below mentioned 
dimensions: standard’s rules and categories, naming rules, 
classes and interfaces rules, fields rules, methods rules, types 
rules, declarations and statements rules, expressions rules, 
exceptions rules, concurrency rules, and complexity rules. 
These dimensions reflect the standard rules’ categories which 
the metrics are derived from. 

The results in Table 3 show some overlapping among these 
dimensions. For example, some metrics were expected to fall 
into a certain dimension; however, they fall into other 
dimensions. The general observation is that metrics which were 
found to be significant are falling in the first two components 
in almost all case studies which in turn reflect the importance 
of these metrics. For instance, the metrics PSRV and PSCV in 
all case studies fall into the first or the second component. 
Additionally, it is clear from Table 3, that except for the first 
two components, each component corresponds to one 
dimension. For example, in Camel case study system, the PC3, 
PC4, PC5, PC6, PC7 and PC8 correspond to expression rules 
dimension, exceptions rules dimension, fields rules dimension, 
methods rules dimension, declarations and statements rules 
dimension, packages and classes rules dimension, types rules 
dimension, and complexity rules dimension, respectively. 

2) Bivariate Correlation Analysis 
To explore the relationship between each metric in the 

coding standard violations-based suite and the fault density, 
Spearman correlation analysis technique was performed. First, 
the Spearman correlation coefficient was calculated between 
each metric and the variable capturing the density of faults 
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which defined as the number of faults in a class divided by the 
class code size in terms of KLOC  (excluding  comments  and 
blank lines). For each system from the target set of systems 

under study, the correlation values were obtained from the data 
of all system’s classes. 

TABLE III.  PCA OF CODING STANDARD’S VIOLATIONS-BASED METRICS 

System PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11 

Ant 

PSRV PSRVD PConCRV PPCICRV PMCRV PExcCRV PTCRV PDSCRV PComCRV PExpCRVD PFCRVD 

PNCRV PNCRVD PConCRVD PPCICRVD PMCRVD PExcCRVD PTCRVD PDSCRVD PComCRVD   

PFCRV PSCVD          

PExpCRV           

PSCV           

Velocity 

PSRV PSRVD PTCRV PMCRV PExcCRV PPCICRV PExpCRV PDSCRV    

PNCRV PNCRVD PTCRVD PMCRVD PExcCRVD PPCICRVD PExpCRVD PDSCRVD    

PFCRV PFCRVD          

PComCRV PComCRVD          

PSCV PSCVD          

Synapse 

PSRVD PSRV PFCRVD PExcCRV PMCRV PDSCRV PExpCRV PPCICRV PComCRV   

PNCRVD PNCRV PTCRV PExcCRVD PMCRVD PDSCRVD PExpCRVD PPCICRVD PComCRVD   

PSCVD PFCRV PTCRVD         

 PSCV          

Poi 

PSRVD PSRV PDSCRV PPCICRV PMCRV PExcCRV PExpCRV PComCRV PTCRV   

PNCRVD PNCRV PDSCRVD PPCICRVD PMCRVD PExcCRVD PExpCRVD PComCRVD PTCRVD   

PSCVD PFCRV          

 PFCRVD          

 PSCV          

Xalan 

PSRV PSRVD PExcCRV PConCRV PPCICRV PTCRV PDSCRVD PFCRV PMCRVD PNCRV  

PMCRV PExpCRVD PExcCRVD PConCRVD PPCICRVD PTCRVD PComCRVD PFCRVD  PNCRVD  

PDSCRV PSCVD          

PExpCRV           

PComCRV           

PSCV           

Camel 

PSRVD PSRV PExpCRV PExcCRV PFCRV PMCRV PDSCRV PPCICRV PTCRV PComCRV  

PNCRVD PNCRV PExpCRVD PExcCRVD PFCRVD PMCRVD PDSCRVD PPCICRVD PTCRVD PComCRVD  

PSCVD PSCV          

The results of correlation coefficients and p-values using 
Spearman’s technique are presented in Table 4. For each 
metric, the significance of correlation was tested at 0.05 level 
of significance. The values that are rendered in boldface 
highlights significant correlation coefficients at 0.05 level as 
shown in Table 4. It is clear to observe that PSRV, PNCRV, 
PExpCRV and PSCV were found to be significantly correlated 
with the fault density of classes across all the systems under 
study. Regarding the rest of metrics, the correlation analysis 
results show that PSCVD was found to be significantly 
correlated with fault density in all systems except Camel 
system. In addition, the correlation analysis results also show 
that PFCRV, PComCRV, PPCICRVD, PDSCRV, PDSCRVD, 
PNCRVD, PFCRVD, PPCICRV, PExcCRV, PExcCRVD, 
PTCRV, PTCRVD and PComCRVD were found to be 
significantly correlated with fault density in two, three or four 
systems from the target set of systems under study. 
Furthermore, the correlation analysis results show that 
PMCRV and PMCRVD were found to be significantly 
correlated with fault density only in Ant system. Figure 1 ranks 
the metrics based on the number of systems in which they are 
significantly correlated with fault density. 

The differences in the significance of correlation across the 
systems under study can be explained as: The class code size in 
terms of lines of code (LOC without comments and blank 
lines) is a dominant factor which has a great impact on the 
number of introduced violations for coding standard’s rules in 
addition to the diversity of such introduced violations. So the 
differences in size across system’s classes might have an 
impact on the values of coding standard violations-based 
metrics which in turn, affect the correlation significance 

between the metrics under study and the fault density of 
classes. 

 
Fig. 1. Metrics are ranked based on the number of systems in which they are 

significantly correlated with fault density. 
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TABLE IV.  SPEARMAN CORRELATION RESULTS 

Metric 

Synapse Velocity Poi Xalan Camel Ant 

Corr.  

Coef. 
p-value 

Corr.  

Coef. 
p-value 

Corr.  

Coef. 
p-value 

Corr. 

Coef. 
p-value 

Corr.  

Coef. 
p-value 

Corr.  

Coef. 
p-value 

PSRV 0.3355 0.0000 0.2024 0.0021 0.2371 0.0000 0.1275 0.0002 0.1620 0.0000 0.3976 0.0000 

PSRVD -0.1974 0.0015 -0.1563 0.0180 0.1406 0.0032 -0.1055 0.0018 0.0385 0.2402 -0.2126 0.0000 

PNCRV 0.1777 0.0044 0.1903 0.0038 0.1514 0.0015 0.1553 0.0000 0.1095 0.0008 0.3124 0.0000 

PNCRVD -0.1551 0.0130 0.0195 0.7693 0.0842 0.0779 0.0088 0.7958 0.0806 0.0137 -0.1407 0.0001 

PPCICRV 0.1563 0.0123 0.0341 0.6074 0.0660 0.1675 0.1022 0.0025 0.0354 0.2804 0.2141 0.0000 

PPCICRVD 0.1419 0.0232 0.0312 0.6384 0.0238 0.6196 0.0945 0.0051 0.0346 0.2912 0.1968 0.0000 

PFCRV 0.2988 0.0000 0.1062 0.1089 0.0412 0.3895 0.0298 0.3790 0.1268 0.0001 0.3075 0.0000 

PFCRVD 0.2486 0.0001 0.0649 0.3281 0.0616 0.1973 -0.0060 0.8593 0.1152 0.0004 0.0930 0.0113 

PMCRV 0.0869 0.1656 0.0510 0.4423 -0.0125 0.7932 0.0395 0.2427 0.0551 0.0924 0.2647 0.0000 

PMCRVD 0.0874 0.1631 0.0499 0.4519 -0.0129 0.7870 0.0365 0.2806 0.0548 0.0943 0.2533 0.0000 

PDSCRV 0.1047 0.0945 -0.0386 0.5615 0.2773 0.0000 0.1060 0.0017 0.0304 0.3539 0.1899 0.0000 

PDSCRVD 0.1013 0.1059 -0.0543 0.4134 0.2975 0.0000 0.0433 0.2007 0.0226 0.4899 0.1215 0.0009 

PExpCRV 0.2138 0.0006 0.1321 0.0458 0.2565 0.0000 0.0722 0.0328 0.1319 0.0001 0.3398 0.0000 

PExpCRVD 0.1776 0.0044 0.1062 0.1089 0.2929 0.0000 0.0487 0.1499 0.1203 0.0002 0.1741 0.0000 

PExcCRV 0.0391 0.5331 0.1248 0.0592 0.0286 0.5507 -0.0647 0.0557 0.0760 0.0202 0.1435 0.0001 

PExcCRVD 0.0396 0.5279 0.1250 0.0590 0.0287 0.5489 -0.0637 0.0596 0.0760 0.0202 0.1425 0.0001 

PTCRV 0.1785 0.0042 0.0872 0.1887 0.0260 0.5870 0.0475 0.1608 0.0015 0.9639 0.2285 0.0000 

PTCRVD 0.1794 0.0040 0.0883 0.1830 0.0239 0.6181 0.0327 0.3337 0.0015 0.9624 0.1836 0.0000 

PConCRV             0.0340 0.3151     -0.0195 0.5953 

PConCRVD             0.0340 0.3148     -0.0195 0.5953 

PComCRV 0.1434 0.0217 0.1795 0.0065 -0.0702 0.1417 0.0228 0.5012 0.1025 0.0017 0.2570 0.0000 

PComCRVD -0.0605 0.3346 0.1238 0.0615 -0.0818 0.0869 -0.0852 0.0117 0.0684 0.0367 -0.0233 0.5263 

PSCV 0.3221 0.0000 0.2081 0.0015 0.2579 0.0000 0.1339 0.0001 0.1677 0.0000 0.3822 0.0000 

PSCVD -0.2185 0.0004 -0.1403 0.0338 0.1277 0.0074 -0.0945 0.0052 0.0261 0.4260 -0.2396 0.0000 

TABLE V.  UNIVARIATE PREDICTION ACCURACY RESULTS 

Metric 
Synapse Velocity Poi Xalan Camel Ant 

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE 

PSRV 12.401 23.009 17.340 29.420 13.344 23.008 10.655 19.307 19.309 43.206 4.462 9.512 

PSRVD 13.309 23.292 17.296 29.549 12.635 22.619 10.561 19.653 18.885 42.856 4.694 9.562 

PNCRV 12.576 22.974 17.175 29.571 13.329 22.995 10.579 19.560 19.273 43.192 4.521 9.510 

PNCRVD 12.763 23.063 17.300 29.558 13.150 22.886 10.500 19.357 19.111 43.227 4.764 9.596 

PPCICRV 12.458 22.958 17.269 29.423 13.329 22.850 10.469 19.513 19.151 43.190 4.665 9.540 

PPCICRVD 12.753 23.427 17.269 29.423 13.357 22.979 10.540 19.587 19.135 43.191 4.720 9.542 

PFCRV 12.342 22.995 17.182 29.335 13.176 22.947 10.612 19.394 19.213 43.231 4.643 9.545 

PFCRVD 11.278 22.690 17.183 29.452 13.353 23.021 10.565 19.516 18.895 43.204 4.707 9.533 

PMCRV 12.584 22.981 17.080 29.416 13.171 22.882 10.533 19.510 19.188 43.170 4.612 9.521 

PMCRVD 12.604 23.079 17.270 29.572 13.179 22.884 10.571 19.598 19.166 43.173 4.729 9.563 

PDSCRV 12.576 22.944 17.066 29.328 13.240 23.003 10.613 19.409 19.209 43.181 4.664 9.541 

PDSCRVD 12.573 22.994 17.269 29.658 12.560 22.847 10.554 19.591 19.129 43.182 4.705 9.536 

PExpCRV 12.554 22.965 17.385 29.423 13.319 23.002 10.493 19.378 19.266 43.197 4.538 9.520 

PExpCRVD 12.140 23.356 17.296 29.512 12.898 22.922 10.541 19.557 19.186 43.212 4.721 9.553 

PExcCRV 12.545 22.931 17.216 29.477 13.284 22.940 10.514 19.543 19.077 43.184 4.669 9.539 

PExcCRVD 12.580 22.946 17.177 29.472 13.331 23.029 10.547 19.571 19.077 43.184 4.726 9.584 

PTCRV 12.483 23.493 17.212 29.539 13.247 22.974 10.554 19.533 19.145 43.191 4.658 9.537 

PTCRVD 11.758 21.845 17.255 29.705 13.228 22.913 10.544 19.589 19.172 43.237 4.713 9.536 

PConCRV             10.548 19.565     4.716 9.539 

PConCRVD             10.564 19.583     4.716 9.539 

PComCRV 12.892 23.023 17.385 29.521 13.125 22.768 10.400 19.151 19.277 43.209 4.615 9.536 

PComCRVD 12.547 22.957 17.226 29.610 13.265 22.967 10.521 19.519 18.981 43.226 4.709 9.551 

PSCV 12.308 23.021 17.308 29.451 13.406 22.994 10.586 19.296 19.277 43.221 4.494 9.519 

PSCVD 13.321 23.237 17.342 29.541 12.581 22.676 10.569 19.756 18.930 42.829 4.677 9.562 

Some common results can be observed from the 
evaluated systems. For example, the positive correlation 
between PSRV, PNCRV, PExpCRV, and PSCV metrics and 
the class fault density suggest that the higher values for these 
metrics, the more the faults density of the class. Additionally, 
it is observed that PConCRV and PConCRVD reported null 
p-values and correlation coefficients in Synapse, Velocity, 
Poi and Camel systems because of the zero values of all 
observations for these two metrics. This implies that either 

the classes of these systems do not violate any rules of the 
concurrency category or the systems nature is irrelative to 
parallelism and concurrency. Regarding Ant and Xalan 
systems, the correlation analysis shows that PconCRV and 
PConCRVD were found to be insignificantly correlated with 
fault density. By inspecting the observations of these two 
systems, only two observations in Xalan and one observation 
in Ant were found to violate the concurrency category which 
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can be considered neglectable with contrast to 875 and 741 
observations of Xalan and Ant, respectively. 

3) Univariate Regression Analysis 
Univariate linear regression modelling [14] is a simple 

and useful technique for predicting a quantitative response. It 
is a straightforward technique for predicting a quantitative 
response Y (dependent variable) on the basis of a single 
predictor variable (independent variable) X. It is an approach 
for modelling the relationship between a scalar dependent 
variable Y and one explanatory variable denoted X by fitting 
a linear equation to the observed data. This research used 
univariate linear regression to model the relationship 
between each coding standards violations-based metric 
(independent variable) and the faults density (dependent 
variable). 

The predictive accuracy of the prediction models is 
evaluated using the mean absolute error (MAE) and the root 
mean squared error (RMSE). These two measures are based 
on what so called residual which is the difference between 
the predicted and the observed values. The results of the 
prediction accuracy were analysed in terms of these two 
measures. The lower values of these two measures are 
always better than the higher values. Additionally, the values 
of RMSE are always higher than MAE. Table 5 presents the 
results of the prediction accuracy for all linear regression 
models in all systems that were investigated by this study. It 
can be observed from Table 5 that the best accuracy results 
of the linear regression models were achieved in Ant system 
while the worst accuracy results were achieved in Camel 
system. It can be observed that all regression models, for 
each system, achieved very similar accuracy results.  

VI. CONCLUDING REMARKS 

This paper has reported an exploratory study that was 
conducted to investigate whether or not the violation of 
coding standard’s rules has a relationship with the fault 
density of classes in object-oriented software systems. The 
investigation scope was on the JPL coding standard. A set of 
24 metrics were proposed to quantify the violations of coding 
standards. Data were collected from six open source software 
systems written in Java. Several statistical analysis 
techniques were performed on the collected data including 
principal components analysis, bivariate correlation analysis, 
and univariate regression analysis. The principle component 
analysis has shown that many of the proposed coding 
standard violations-based metrics fall into the first two 
components which in turn reflects the importance and 
diversity of these metrics. In addition, associations between 

some metrics and fault density have been observed across all 
systems, and thus indicate that these metrics can be useful 
predictors for improved early estimation of faulty density of 
object-oriented classes. 

Future works include exploring the associations between 
coding standards and other software quality attributes, and 
also using the proposed metrics in addition to traditional 
product metrics to improve the accuracy of fault predictive 
models. 

REFERENCES 

[1] S. Pfleeger, Software Engineering: The Production of Quality 
Software: Macmillan Publishing Company, 1991. 

[2] C. Boogerd and L. Moonen, "Assessing the value of coding standards: 
An empirical study," in IEEE International Conference on Software 
Maintenance, 2008, pp. 277-286. 

[3] C. Boogerd and L. Moonen, "Evaluating the relation between coding 
standard violations and faultswithin and across software versions," in 
6th IEEE International Working Conference on Mining Software 
Repositories, 2009, pp. 41-50. 

[4] K. Havelund and A. Niessner, "JPL Java Coding Standard," Technical 
Report, California Institute of Technology, 2010. 

[5] MISRA, "MISRA-C:2004 Guidelines for the Use of the C Language 
in Critical Systems," Technical Report, Motor Industry Software 
Reliability Association (MISRA), 2004. 

[6] W. Basalaj and F. v. d. Beuken, "Correlation Between Coding 
Standards Compliance and Software Quality," Technical Report, 
Programming Research, 2006. 

[7] PRQA, "High Integrity C++ Coding Standard Manual," Technical 
Report, Programming Research, 2004. 

[8] K. Kawamoto and O. Mizuno, "Predicting Fault-Prone Modules 
Using the Length of Identifiers," in 4th International Workshop on 
Empirical Software Engineering in Practice, 2012, pp. 30-34. 

[9] M. Elish and J. Offutt, "The Adherence of Open Source Java 
Programmers to Standard Coding Practices," in 6th IASTED 
International Conference on Software Engineering and Applications, 
2002, pp. 193-198. 

[10] A. Reddy, "Java Coding Style Guide," Technical Report, Sun 
Microsystems, Inc., 2000. 

[11] A. Koru and H. Liu, "Identifying and characterizing change-prone 
classes in two large-scale open-source products," Journal of Systems 
and Software, vol. 80, pp. 63-73, 2007. 

[12] S. Boslaugh and P. Walters, Statistics in a Nutshell: A Desktop Quick 
Reference: O'Reilly Media, 2008. 

[13] G. Boetticher, T. Menzies, and T. Ostrand, "PROMISE Repository of 
empirical software engineering data, 
http://promisedata.org/repository," West Virginia University, 
Department of Computer Science, 2007. 

[14] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to 
Statistical Learning with Applications in R: Springer, Inc., 2013. 

[15] G. Dunteman, Principal Component Analysis: SAGE, 1989. 

http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Dependent_variable
http://en.wikipedia.org/wiki/Explanatory_variable

