
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

455 | P a g e

www.ijacsa.thesai.org

A Lightweight Approach for Specification and

Detection of SOAP Anti-Patterns

Fatima Sabir, Ghulam Rasool, Maria Yousaf

Department of Computer Science

COMSATS Institute of Information Technology

Defence Road, off Raiwind Road, Lahore

Pakistan

Abstract—Web-services have become a governing technology

for Service Oriented Architectures due to reusability of services

and their dependence on other services. The evolution in service

based systems demands frequent changes to provide quality of

service to customers. It is realised by different researchers that

evolution in service based systems may degrade design and

quality of service and may generate poor solutions known as anti-

patterns. The detection of anti-patterns from web services is an

important research realm and it is continuously getting the

attention of researchers. There are a number of techniques and

tools presented for detection of anti-patterns from object

oriented software applications but only few approaches are

presented for detection of anti-patterns from SOA. The state of

the art anti-pattern detection approaches presented for detection

of anti-patterns from SOA are not flexible enough and they are

limited to detection of only a few anti-patterns. We present a

flexible approach supplemented with a tool support to detect 10

anti-patterns from different SOA-based applications. We

compare results of our approach with two representative state of

the art approaches.

Keywords—SOAP web services; Anti-patterns; Bad smells; SQL

I. INTRODUCTION

Design patterns suggest viable solutions to the problems
that occur again and again in the design of the software [1].
Design patterns follow the fundamental design principles for
the development of software applications. Anti-patterns violate
fundamental design principles and they are poor solutions
adopted by developers due to deadline pressure, lack of
awareness and time to market constraints. Anti-patterns may
have a negative impact on the quality and performance of
software applications and their presence may result in
degrading the structure of the services [2]. The identification of
anti-patterns from the web services is a primary step for the
removal of anti-patterns from service based systems. It is
important to have knowledge about the presence of anti-
patterns in the software systems because it helps to improve the
software at its abstraction level. It is reported through different
studies that timely detection and correction of anti-patterns
from software systems improve system performance and
quality [4, 7]. This edge motivates researchers to offer
assistance for unskilled designers through the detection of anti-
patterns.

Service Oriented Architecture (SOA) is an arising
architecture paradigm that is widely adopted by software
industry for the development of distributed and heterogeneous

applications. SOA allows the growth of timely, cost effective,
flexible, adaptable, reusable, scalable and extendable
distributed software applications with enhanced security by
composing services through independent, reusable, and
platform independent software modules that are easy to get via
a network [8]. The application of SOA for emerging
technologies such as cloud computing, big data and mobile
applications is continuously escalating. Web-services have
become an important technology for Service Oriented
Architectures for the development of Service Based Systems
(SBS) such as Amazon, Google, eBay, PayPal, Facebook,
Dropbox, etc. Service based systems need to evolve with time
to fulfill requirements of users. These systems also evolve to
accommodate new execution contexts such as addition of new
technologies, devices and products [8]. The evolution of
service based systems may degrade design and quality of
services and it may also cause the appearance of common poor
solutions called anti-patterns. These anti-patterns affect the
quality of service and can hinder maintenance and evolution. It
reflects from state of the art anti-pattern detection techniques
that mostly the concentration was on the static analysis of
Web-services or on anti-patterns in other Service Oriented
Architecture technologies (e.g., Service Component
Architecture) [9].

It has been reported that anti-patterns have impact on the
progress and maintenance of software systems [10]. The
motivation for automatic identification of SOA related anti-
patterns is to improve the quality of service and to make
maintenance and evolution easy. Maintaining changes in web
services is a common practice to provide quality of services to
the users. A study has shown that the software maintenance
requires eighty to ninety per cent of the total budget in its
whole life cycle [11]. Most state of the art techniques focused
on detection of anti-patterns from object oriented software
applications but these techniques are not capable of detecting
anti-patterns from SOA. We identified only a few
representative approaches on specification and detection of
SOA anti-patterns from Web-services [9, 12, 13, 14, 15, 16,
18]. To the best of our knowledge, most authors used different
metrics and static/ dynamic analysis methods for the detection
of anti-patterns from web-services. The state of the art anti-
pattern detection approaches has some limitations: SODA-W
[13] approach detects anti-patterns by just considering interface
level metrics and it ignores implementation details. PA-E [14]
approach detects anti-patterns from web services by
considering their classes as well as implementation details but

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

456 | P a g e

www.ijacsa.thesai.org

it is not capable to identify classes that create a problem at the
interface level. Moreover, low cohesion operation and
duplicated web service anti-patterns are not detected by this
approach. The both approaches are also not able to identify the
location of defected code segments that play a major role for
interface level implementation. There are also no standard
definitions for web-service anti-patterns that are important for
their accurate detection. Moreover, there are still no standard
benchmark systems for comparing and evaluating results of
anti-pattern detection techniques for SOA.

The proposed approach is flexible and extendable to
implement code first concept. The presented approach is free
from the implementation restrictions of WSDL interface.
SOAP services might be implemented by using multiple
languages such as C#, Java, Perl etc. The approach may detect
anti-patterns from WSDL interface of web services as well as
source code due to support of multiple languages. The
proposed approach is supplemented with a tool support that is
used to detect 10 SOA anti-patterns from different Web-
services. The objective of presented approach is to analyse the
structure and quality of Web-services and automatically
identify anti-patterns that may help the progression and growth
of Web-services. The proposed approach is implemented by
using C# dot.net Framework. We also focus on improving the
accuracy in comparison to existing methods available for the
detection of Web-service specific anti-patterns.

Following are the major contributions of our work:

 Standardised definitions of 10 Web-services related
anti-patterns.

 A flexible and scalable approach supplemented with a
tool support for the detection of 10 anti-patterns from
different Web-services.

 Evaluation and comparison of the approach by
performing experiments on Web-service of two
different domains.

The paper is organised as follows. The state of the art is
discussed in Section II. In Section III, we present specification
of 10 anti-patterns. The concept and architecture of approach
used to detect anti-patterns are presented in Section IV. In
Section V, the concept of a prototyping tool is discussed. We
discuss experimental setup and evaluation of approach in
Section VI. The conclusion is presented in Section VII.

II. STAT OF THE ART

The research on bad smells started in 1999 when Fowler
first time introduced 22 code smells and guidelines for
refactoring smells. Bad smells are later on discovered at
design, architecture and requirement levels. Zhang et al. [20]
and Rasool et al. [19] presented reviews on code smells. Bad
smells at design levels are called design smells or anti-patterns
by different authors. A number of design smell detection
techniques and tools are presented by different authors [21, 22,
23, 24, 25]. Anti-patterns and code-smells are often mixed up
into one term, the design defects [26]. The code smells are
fine-grained and strongly connected to the code-level and anti-
patterns are coarse-grained and are shown at the design level.
Code smells are code-level symptoms indicating the expected

presence of an anti-pattern (also called ‗Design Flaw‘ [27]).
Architectural bad smells are also presented by different authors
[28, 29, 30]. A review on product line based architectural bad
smells is presented by Vale et al. [31]. The concept of bad
smells at requirements level and their detection is presented by
Femmer et al. [32]. All of the above discussed approaches
focused on bad smells for object oriented software
applications. The focus of this paper is on bad smells related to
service oriented architectures. We discuss in detail the state of
the art on bad smells/anti-patterns for service oriented
architectures.

A number of books are available on SOA-patterns and
principles [8, 33, 34] that provide guidelines and principles
characterizing ―good‖ service-oriented designs. These books
enable software engineers to manually evaluate the quality of
their systems and provide a basis for the enhancement of
design and implementation. For example, Rotem-Gal-Oz et-al.
[35] suggested 23 SOA-patterns and 4 SOA anti-patterns and
they described their effects, causes, and corrections. Erl, in his
book [33], presented 80+ SOA design, implementation,
security, and governance-related patterns. Kr´al et al. [34]
elaborated 7 SOA anti-patterns resulted due to the poor
practice of SOA rules. Brown et al. [36] provided the set of 40
anti-patterns. Dudney et al. [37] presented 52 anti-patterns in
SOA, and especially in the area of Web-services.

There are few contributions on the identification of patterns
from SOA [38, 18, 39]. Upadhyaya et al. [39] presented an
approach to detect 9 SOA patterns. Demange et al. [40]
presented an approach to detect five SOA patterns from two
SOA based systems. It is revealed through the review of
literature that the research on Service Oriented Architecture
still needs to be explored. Many detection techniques and tools
are presented in the literature [21, 23, 25, 26] that focus on
specification and detection of OO anti-patterns. These OO
based techniques did not give a viable solution for the
identification of anti-patterns that are pointed out in web-
services. There is a difference between structure of Object
Oriented software applications and applications developed
using web services. A limited number of approaches are
available for the identification of the WS anti-patterns.

Moha et al. [9] presented a technique supplemented with a
tool SODA to specify and identify the anti-patterns in SCA
systems. Authors performed experiments on two different
corpora i.e., Home automation system and Frascati service
component architecture. Authors apply algorithms that are not
generated manually and they performed experiments on a
number of SCA systems to gain the best accuracy. Hence, this
approach can only tackle the SCA modules build up using the
Java language and are not able to tackle the other SOA
technologies like J2EE, SOAP and REST.

Rodriguez et al. [41] described EasySOC and provided a
set of guidelines for service providers to avoid bad practices
during writing WSDLs. Authors identified eight poor practices
that are used to form WSDL template for Web-services. These
heuristics are the rules that use pattern matching. A toolset is
developed that enforces implementation of guidelines. Authors
evaluated effectiveness of the toolset by performing

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

457 | P a g e

www.ijacsa.thesai.org

experiments. However, authors did not examine the quality
related issues in the web service design.

Coscia et al. [42] presented a statistical correlation analysis
on the number of traditional OO metrics and WSDL-level
service metrics and found a correlation between them. Anti-
patterns in SOAP based web services and REST are introduced
first time in [13, 15, 18]. These authors used natural language
processing and source code metrics to detect anti-patterns.
Anti-patterns of SOAP based web services are detected with
high precision and recall but only for some specific services.
The tool SODA-W, an extension of SOFA framework [9] uses
already established DSL for the detection of SOAP and REST
services.

The state of the art approaches discussed above reflects that
a large number of authors focused on the detection of anti-

patterns from object oriented software projects. We present
summarised information about SOA based anti-pattern
detection approaches in Table 1. We also realised that SOA
based anti-pattern detection approaches focused towards anti-
patterns detection for Service oriented architecture specifically
for SOAP(Simple Object Access Protocol) based services. We
found only three articles on REST APIs anti-patterns detection
techniques [15, 18, 19]. The emphasis of above discussed
approaches was not on the detection of the anti-patterns in the
service interfaces. Sindhgatta et al. [43] presented a
comprehensive literature survey on service cohesion, coupling,
and reusability metrics, and they come up with five new
cohesions and coupling metrics that are set as a new service
design requirement.

TABLE I. SUMMARISED INFORMATION ABOUT SOA ANTI-PATTERN DETECTION TECHNIQUES

Reference Key Concept Anti-patterns Recovered Technique Case Studies P/R

 [9]
A rule-based approach capable for
the specification and detection of

anti-patterns using a set of metrics.

TS, MS, DS,MS SOFA Home-Automation
75%

 [12]

SOMAD apply sequential association

rules to get execution traces of

services.

S, MS, CS, DS, Kt, BS
Association rule
mining

Home Automation

90%

 [13]

SODA-W is supported by an
extended version of SOFA used for

specification and detection of SOA

anti-patterns from web services.

RP, AN, LCOP, CS, DuS, MRPC,

CRUDY-I, GOWS, FGWS

Source Code
metrics for static

and dynamic

analysis

Experiments performed
with 13 weather-related

 and 109 finance related

WSs.

75%

100%

[14]

An automated approach for the
detection of Web service anti-

patterns using a cooperative parallel

evolutionary algorithm (P-EA).

MRPC, CRUDYI, DS, AN, FG,

GOWS

Parallel

Evolutionary
Algorithm

 Web services from ten

different application
domains

85to89%

[44]

Genetic Programming approach

based on combination of metrics and
threshold values

MS, NS, DS, AN
Genetic

Programming

310 services of different

domains

85%

87%

[45] Java to WSDL Mapper
EDM, RPT, WET, AN, UFI, IC,

ISM, LCOP

Text Mining and
meta

programming

(Java2wsdl)

60 web services
96%

70-74%

[46]

Contract first concept based approach

for detecting WSDL based services

using EasySOC tool

WSDL based Services

Text Mining,
Machine learning

and component

based software
engineering

391 web services
75-80%
78-94%

[47] Prediction of Web Services Evolution Ds, MS, NS, CS

ANN algorithm to

predict anti-
patterns in future

releases

5 web services interfaces
81%,
91%

[48]

Identification of Web Service

Refactoring Opportunities as a Multi-
Objective Problem

MRPC, CRUDYI, DS, AN, FG,

GOWS

MOGP(multi-

objective genetic
programming)

 415 web services from 10

different application
domains.

94% ,

92%

[50]

Comprehensive guidelines along with

tool support to enforce these
guidelines for the development of

web services.

EDM, RPT, WET, AN, UFI, IC,
ISM, LCOP

EASY SOC to

detect violation of

rules in WSDL

A data set of 392 WSDL
documents

95.8%

[51]

Correlation analysis between source

code metrics and WSDL
implementation code

EDM, RPT, WET, AN, UFI, IC,

ISM, LCOP

Statistical analysis

for detection of
anti-patterns

90 different web services NA

[52]
WSDL document improvement for

effective service availability

EDM, RPT, WET, AN, UFI IC,

ISM, LCOP

Discoverability

and removal of
anti-patterns

 391 WSDL documents NA

[53]
Concept of graph model for detection

of anti-patterns
GOb

Metrics based

approach
Small examples NA

P (Precision), R (Recall), NA(Not applicable), EDM (Enclosed Data Model), RPT (Redundant Port Type), RDM (Redundant Data Model),WET(What Ever Type) ,AN(Ambiguous names), UFI(Undercover fault

Information), IC(Inappropriate Comments), ISM(information within standard messages),LCOP(Low cohesive operations in same port types), MS(Multi Service), NS(Nano Service), DS(Data Service), Kt(the Knot),

BNS(Bottle Neck Service), CS(Chatty Service), DuS(Duplicated service),SC(Service Chain), NH(Nobody Home), MRPC(may be Its Not RPC), Gob(God Object)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

458 | P a g e

www.ijacsa.thesai.org

 It is observed that many techniques have used metrics
for the identification of the anti-patterns.

 Different approaches applied source-code parsing
techniques to identify the anti-patterns. Source code
parsing techniques include the statistical collection of
data like counting Lines of Code, measuring Switch
Statement Cases and matching or finding other syntax
etc. [49].

 The threshold values of metrics are constant in most
cases and they are based on one‘s experience [49].

 A number of approaches in literature did not mention
the accuracy of anti-pattern detection [51, 52, 53] that is
important for the effectiveness of any approach.

 Based on the above mentioned limitations, we propose
unification of metrics-based and parsing based
techniques that not only improve the scope in order to
identify number of anti-patterns but it also improves
accuracy. The required metrics are obtained from the
SoaML of Enterprise Architecture, in spite of
reinventing the wheel and by examining them directly
from the source code.

III. SPECIFICATION OF ANTI-PATTERNS

The specification of web services related anti-patterns is
primary step for their accurate detection from web services.
The specification of anti-patterns in literature is textual that is
hard to use and describe. Due to unavailability of standard
specification of web service anti-patterns, we present
specification of 10 selected anti-patterns in this section. Our
specifications contain detailed information that is important to
understand and detect these anti-patterns. The specifications
are further used by our approach for the detection of these anti-
patterns. We selected these 10 anti-patterns for the
specification and detection due to their common existence in
different web services.

1) God Object Anti-Pattern
Name: God Object Web-service

Derived from: God Class or Blob in OO Anti-pattern

Short Description: An object that contains all the
information related to the whole service and this object also has
many methods. This makes its role in the source-code ―god-
like‖.

Violated Principle: When an object holds numerous
responsibilities

Also known as: ―Schizophrenic-class‖, ―divergent-change‖,
―unconnected-responsibilities‖, ―conceptualisation-abuse‖,
―mixed-abstractions‖ [37].

Variants: ―Vague-classes‖, ―abusive-conceptualisation‖,
―non-related data and behaviour‖, ―irrelevant-methods‖,
―discordant-attributes‖.

Metrics rule:

God object exists if the service contains:

Many methods and has very low cohesion, high response-
time and low-availability

where, Many Methods >=10, Cohesion >= 1, High
Response-Time >=1

2) Data Web-service Anti-pattern
Name: Data Web-service

Derived from: Data Class in OO anti-patterns

Also known as: ―Data class‖ ―record [class]‖ ―no-command
classes‖

Variants: ―Data clumps‖, ―data container‖

Short Description: A web-service that performs
information retrieval tasks in a distributed environment through
accessor operations, like getters and setters.

Violated Principle of Abstraction: This anti-pattern occurs
when a class is used as a holder for data without any method of
operating on it.

Metrics rule:

Data Web service exists if the service contains: High
accessor operations with few parameters and has high cohesion
and high primitive parameters

where, Accessor Operations > 50 < 73 and with few
parameters and lcom3<=0 and primitive parameters >100

3) Fine Grained WS Anti-pattern
Name: Fine Grained Web-service

Short Description: Fine-grained web-service description
regards tiny services out of which the larger ones are
composed. That larger one needs to have many coupled web-
services. Therefore, it gives rise to higher development
complexity, reduced usability. Individual Web-service is less
cohesive due to related operations that spread across services
of an abstraction.

Violated Principle: This anti-pattern is the result of
overdone implementation complexity

Also known as: ―Higher-class-complexity‖

Variants: ―Too much responsibility‖, ―module-mimic‖

Metrics rule:

This anti-pattern exists if a service contains: Few
operations and has low cohesion and has very high coupling

where, Operations >=1 And <=2, Low Cohesion >=1 And
<=2, Coupling >=1 And <=4

4) Ambiguous Name WS Anti-pattern
Name: Ambiguous Name

Short Description: When the developers use the key terms
like Port-Types, operation, and message that contains too short
and long, or too general terms, or even show the improper use
of verbs.

Violated Design Principle: This anti-pattern arises when
the class name has a verb only and hold one method with the
same name as the class and class has no inheritance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

459 | P a g e

www.ijacsa.thesai.org

Also known as: ―Operation-class‖, ―method turned into
class‖, ―single-routine-classes‖

Metris Rule:

A service contains: Too long or too short signatures and has
too many general terms in operations

where, COUNT [Operations signature length<3 or
Operations Signature length > 30] >1 or Ambiguous operations
name should have any one (arg, var, obj, foo, param, in, out,
str) >1

5) Duplicated Service
Name: Duplicated Web-service

Derived from: Duplicated class in OO anti-pattern
following silo approach

Short Description: Duplicated Web-service contains
identical-operations with the similar names and message
parameters.

Violated Design Principle: This anti-pattern occurs when
two or more abstractions are identical sharing commonalities
with their improper use in the design

Metrics Rule:

A web-service having Identical Operations and Identical
Port-Types

where, ARIP > 1 And ARIO>1

ARIP= Average Ratio of Identical Port-Types, ARIO=
Avg. Ratio of Identical Operations

where, ARIP count all ambiguous names starting from (arg,
var, obj, foo)

And ARIO is calculated as all meaningless operations name
having length less than 3 and greater than 30.

6) LowCohesiveOperations in the Same Port-Type Anti-

pattern
Derived from: Metric Cohesion

Short Description: Many unrelated operations in one port

type.
Impacted quality attributes: Flexibility and Effectiveness

Violated Principle: The modularity of a system is
composed of a set of cohesive and loosely coupled modules

Metrics Rule:

The service contains: Many methods and has very low
cohesion

NOD >=1 and <= 70 And ARAO <=27

ARAO= Average ratio of accessor operations, NOD=
Number of operations declared

7) Redundant Port-Types Anti-pattern
Name: Redundant Port-Types

Derived from: Data Replication Enterprise SOA Anti-
pattern

Also known as: ―Similar Signature Class‖, ―split-identity‖,
―redundant-classes‖, etc.

Short Description: When a WS contains multitude Port-
Types and is composed of a number of redundant operations
handling the same messages.

Variants: ―Duplicate-design-artifacts‖

Violated Principle: This anti-pattern arises when two or
more classes have split-identity

Metris Rule:

Web-service contains: Many operations and has many port-
types resulting in high cohesion

where, NOPT>1 And NPT >1

NOPT = Num of Operations in Port-Types, NPT= Number
of Port-types

8) Chatty Web-service Anti-pattern
Short Description: Chatty-WS is an anti-pattern in which

numerous attribute-level operations like getters and setters
exist in order to complete an abstraction.

Violated Principle: Violation of coupling and cohesion

Issues: Difficult to infer the order of invocation gives rise
to maintenance issues.

Metrics Rule:

Chatty Web-service exists if service contains:

Low Cohesion with High Accessor Methods And Has Low
Availability And High Response Time And Many Methods.

Where Low Cohesion >0 And Accessor Methods >=101
And Many Methods >70

9) CRUDy Web-Service Anti-pattern
Derived from: Chatty Interface anti-pattern

Short Description: A web-service design that contains
CRUD-type operations, e.g., create (), ready (), delete (),
update (). Interfaces designed may have several methods need
to be called to accomplish a goal which makes it chatty.

Violated Principle: This web service may violate share only
schema and well-defined boundaries tenets that are important
for composition of web services

Metric Rule:

A web-service is Chatty if it contains:

Many CRUD-type operations and LOW cohesion and high
accessor operations and high procedures LCOM3 <=0 and
accessor operations>100 and procedures >70 Crudy
Operations>1

Where CRUD-type operations >1

10) Loosey Goosey Web Service Anti-pattern
Name: Loosey Goosey Web Service

Short Description: Services are designed in a complex way
that creates problems for further service extensibility and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

460 | P a g e

www.ijacsa.thesai.org

functionality. Services are tightly coupled and not able to
answer the user request.

Violated Principle: Tight coupling between service
providers and consumers

Metris Rule:

A web service is Loosey goosey if the service interface
implementation is single tier and services are loosely coupled
And less cohesive

DIT<1 AND AND CBO>1 AND LCOM3>0

Where DIT: Depth of inheritance

IV. DETECTION APPROACH

The motivation of our proposed approach stems from our
previous work [49] presented for the detection of code smells
from different open source software projects. We used the
concept of contract first approaches for the implementation of
our approach. Contract-first approaches focus on WSDL
document to design first and then write that contract by using
any programming language. Mostly, web designers and
developers prefer this schema as WSDL schema is far richer as
compared to the code you designed in any programming
language. In different implementation scenarios, XML schema
restricts the size of string and can apply different patterns to
use contract detail like the use of regular expressions.
Moreover, different tools can be used to convert schema file
into HTML documentation. The architecture of proposed
approach is presented in Figure 1. We input standard
definitions of web services discussed in the previous section.
The definitions include static and dynamic properties of web
services. The static properties include static features of web
services such as number of operations, number of port types,
number of parameters etc. The dynamic properties include
features such as response time and availability. The metric
rules are composed based on the static and dynamic properties
of web services. The approach applies these metric rules for the
detection of a specific anti-pattern. Our detection algorithms
use the metrics (i.e. SoA Modelling Language) / SoAML
generated by Enterprise Architect. The approach follows three
steps process as shown in Figure 1.

Step1

 The interfaces of web services are reverse engineered
using JAVA2WSDL

1
tool based on the contract first

concept.

 Dynamic properties of web services are measured using
SAAJ

2
and SOAP UI

3
 tools.

Step 2

 The source code is reverse engineered into an
intermediate form using Sparx System Enterprise
Architect tool.

1 http://cxf.apache.org/docs/java-to-wsdl.html
2 http://docs.oracle.com/javaee/5/tutorial/doc/bnbhg.html
3 https://www.soapui.org/

 The intermediate representation is used to understand
the complete structure of web services and to build
queries.

Step 3

 Anti-pattern detection engine is developed based on the
static and dynamic properties of each anti-pattern
obtained from steps 1&2.

We discuss EA data model, SQL queries and limitations of
approach in the following subsections:

 EA Data Model

 Structured Query Language

 Limitations of approach

A. EA Data Model

Our approach depends on Sparx System Enterprise
Architect data model that is directly generated from source
code. Sparx System Enterprise Architect 11 has the ability to
generate data model of different languages directly from the
source code. Instead of reinventing the wheel, we relied on the
use of metrics i.e., SOA data model to extract relevant features
related to any given anti-pattern.

We used SOAP-UI for parsing the code and SQL to extract
the required data for the detection of Web-service related anti-
patterns from the Service Oriented Modelling Framework of
Enterprise Architect. We selected Enterprise Architect tool due
to its ability to generate well structured, self-explanatory and
detailed (metrics) data model from the source code of 13
programming languages.

B. Structured Query Language

Our approach is based on SQL to extract data from the data
model of Sparx System Enterprise Architect. Structured Query
Language is very useful database Query language capable of
extracting any required data from the Database model. SQL is
having enough types and clauses through which we can extract
(delete or alter) any required data (if present) from the SQL
database. SQL Queries are useful to retrieve huge amount of
data and records from database effectively and efficiently. SQL
based databases established standards that is adopted by ANSI
& ISO. The syntax of SQL commands is simple like English
statements.

Examples of SQL commands that we used in our prototype
for extracting data from the data model of Enterprise Architect
Modelling tool are given below:

1) Cohesion is based on well-known metrics called as

LCOM3(Lack of Cohesion among Methods) and calculated

as:

LCOM3 = (∑Procedures - (∑Method Accessed /

∑variables)) / (∑procedures - 1);

Procedures= Select count (operationid) from t_operation,

object where object. Object_Type='class';

Variables = Select count (operationid) from t_operation,

t_object where t_object. Scope='public' and t_object.

Object_Type='class';

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

461 | P a g e

www.ijacsa.thesai.org

Method Accessed = Select count (name) from

t_operationparams;

2) Coupling is calculated by using CBO (Coupling

Between Objects) and is calculated as under:

CBO=∑ coupling among classes/ ∑ classes

Count of Coupling = "select count (connector_id) from

t_connector, t_object where t_connector. Connector ID=

t_object. Object ID and t_object. Object_Type='class'";

Fig. 1. Anti-patterns Detection Approach

Total Classes= select count (object_id) from t_object
where Object_Type='class';

3) Primitive types Operations are calculated as:

Select count (operationid) from t_operationparams where

type

IN('boolean','double','int','byte','short','long','char')");

4) Counting Accessor operations:

Select count (name) from t_operation where name

like'set*' or name like 'get*'

5) Cruddy Operations are extracted as:

Select count (t_operation.OperationID) from

t_operation, t_object where t_operation.Object_ID =

t_object.Object_ID AND t_object.Object_Type =

'Interface' and t_object.Name like 'Create*' and

t_object.Name like 'update*' and t_object.Name like

'Delete*';

6) Ambiguous Ports are extracted as:

Select count (object_id) from t_object where name

like'arg*'or name like 'var*' or name like 'obj*' or name

like 'foo*' and object_type='port'

7) Ambiguous Operations are extracted as:
This metric is based on length of operation name.

Select count (object_id) from t_object where len(name)<3

or len(name)>30";

Select count (object_id) from t_object where name in

('arg*','var*','obj*','foo*' ,'param*','in*','out#','str#');

C. Limitations of Approach

To detect any given anti-pattern, our approach depends on
the metrics i.e., data model of Enterprise Architect. One should
have prior knowledge about internal structure of database
model created by Sparx System Enterprise Architect to write
SQL queries. However, the data model is created only once by
reverse engineering source code and it is updatable. A second
limitation of our approach is that when we publish contract first
then it is harder to change that contract.

V. PROTOTYPING TOOL

A prototyping tool is developed to realise concept of
approach called Specifying Web-service related anti-patterns
and Detection approach named as SWAD. SWAD is an
Enterprise Architect plug-in developed using C# language of
dot.Net Framework 4.5. The prototype tool is platform
independent and it can be integrated with other tools such as
IBM Rational Rose, Borland Together and IBM Rhapsody. We
selected Enterprise Architect due to our prior experience of
using this tool for different other projects [17, 49]. Enterprise
Architect has very rich modelling and reverse engineering
features for different programming languages. It is easily
extendable for multiple languages due to the support of reverse
engineering source code of 13+ programming languages. It
also generates metrics for the source code written in multiple
languages and these metrics are used for the detection of anti-
patterns. It directly reverse engineers source code of web
services into SOA data model. A screenshot for the user
interface of prototyping tool is given in Figure 2.

Step1

Step 2

Step 3

Intermediate

representation of Source

Code

DataBase

Anti-patterns

Detection Engine

Step 3

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

462 | P a g e

www.ijacsa.thesai.org

Fig. 2. User Interface for detection of Anti-patterns

To demonstrate that SWAD has few distinct features, we
compared it with existing state of the art tools SODA-W [13]
and P.E.Algo [14]. Table 2 presents a comparison of the
different features of SWAD with the two other tools available
in the literature. SWAD prototyping tool has a number of
features that makes it unique to other two tools. SWAD is
scalable and flexible due to the support of Enterprise Architect
for generating metrics from various languages.

TABLE II. COMPARISON OF SWAD WITH SODA-W AND P.E. ALGO

TOOLS

Features SWAD SODA-W[13] P.E. Algo[14]

Plug-in
Enterprise
Architecture

SODA Eclipse

Extendibility YES YES YES

Platform Independent YES YES YES

Detection-Algorithm

Generation
Manual Manual

Manual to

Automatic

 Validity for Code –

First Web Service
YES NO NO

Contract First facility YES NO NO

Number of anti-
patterns detected

10 6 7

VI. EVALUATION OF APPROACH

Evaluation of an approach is required to measure its
quality, accuracy and effectiveness. To evaluate our approach,
we applied SWAD on two distinct sets of WSs i.e., 7 weather
related web-services and 60 finance related web-services.
These sets of web services are selected due to the availability
of their results. We compare our results with two existing state
of the art techniques [13, 14] used for detection of anti-patterns
from web services. Table 3 shows the statistics of examined
web services extracted using CLOC

4
 tool available freely on

the web.

A. Experimental Results

We selected 60 weather and 7 finance related web services
to evaluate our approach and recovered 10 anti-patterns. We
selected these datasets due to their free availability and
comparison of our results with state of the art approaches.

4 http://cloc.sourceforge.net/

TABLE III. STATISTICS OF EXAMINED WEB SERVICES

WS SLOC Methods Attributes

BLiquidity 12210 4618 4284

Cloan to Currency 29663 8647 7650

sxBATS 13068 4994 4584

xBondRealTime 26577 6170 4541

Curs 12415 4627 4333

Data 34836 10451 8528

ExchangeRates 13535 5030 4544

MFundService 13530 4930 4527

getImage 16307 5506 5230

Index 11958 4635 4218

Populate 11335 4406 4077

ProhibitedInvestor 11565 4453 4165

StockQuoteService 13331 5383 4923

StockQuotes 19790 6327 5662

sflXML 14941 5771 5079

TaarifCustoms 19678 6565 5919

TaxEconomy 16167 6210 5336

TipoCombio 13268 4959 4608

VerifilterSoap 10500 4204 3878

WebService 11120 4314 4046

wsIndicator 10329 4203 3864

wsStrikon 15078 5588 5217

xCalender 22122 7294 6585

xCharts 32925 5585 3679

xCompensation 18917 6553 5693

xEarningCalender 20340 7137 6374

xEnergy 49670 13952 11433

xEnchanges 21305 7154 6476

xFinance 49377 14458 11503

xFundamentals 23731 7581 6806

xFundata 34821 11384 9405

xFunds 31660 9765 8193

xFuture 58311 1732 766

xGlobalBond 16582 5723 5079

xGlobalFundamentals 21858 6963 6236

xGlobalHistorical 36392 11192 9626

xGlobalRealTime 13829 5273 4741

xIndices 22838 6775 5978

xInsider 35561 11714 9565

xInterbank 77971 7551 4291

xLogos 11385 4611 4257

xMaster 23182 7922 7094

xMetals 57469 16208 12659

xNASDAQ 21183 7059 5846

xNews 15531 5666 5158

xOFAC 16037 5906 5293

xOptions 24044 7896 6520

xOutlook 14899 5353 4937

xReleases 4872 5984 5355

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

463 | P a g e

www.ijacsa.thesai.org

The results of our approach are shown in Tables 4 and 5.
Each table presents the names of web-services in first column
and then rest of the columns shows anti-patterns with their
possible metrics detected.

We selected SODA-W[13] and Parallel Evolutionary
Algorithm[14] approaches for comparing results of our

approach. SODA-W is a GUI based tool used to detect anti-
patterns from SOAP based web services. The detailed
information about tool is available at [13]. Parallel
Evolutionary Algorithm approach is used to detect anti-patterns
for SOAP based services that are based on automatic generated
algorithms and threshold values on the metrics.

TABLE IV. RESULTS FOR FINANCE RELATED WEB-SERVICES

Name of Web-

Services

GOWS

DWS CWS LCWS FGWS CRUDI RPT Dup-WS ANWS LGWS RT

BLiquidity √ √ √ √ √ X X √ √ √ 1s

Cloan to Currency √ √ √ √ √ X X √ √ √ 2s

Finding service NR NR NR NR NR X X NR NR NR None

xBATS √ √ √ X X X X √ √ X 2s

xBondRealTime √ √ √ √ X X √ √ X None

Curs √ √ √ √ √ X X √ √ X 2s

Data √ √ √ √ √ X X √ √ X 2s

ebsWebTest NR NR NR NR NR X X NR NR NR None

ExchangeRates √ √ √ √ √ X X √ √ √ 2s

MFundService √ √ √ √ √ X X √ √ √ 2s

getImage √ √ √ X X √ √ √

Index √ √ √ √ √ X X √ √ √ 2s

Populate √ √ √ √ √ X X √ √ √ 3s

ProhibitedInvestor √ √ √ √ √ X X √ √ √ 2s

StockQuoteService √ √ √ √ √ X X √ √ X 3s

StockQuotes √ √ √ √ √ X X √ √ X 2s

sflXML √ √ √ √ √ X X √ √ √ 2s

TaarifCustoms √ √ √ √ √ X X √ √ √ 4s

TaxEconomy √ √ √ √ √ X X √ √ X 2s

TipoCombio √ √ √ √ √ X X √ √ X 2s

VerifilterSoap √ √ √ √ √ X X √ X 2s

WebService √ √ √ √ √ X X √ √ X 2s

wsIndicator √ √ √ √ √ X X √ √ √ 3s

wsStrikon √ √ √ √ √ X X √ √ √ 2s

wwwThomas √ √ √ √ √ X X √ √ 2s

xAnalyst √ √ √ √ √ X X √ √ √ 2s

xBonds √ √ √ √ √ X X √ √ √ 2s

xCalender √ √ √ √ √ X X √ √ √ 2s

xCharts √ √ √ √ X X √ √ √ 2s

xCompensation √ √ √ √ √ X X √ √ √ 2s

xCorporateAct NR NR NR NR NR X X NR NR NR None

xCorporateActions NR √ √ NR X X √ √ √ 2s

xCurrency √ √ √ √ √ X X √ √ √ 2s

xEarningCalender √ √ √ √ √ X X √ √ √ 2s

xEmerging NR √ √ NR X X √ √ √ none

xEnergy √ √ √ √ √ X X √ √ X 2s

xEnchanges √ √ √ √ √ X X √ √ X 2s

xFinance √ √ √ √ √ X X √ √ X 2s

xFundamentals √ √ √ √ √ X X √ √ X 2s

xFundata √ √ √ √ √ X X √ √ √ none

xFunds √ √ √ √ √ X X √ √ X 2s

xFuture √ √ √ √ X X √ √ X 2s

xGlobalBond √ √ √ √ √ X X √ √ √ 2s

xGlobalFundamentals √ √ √ √ √ X X √ √ √ 2s

xGlobalHistorical √ √ √ √ √ X X √ √ √ 2s

xGlobalRealTime √ √ √ √ √ X X √ √ √ 2s

xIndices √ √ √ √ X X √ √ √ None

xInsider √ √ √ √ √ X X √ √ X 2s

xInterbank √ √ √ √ X X √ √ X 2s

xLogos √ √ √ √ √ X X √ X 2s

xMaster √ √ √ √ √ X X √ √ √ 2s

xMetals √ √ √ √ √ X X √ √ √ 2s

xMoneyMarket X NR NR √ NR X X √ √ 2s

xNASDAQ √ √ √ √ √ X X √ √ √ 2s

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

464 | P a g e

www.ijacsa.thesai.org

xNews √ √ √ √ √ X X √ √ √ 2s

xOFAC √ √ √ √ √ X X √ √ √ 2s

xOptions √ √ √ √ √ X X √ √ √ None

xOutlook √ √ √ √ √ X X √ √ √ 2s

xReleases √ √ √ √ √ X X √ √ √ 2s
MO: Multi-Operation Occurrences, CO: Cohesion Occurrences, NPT: Number of Parameter Type, NOD: Number of Operations Declared, AO: Accessor Operations, NOI: Number of Instances detected, DT:

Detection Time, RT: Response Time, P: Precision, R: Recall, NAN: Num. of Ambiguous names in Port-type, SLAP: AmbOp = Ambiguous Operations, ANA: Ambiguous names anti-pattern, NR: No Response

(Service not available)

TABLE V. RESULTS FOR WEATHER-RELATED WEB-SERVICES

Name of

Web-services
GOWS

DWS CWS LC WS FGWS CRUDI RPT Dup-WS ANWS LGWS

AIP3 √ √ √ √ √ √ X √ √ √

FindingService X NR NR √ NR √ X X √ √

ndfd √ √ √ √ √ √ X √ √ X

soapWS X NR NR √ NR NR X X √ X

WeatherForeca
stService

√ √ √ √ √ X X √ √ X

WeatherTerrapi
n

√ √ √ √ √ X X √ √ X

webSky √ √ √ √ √ X X √ √ X

GOWS: Gob Object Web Service, DWS: Data Web Service , CWS: Cruddy Web Service, LCWS: Low Cohesive Web service, RPT: Redundant Port Type, ANWS: Ambiguous Name Web Service, FGWS: Fine

Grained Web service, CRUDY I: Crudy Interface, DupWS:Duplicate Web Service

We combine SQL queries and source code parsing methods
and these methods work parallel to detect anti-patterns with
better accuracy. The reason for their selection is that SQL
queries are easy to customise for recovering anti-patterns with

slight variations. Secondly, we have very limited number of
approaches available for the identification of web-services
related anti-patterns.

TABLE VI. COMPARISON OF RESULTS FOR WEATHER RELATED SERVICES

SWAD Tool SODA-W Tool

Anti-pattern WS Precision Anti-pattern WS Precision

GWS Detected 68% GWS None detected ----

DWS Detected 100% DWS None detected ----

Chatty WS Detected 65% Chatty WS Detected 50%

LCWS Detected 95% LCWS Detected 100%

FGWS Detected 98% FGWS Detected 100%

DWS Detected 86% DWS None detected ----

ANWS Detected 93% ANWS Detected 100%

CRUDy I None detected ---- CRUDy I Detected 50%

RPT None detected ---- RPT Detected 100%

MRPC None detected ---- MRPC None detected ----

TABLE VII. COMPARISON OF RESULTS FOR FINANCE RELATED WEB-SERVICES

B. Comparison of Results with P.E Algorithm

Tables 6 and 7 shows the comparison of the detection
results of the anti-patterns related to the web-services using
Parallel Evolutionary Algorithm (P.E.Algo) and our approach
i.e., specifying Web-service related anti-patterns and Detection
approach. Both tables listed few web-services on which
detection have been performed to assess how efficiently the
number of WS-related anti-patterns identified in each given

web-service. It can be seen from Table 8 that only one or two
WS-related anti-patterns are detected in each web-service. For
instance, in the web-service named xOutlook only two anti-
patterns have been detected using P.E Algo approach.
Similarly, Data Web Service and Cruddy Web Service anti-
patterns are detected from xMaster web-service using P.E Algo
technique. We can see that our approach is capable of detecting
a large number of anti-patterns from different web services as

SWAD Tool SODA-W Tool

Anti-patterns WS Precision Anti-pattern WS Precision

GWS Detected 42.8% GWS None detected ----

DWS Detected 100% DWS None detected ----

Chatty WS Detected 42.8% Chatty WS None detected ----

LCWS Detected 100% LCWS Detected 100%

FGWS Detected 100% FGWS Detected 66.67%

DWS Detected 57.1% DWS None detected ----

ANWS Detected 100% ANWS Detected 100%

CRUDy I None detected ---- CRUDy I None detected ----

RPT None detected ---- RPT Detected 100%

MRPC None detected ---- MRPC None detected ----

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

465 | P a g e

www.ijacsa.thesai.org

compared to other two state of the art approaches. Figure 3
shows the variation of results by three different approaches on

selected web services.

TABLE VIII. COMPARISON OF RESULTS GENERATED BY SWAD

Services/Anti-

patterns

GOWS DWS CWS MNR LCWS RPT ANWS

P
E

-A

S
O

D
A

-W

S
W

A
D

P
E

-A

S
O

D
A

-W

S
W

A
D

P
E

-A

S
O

D
A

-W

S
W

A
D

P
E

-A

S
O

D
A

-W

S
W

A
D

P
E

-A

S
O

D
A

-W

S
W

A
D

P
E

-A

S
O

D
A

-W

S
W

A
D

P
E

-A

S
O

D
A

-W

S
W

A
D

AIP3_PV_Impa
ct

X X √ X X X X X X X X X X X

√ √ X X √ √

Finding Service X X X X X X X X X X X X X X √ X X √ X X √

XBATS X X √ X X √ X X √ √ X X X X X X X X X X √

ExchangeRates X X √ X X √ X √ √ X X X X X √ X X X √ X √

xAnalyst √ X X X X X √ X √ X X X X X X X X X X X √

X Master X X √ √ X √ √ X √ X X X X X √ X X X X X √

Xoutlook X X √ X X √ X X √ X X X X X √ X X X √ X √

Xrelease X X √ X X √ √ X √ X X X X X √ X X X X X √

Xcompensation √ X √ X X √ √ X √ X X X X X √ X X X X X √
GOWS: Gob Object Web Service, DWS: Data Web Service, CWS: Cruddy Web Service, MNR :May be its not RPC, LCWS: Low Cohesive Web service, RPT: Redundant Port Type, ANWS: Ambiguous Name

Web Service

Fig. 3. Variation of Results by three Anti-pattern Detection Tools

VII. CONCLUSION AND FUTURE WORK

The detection of web service anti-patterns from source code
supports maintenance, refactoring and highlights poor practices
adopted by developers during development of software
applications. The detection of anti-patterns from SOA is still
young area. A limited number of approaches and tools are
presented by different authors for the detection of anti-patterns
from SOA based software projects. The state of the art
approaches are not flexible for code first and contract first
concepts. Our proposed approach has three major
contributions. First, we present customisable definitions and
algorithms for detection of SOA anti-patterns from multiple
languages with varying features. Second, our approach is
flexible due to application of SQL queries and regular
expressions for matching definitions of anti-patterns in the
source code and these searching queries are not hard coded in
the source code. Our approach is capable to detect ten SOA
anti-patterns from 7 weather related and 60 finance related web
services. A prototyping tool is developed to validate the
concept of approach. Thirdly, we evaluate our tool on two
domains of web services implemented using different
programming languages and recovered 10 anti-patterns with
improved accuracy. The results of presented approach are
compared with two state-of-the-art approaches. The results
illustrate the significance of customisable anti-patterns
definitions and lightweight searching techniques in order to
overcome the accuracy and flexibility issues of previous

approaches. We plan to extend our approach for refactoring of
recovered anti-patterns. The future work will also focus on
detection of anti-patterns from REST APIs.

REFERENCES

[1] Gamma, E., Helm, R., Johnson, R., & Vlissides, J., Design Patterns:
Abstraction and Reuse of Object-Oriented Design. European Conference
on Object Oriented Programming, 1993.

[2] Riel, A. J. Object-oriented design heuristics (Vol. 335). Reading:
Addison Wesley, 1996.

[3] Abbes, M., Khomh, F., Gueheneuc, Y. G., & Antoniol, G. An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension. In 15th European conference on Software
maintenance and reengineering (CSMR), pp. 181-190, 2012.

[4] Khomh, F., Di Penta, M., Guéhéneuc, Y. G., & Antoniol, G., An
exploratory study of the impact of antipatterns on class change-and
fault-proneness. Empirical Software Engineering, 17(3), pp. 243-275,
2012.

[5] Harrison, W., & Cook, C., Insights on improving the maintenance
process through software measurement. In Proceedings of Conference
on Software Maintenance, 1990, pp. 37-45, 1990.

[6] Mäntylä, M. V., & Lassenius, C., Subjective evaluation of software
evolvability using code smells: An empirical study. Empirical Software
Engineering, 11(3), pp. 365-431, 2006.

[7] Arcelli, D., Cortellessa, V., & Trubiani, C., Antipattern-based model
refactoring for software performance improvement. In Proceedings of
the 8th international ACM SIGSOFT conference on Quality of Software
Architectures , pp. 33-42, 2012.

[8] E. Thomas, ―Service-Oriented Architecture: Concepts, Technology and
Design,‖ Pearson Education India, 2006.

SODA-W

SWAD

PE-A

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

466 | P a g e

www.ijacsa.thesai.org

[9] Palma, F., Nayrolles, M., Moha, N., Guéhéneuc, Y. G., Baudry, B., &
Jézéquel, J. M., SOA Antipatterns: An Approach for their Specification
and Detection. International Journal of Cooperative Information
Systems, 22(4), pp. 1-31, 2013.

[10] Yamashita, A., & Moonen, L., Exploring the impact of inter-smell
relations on software maintainability: An empirical study. In
Proceedings of the 2013 International Conference on Software
Engineering, pp. 682-691, 2013.

[11] Liu, H., Ma, Z., Shao, W., & Niu, Z., Schedule of bad smell detection
and resolution: A new way to save effort. IEEE Transactions on
Software Engineering, 38(1), pp. 220-235, 2012.

[12] Nayrolles, M., Moha, N., & Valtchev, P., Improving SOA antipatterns
detection in Service Based Systems by mining execution traces, In
Proceedings of WCRE, pp. 321-330. 2013.

[13] Palma, F., Moha, N., Tremblay, G., & Guéhéneuc, Y. G., Specification
and detection of soa antipatterns in web services. In European
Conference on Software Architecture, pp. 58-73, 2014.

[14] Ouni, A., Kessentini, M., Inoue, K., & Cinnéide, M. O., Search-based
Web Service Antipatterns Detection, IEEE transaction on services
computing, pp. 1-14, 2015.

[15] Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y. G., &
Tremblay, G., Are restful apis well-designed? detection of their
linguistic (anti) patterns. In International Conference on Service-
Oriented Computing , pp. 171-187, 2015.

[16] Petrillo, F., Merle, P., Moha, N., & Guéhéneuc, Y. G., Are REST APIs
for Cloud Computing Well-Designed? An Exploratory Study. In
International Conference on Service-Oriented Computing, pp. 157-170,
2016.

[17] Rasool, G., & Mäder, P., Flexible design pattern detection based on
feature types. In Proceedings of 26th IEEE/ACM International
Conference on Automated Software Engineering (ASE), 2011, pp. 243-
252, 2011.

[18] Palma, F., Dubois, J., Moha, N., & Guéhéneuc, Y. G., Detection of
REST patterns and antipatterns: a heuristics-based approach.
In International Conference on Service-Oriented Computing, pp. 230-
244, 2014.

[19] Rasool, G., & Arshad, Z., A review of code smell mining
techniques.Journal of Software: Evolution and Process, 27(11), pp. 867-
895, 2015.

[20] Zhang, M., Hall, T., & Baddoo, N., Code bad smells: a review of
current knowledge. Journal of Software Maintenance and Evolution:
research and practice, 23(3), pp. 179-202, 2011.

[21] Kaur, H., & Kaur, P. J., A Study on Detection of Anti-Patterns in
Object-Oriented Systems. International Journal of Computer
Applications,93(5), pp. 25-28, 2014.

[22] Erlikh, L., "Leveraging legacy system dollars for E-business". (IEEE) IT
Pro, May/June 2000, pp. 17-23.

[23] Moha, N., Guéhéneuc, Y. -G., Duchien, L., Meur, A. -F. L., DECOR: a
method for the specification and detection of code and design smells.
IEEE Transactions on Software Engineering(2010a), vol. 36, no.1, pp.
20–36, 2010.

[24] Moha, N., Guéhéneuc, Y. -G., Meur, A. -F. L., Duchien, L., Tiberghien,
A., From a domain analysis to the specification and detection of code
and design smells. Formal Aspects of Computing (FAC), vol. 22, no. 3-
4, pp. 345-36, 2010.

[25] Khomh, F., Vaucher, S., Gu´eh´eneuc, Y. -G., Sahraoui, H., Bdtex: A
gqm-based bayesian approach for the detection of antipatterns. J. Syst.
Softw., vol. 84, no. 4, pp. 559–572, 2011.

[26] Moha, N., Gueheneuc, Y. G., & Leduc, P., Automatic generation of
detection algorithms for design defects. In 21st IEEE/ACM International
Conference on Automated Software Engineering (ASE'06), pp. 297-300,
2006.

[27] Peldszus, S., Kulcsár, G., Lochau, M., & Schulze, S., Continuous
detection of design flaws in evolving object-oriented programs using
incremental multi-pattern matching. In Proceedings of the 31st
IEEE/ACM International Conference on Automated Software
Engineering, pp. 578-589, 2016.

[28] de Andrade, H. S., Almeida, E., & Crnkovic, I., Architectural bad
smells in software product lines: An exploratory study. In Proceedings
of the WICSA 2014 Companion Volume (p. 12), 2014.

[29] Garcia, J., Popescu, D., Edwards, G., & Medvidovic, N., Identifying
architectural bad smells. In 13th European Conference on Software
Maintenance and Reengineering, CSMR'09, pp. 255-258, 2009.

[30] Garcia, J., Popescu, D., Edwards, G., & Medvidovic, N., Toward a
catalogue of architectural bad smells. In International Conference on the
Quality of Software Architectures, pp. 146-162, 2009.

[31] Vale, G., Figueiredo, E., Abílio, R., & Costa, H., Bad smells in software
product lines: A systematic review. In Software Components,
Architectures and Reuse (SBCARS), 2014 Eighth Brazilian Symposium
on, pp. 84-94, 2014.

[32] Femmer, H., Fernández, D. M., Wagner, S., & Eder, S., Rapid quality
assurance with requirements smells. Journal of Systems and
Software, 123, 190-213, 2017.

[33] Thomas Erl. Service-Oriented Architecture: Concepts, Technology, and
Design. Prentice Hall PTR, August 2005.

[34] Jaroslav Kr´al and Michal Zemliˇcka. Crucial Service-Oriented
Antipatterns. volume 2, ˇ pp. 160–171. International Academy, Research
and Industry Association (IARIA), 2008.

[35] Rotem-Gal-Oz, E. Bruno and U. Dahan,, ―SOA patterns Manning,
pp.296, 2012.

[36] W.J Brown, R.C Malveau., H.W. McCormick, T.J Mowbray, ―Anti-
patterns: Refactoring Software, Architectures, and Projects in Crisis,‖
1st edn. John Wily and Sons, West Sussex, 1998.

[37] B. Dudney, S.Asbury, J.K. Krozak,.: J2EE AntiPatterns. John Wiley &
Sons Inc. August 2003.

[38] D. Penta, Massimiliano, A. Santone, and M. Luisa., Discovery of SOA
patterns via model checking. In Proceedings of 2nd international
workshop on Service oriented software engineering: in conjunction with
the 6th ESEC/FSE joint meeting. ACM, 2007.

[39] Bipin Upadhyaya, Ran Tang, and Ying Zou. An Approach for Mining
Service Composition Patterns from Execution Logs. Journal of
Software: Evolution and Process, 25(8), pp. 841-870. 2012.

[40] Demange, A., Moha, N., & Tremblay, G., Detection of SOA Patterns,
In International Conference on Service-Oriented Computing , pp. 114-
130, 2013.

[41] Crasso, M., Mateos, C., Zunino, A., & Campo, M., EasySOC: Making
web service outsourcing easier. Information Sciences, 259, pp. 452-473,
2014.

[42] Ordiales Coscia, J. L., Mateos, C., Crasso, M., & Zunino, A., Anti-
pattern free code-first web services for state-of-the-art Java WSDL
generation tools. International Journal of Web and Grid Services, 9(2),
107-126, 2013.

[43] R.Sindhgatta, S.Bikram, and P.Karthikeyan, Measuring the quality of
service oriented design., Service-Oriented Computing. Springer Berlin
Heidelberg, pp.485-499, 2009.

[44] Ouni, A., Gaikovina Kula, R., Kessentini, M., & Inoue, K., Web service
antipatterns detection using genetic programming. In Proceedings of the
2015 Annual Conference on Genetic and Evolutionary Computation, pp.
1351-1358, 2015.

[45] Coscia, J. L. O., Mateos, C., Crasso, M., &Zunino, A., Refactoring
code-first Web Services for early avoiding WSDL anti-patterns:
Approach and comprehensive assessment. Science of Computer
Programming, 89,pp. 374-407, 2014.

[46] Mateos, C., Crasso, M., Zunino, A., & Coscia, J. L. O., Revising WSDL
documents: why and how, Part 2. IEEE Internet Computing, 17(5), pp.
46-53, 2013.

[47] Wang, H., Kessentini, M., & Ouni, A., Prediction of Web Services
Evolution. In International Conference on Service-Oriented Computing,
pp. 282-29, 2016.

[48] Wang, H., Ouni, A., Kessentini, M., Maxim, B., & Grosky, W. I.,
Identification of Web Service Refactoring Opportunities as a Multi-
objective Problem. In 2016 IEEE International Conference on Web
Services (ICWS), pp. 586-593, 2016.

[49] Rasool, G., & Arshad, Z., A Lightweight Approach for Detection of
Code Smells. Arabian Journal for Science and Engineering, 1-24, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 5, 2017

467 | P a g e

www.ijacsa.thesai.org

[50] Rodriguez, J. M., Crasso, M., Mateos, C., & Zunino, A., Best practices
for describing, consuming, and discovering web services: a
comprehensive toolset. Software: Practice and Experience, 43(6), pp.
613-639, 2013.

[51] Coscia, J. L. O., Mateos, C., Crasso, M., & Zunino, A., Avoiding wsdl
bad practices in code-first web services. In Proceedings of the 12th
Argentine Symposium on Software Engineering (ASSE2011)-40th

JAIIO , pp. 1-12, 2011.

[52] Rodriguez, J. M., Crasso, M., Zunino, A., & Campo, M., Improving
Web Service descriptions for effective service discovery. Science of
Computer Programming, 75(11), pp. 1001-1021, 2010.

[53] YUGOV, A., Approach to anti-pattern detection in service-oriented
software systems. Trudy ISP RAN /Proc, 28(2), pp. 79-96, 2016.

