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Abstract—This paper presents an object recognition approach
of outdoor autonomous systems identifying the nature of the
interested object when observing an image. Therefore, seek-
ing for effective and robust recognition method, the proposed
approach is performed using a novel saliency based feature
detector/descriptor which is combined with an object classifier
to identify the nature of objects in an indoor or an outdoor
environment. As known, bottom-up visual attention computa-
tional models need a considerable computational power and
communication cost. A major challenge in this work is to deal
with such image processing applications managing a large amount
of the information processing and to work within real-time
requirements by improving the processing speed.

Based on interesting approach designing specific architec-
tures for parallelism, this paper presents a solution for rapid
prototyping of saliency-based object recognition applications. In
order to meet computation and communication requirement,
the developed pipelined architectures are composed of identical
processing modules which can work concurrently with distributed
memories and compute in parallel several sequential tasks with a
high computational cost. We present hardware implementations
with performance results on an Xilinx System-on-Programmable
Chip (SoPC) target. The experimental results including execution
times and application speedups as well as requirements in terms
of computing resources show that the proposed homogeneous
network of processors is efficient for embedding the proposed
image processing application.

Keywords—Object recognition; Saliency-based feature detec-
tor/descriptor; Object classifier; Pipeline architecture; Coarse-
grained model

I. INTRODUCTION

Object recognition in autonomous systems (robots, vehi-
cles, UAVs, etc.) is an important task in building a system that
can sense, identify the nature of objects around it and after-
ward react according to this information (exploring unknown
environments, obstacle avoiding, computing flight paths, etc.).
Generally, the object recognition can be used as a preprocess-
ing operation to classify objects in various applications such as
video surveillance [1], Simultaneous Localisation and Mapping
(SLAM) [2], Mission Planning [3] and Augmented Reality [4].

In this paper, we consider the problem of searching for
only one object of a known class in an unknown environments.
In order to search efficiently, the biologically inspired models
has a remarkable ability to easily detect and recognise objects
under the most complex conditions including variations in

lighting, color, orientation or size. This work proposes a
novel method for recognising objects based visual attention
mechanism [5] to extract complex visual relationships between
objects and their surroundings. Our object recognition method
is therefore based on a saliency based visual attention ap-
proach [6] to distinguish a set of visually conspicuous regions
that grab our attention from the rest of a given image without
any prior knowledge on its content. In fact, the complete
processing can be split up into two main steps: off-line stage
and on-line stage as illustrated in Figure 1. During the off-
line stage, for each object, a target attentional model is built
to represent the characteristics of the interest object from a
set of images containing instances of this object. Whereas, the
on-line stage can then decide whether or not the instance of
a target object is found in the input image. As illustrated in
Figure 1, this stage is achieved by performing two main tasks:
visual feature detection/description, (2) object classification in-
cluding matching and comparison between the detected feature
from the current image and those from the key image. First, the
proposed visual detector/descriptor identifies salient regions in
each new image from the video sequence and then describes
each one. In order to apply saliency for object recognition, we
need to obtain the saliency maps for three distinct features
(color, intensity, and orientation). As a result, this method
yields an output map containing only the regions that constitute
the most salient regions. Furthermore, the feature descriptor
then associates those regions with attentional models. In the
classification task, attentional models of the input image are
compared with the trained attentional model and the the current
feature model giving maximum correspondence is considered
the best match of the target object. To guide the attention to
look for reference objects, each saliency model is classified
as container or as non-container of each reference model by
computing a dissimilarity score between each extracted model
(current object model) and each target model (reference model)
via a matching process. Based on dissimilarity scores, we can
eliminate the salient regions that don’t contain the target ob-
jects, and then the result can be used in segmenting the whole
color image. Our approach for recognition yields encouraging
results for finding a region of interest (ROI) with synthetic and
natural input images. Translating our proposed algorithm for
real time hardware implementation requires making specific
choices so that the design meets the constraints. Some of the
main constraints are speed of execution, power dissipation,
recognition accuracy of the results. In fact, the image pro-
cessing applications based saliency computations are naturally
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Fig. 1. An overview of the proposed object recognition.

distributed and decentralised since they are organised as a set
of sequential pipeline composed by several computing units
to process several features (color, intensity, orientation, etc.).
Thus, we aim at using them in autonomous embedded systems
thanks to their hardware parallel implementation. Therefore,
in the second part of the paper, we map an object recognition
algorithm that combines saliency detection with a classification
method to our proposed coarse-grained architecture based
parameterisable softcore microprocessor, extending from the
previous work [7]. The proposed methodology might help
the designer to rapidly obtain an efficient implementation of
complex algorithms. Further, one of the main interest of this
paper is to parallelise our proposed application efficiently in
hardware, specifically for use in environments that have energy
and power constraints. To provide a complete solution for
parallel computing, embedding of a real time object recog-
nition application on a dedicated architecture design must
identify and exploit the parallelism and pipeline structures
in algorithms to match the specific application requirements
in term of the computing power and the communication
bandwidth. Hence, the developed parallel architecture based
homogeneous System-on-Chips (SoC) is comprised of a set of
sequential pipeline layers with an embedded communication
network to accelerate the software execution time. For the
given application, we additionally propose new task parallel
skeleton ”data flow skeleton” and its associated communication
functions to exploit first the task level parallelism that exist
in this application and then to be able to execute algorithms
in parallel in hardware. The major findings of the experiment
show our FPGA implementations of the saliency models retain
a good performance in recognising problems.

The paper is organised as follows; We start in Section 2
with the related work. Section 3 details the algorithm used
for saliency based object recognition. Thereafter, Section 4
describes the proposed homogeneous pipeline architectures
based softcore processors in response to computational needs
and real time performances required by multitasks real time
applications and also presents the data flow skeleton for task
scheduling of the given application in our pipeline architec-

ture. Section 5 shows the results of the implementation of
the proposed visual attention based object recognition into
Xilinx FPGA following the proposed approach. The Section 6
concludes the paper and summarises the contributions of this
work.

II. PREVIOUS RELATED WORK

We confine the related work to biologically-inspired al-
gorithms for object recognition in embedded hardware and
real-time architecture. The hardware implementation of ob-
ject recognition based saliency models in video streams has
attracted a large number of research workers. A lot of re-
searchers are interested in optimising hardware accelerators
for biologically-inspired algorithms. More specifically, we are
interested in object recognition based on bottom-up saliency
models accelerated using Field Programmable Gate Arrays
(FPGA) programmable devices. Recent work [8] presents a
visual saliency model and its hardware real time architecture
on FPGA platform to be embedded in a robotic system.
Several HMAX (Hierarchical models) accelerators are pre-
sented in [9] [10] [11]. The main focus of these papers is
to propose variety of purely hardware accelerators designs
for some computationally intensive stages in the HMAX
model [12]. Unfortunately, they must take into account several
problems related especially to area and/or memory occupation
dealing with low level hardware. For these reasons, it is
desirable to improve performance by employing more powerful
reconfigurable hardware accelerators. Thus, some proposals
focus on developing an FPGA framework for an end-to-end
attention and recognition system using saliency and HMAX
accelerators [13] [14] [15]. Particular optimisation efforts have
been proposed high performance hardware architectures for
bottom-up spatio-temporal visual saliency models. For exam-
ple, in [16], the authors have suggested a real time implemen-
tation of their proposed saliency based algorithm on a highly
parallel Single Instruction Multiple Data (SIMD) architecture
called ProtoEye, which consists of a 2D array of mixed analog-
digital processing elements (PE). Recent efforts were presented
in [17] [18], which propose a parallel implementation of this
model with multi-GPU and multi-FPGA system reaching real
time performance and good recognition accuracy.

Nevertheless, these proposed approaches can be consid-
ered, to the best of our knowledge, the first attempt to embed in
a single chip a complete real-time visual saliency applications.
However, there is no prior work on parallel implementation
of saliency-based bottom-up visual attention model applied to
visual object recognition tasks in many-core coarse-grained
architecture based parameterisable softcore. The processing re-
quirements of such applications can be fulfilled by performing
parallel processing on a given image. Our work, extending
from the previous work [7], presents the first parallel image
processing architecture based parameterisable software and
hardware modules. The overarching aim of this work is (1) the
development of real-time object recognition in SoPC devices,
attaining 94 frames per second (fps) Processing images with
size of 256× 256, and (2) task scheduling of the recognition
algorithm in the proposed multistage architecture for maximum
processing throughput.
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III. SALIENCY FOR OBJECT RECOGNITION

In this section, we address the problem of recognising
specific objects of interest from a database. We propose an
efficient method for salient region recognition for online image
processing.

A. Off-line Stage

In this stage, the aim of the work is to build a database of
attentional models (Figure 2). An attentional model is based
mainly on three components (coordinates within an image, size
of the region of interest, and saliency values) associated with
each target object has been proposed.

1) The Proposed Feature Detector/Descriptor: To resolve
the problem of distinguishing the appearance of the target
object under different viewing condition, the proposed feature
detector is based on saliency computation method described
later. The proposed detector tries to identify salient objects
that capture our attention, by virtue of being different from
the rest of the image.

When given an image, separate saliency maps are created
for intensity, color and orientation at multiple scales in a
bottom-up manner and then combined to obtain the final
saliency map. In total, 10 feature maps (FM ) are generated: 2
for intensity, 4 for color and 4 for orientation. These maps are
summed up to 3 conspicuity maps (CM ): CI (intensity), CO

(orientation) and CC (color) and combined to form the global
saliency map SM . In SM , the salient regions SRs within a
given image are determined.

2) Saliency Model: Based on the saliency features maps
collected from the object, a distinctive model is built for each
key object. The output of this stage is therefore several candi-
date attentional models of the target objects. The representative
features of each target object is given by a vector Vroi, where
its dimension is equal to 2 + 4 + 4 = 10, denoted as :

Vroi = (ui)
T (1)

To estimate the contribution of each feature map to its
associated conspicuity map, the vector component ui (i from
0 to 10) is defined as the ratio of the mean saliency in SR for
the feature map noted mFM (i) and the mean saliency for the
corresponding conspicuity map mCM (i):

ui =
mFM (i)

mCM (i)
(2)

Closely related work was presented in [19], expect that the
vector Vroi here is composed of 13 elements (10 FM and 3
CM of the VOCUS model) and also here ui is defined the ratio
of the mean saliency in SR to the mean background saliency.
Then, the detected the salient region is then kept with its local
neighbor and its coordinates in the reference image. With a
small rectangular window around our region of interest, we
consider that the attentional model of the target object based
on its size and location is given by :

Mroi = {X,Y,W,H, Vroi} (3)

where (X,Y ) is the position of upper left-corner of the
rectangle and W , H are the width and the height of the
rectangle respectively.

W

H
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Y

Fig. 2. The proposed attentional model

B. On-line Stage

The on-line stage allows to find specific known objects of
interest in the input image and then the objects are recognised
by comparing the extracted models with the candidate models
built at the off-line stage.
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Fig. 3. The bottom-up attentional detector. Saliency maps of three feature
channels (intensity, orientation and color) are computed independently and
then combined.

1) Feature Detector/Descriptor: See Figure 3 for an
overview of the proposed feature detector based bottom-up
visual saliency, proposed by Itti et al. [20] and extended by
Walther et al. [21]. From an input color image, our approach
started by extracting feature maps on three spatial scales with
image pyramids for distinct features type: intensity, orientation,
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and color. For intensity feature, the input image is converted
into gray-scale. From the gray-scale image s0, a Gaussian
image pyramid with three different scales (s1 to s4) is com-
puted. When compared to the classical attentional models
([22], [23]), the proposed methodology compute separately
the on-off and off-on contrasts for intensity feature. For the
orientation feature, there are sub-channels which are computed
to extract features specific to each orientation (0◦; 45◦; 90◦;
135◦). From the gray-scale image, the orientation feature maps
are computed using Gabor filters. Finally, for the color feature,
the input RGB image is converted into an LAB-image. From
LAB-image, a color pyramid is generated for each color red,
green, blue, and yellow.

As illustrated in Figure 3, the saliency detection algorithm
relies mainly on the principle of center surround contrast and
across scale addition. After the feature maps are computed, the
scale maps are fused into one multi-resolution feature maps
: 2 maps for the intensity feature, 4 multi-scale maps for
the color feature (green, blue, red, yellow), and 4 maps for
the orientation feature for each orientation. To combine the
features maps, the feature maps are normalised to decrease the
contribution of less important maps and the resulting maps is
then computed as:

M =
1

α×
√
β
×M (4)

where M indicates the map, α = max(M) and β is
the number of local maxima that exceed a threshold equal to
max(M

2 ). This formula is used for saliency maps by adding
them pixel to pixel, the saliency maps is then deduced.

The resulting feature maps M i are then grouped by type
of elementary dimensions, and summed into 3 conspicuity
maps: CI (intensity), CO (orientation) and CC (color). Again,
saliency maps are normalised and summed to form the bottom-
up map MS = CI+CO+CC . The output image is the saliency
map that shows a few region of interest. To determine the most
salient location, we select the region with the highest saliency
value in the saliency map SM , denoted as ∆S . Afterward, the
regions containing pixels whose average saliency S exceeds
a certain threshold ( ∆S

4 in our case) are chosen as salient
regions (SRs). From the saliency map, the proposed algorithm
iteratively selects salient region and adjusts their weights until
identifying the most salient region (MSR). For each iteration,
we select salient region with the highest saliency value. the
mechanism of a winner-take-all (WTA) network of integrate-
and-fire neurons is applied to determine the focus of attention
in this map, as well as to implement the property of inhibition
of return (IOR). Thus, the saliency in this region is inhibited
and then the next SR that has a saliency greater than ∆S

4 is
selected, and so on.

As final step, the processed output saliency map S is
characterised by a set of SRs, which are generated by the
proposed feature detector. Thus, for each image which con-
tain D different SRs, we can build the global attentional
model of the image as Mimage = (Mcandidatem)m∈[1,D] =
(Xm, Ym,Wm, Hm, Vsrm)m∈[1,D], determining the position,
size and the class of an object within an image.

2) Object Classifier: When given the output saliency map
of the input image, this step aims to help users found the

target objects they seek inside the scenes based on their
saliency features. After the image features are extracted with
their associated models, we want now to determine whether
each current feature vector corresponds to an object found
in the candidate models. Current attentional descriptors of
the input image are matched with all reference attentional
descriptors and then the current model which gives maximum
correspondence is considered as the best match of the reference
model. In order to do so, each current model is compared to
the other reference models by calculating a dissimilarity score
and models which are similar have a lower scores.

Processing images with single/multiple objects, varying in
color, size and location combinations, SRs that are matched
with the target object are those that minimise the distance
between the vectors representing the current attentional models
with each reference attentional model. In doing so, for each
reference model, we compute first the difference of visual
lightness Lm∈[1,D] between two models based on the L2
distance :

Lm = ‖Vroi − Vsrm‖2 (5)

In this work, we are not interested in the salient regions that
are fully contained within the image boundary. Consequently,
we will consider only the regions that verify the following
constraint: Dm∈[1,D] = ‖(x, y)− (xm, ym)‖2 < max(D)
where max(D) denotes the maximum distance between two
salient locations which is the diagonal distance of a given
image.

As second step, SRs that are matched are those that
minimize the difference of visual lightness between the vec-
tors representing the attentional models. To comply with this
condition, the similarity scores Simm between each current
attentional model and a each known model stored in visual
memory is defined as:

Simm =
1√

(Vroi − Vsrm)
2

(6)

Once similarity scores are computed, we then proceed to
find the global minimum and thus each current object model
which have a higher similarity value than a specific threshold
Thobj represent a given reference object model. The value
of Thobj is generally adjusted by user to recognise particular
objects.

IV. PARALLEL OBJECT RECOGNITION BASED SALIENCY
ALGORITHM

The proposed application described above can be en-
tirely implemented in a parallel manner. Based on high level
MPSoC-methodology [24], this work presents a solution for
rapid prototyping of this kind of algorithm based mainly
on two essential concepts. The first concept consists of the
derivation of a generic architecture based on a homogeneous
pipeline architecture where each stage can start as soon it
is finished and new data is available, while maintaining low
power consumption with much higher throughput. The second
one consists in the parallelisation of the sequential code on
the different softcores performed using specific communication
functions based on parallel skeleton concepts for task/data
parallelism.
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In this work, a novel parameterisable system-on-chip ar-
chitecture is proposed to handle image acquisition, distribution
and processing to embedded multi-tasks applications. To effi-
ciently utilise an increasing number of processing elements,
we proceed by first proposing a novel parallel architecture
based upon a pipeline of stages with parallel programming
patterns and each stage then may exploit parallelism in the
most appropriate way.

In order to be tailored to a given application, the proposed
multicore design is a parameterisable architecture and thus
offers a high degree of flexibility including network dimension
of each stage, softcore parametrisation, memory size allocated
to each processor, type of communication link, included special
IPs for I/O (hand coded blocks to control incoming and
outgoing video frames), image size, etc.

A. The Proposed Pipelined Architecture

The proposed architecture is shown in the following Fig-
ure 4. The interconnection network of the proposed embedded
architecture is based mainly on point-to-point connections
between nodes. Depending on the computational requirements
of the final application, the proposed pipelined architecture
comprises two parallel pipeline stages connected via direct
point to point communication links. These parallel pipeline
stages are independent and perform divers image-processing
tasks and then each stage supplies a new output data to be
processed by the next pipeline stage. A set of synchronisations
links (FIFO links) allow parallel and pipeline connections
between stages depending on the final application. Thus, these
links are in charge of control and synchronisation of the
different sub-tasks.

The initial step consists in seeking for salient regions in
each image that would presumably contain the target objects

and then those regions with their associated models will be
transmitted over unidirectional signals to the second pipeline
stage. In the classification task, current descriptors of each
acquired image are matched with all trained objects models
based on distance measures to decide whether or not the key
objects are present in the current image. In this work, architec-
tural choices were focused on Multiple-Instruction Multiple-
Data (MIMD) architecture based on Xilinx’s MicroBlaze with
distributed memories. In this architecture, each computing
node has its own copy of a program and works on different
data streams. At any time, different processing nodes may be
executing in parallel different pieces of data. The proposed
distributed-memory system has an hypercube interconnection
scheme.

1) First Stage of the Pipeline Architecture: As illustrated in
Figure 5, the first stage of pipeline architecture relies on paral-
lel homogeneous processing nodes. To increase the distribution
and processing speed, the proposed ”Input Frame Generator
module” receives the input signals from the external memory
and then transfers the original image to one or more ”frame
Grabber module” in order to distribute the data among different
parallel computing nodes. Each processing node Node0−i (i
from 0 to N ) then process on an input sub-image supplied by
the latter module via point to point connections (FSL links).
Thanks to this parameterizable module, the local sub-image to
be treated by each node is loaded in its corresponding local
memory of each processor and in that case all nodes in this
stage have access to the input image at the same time.

As shown in Figure 6, each processing node controls
its own memory module. For this reason, Node0−i contains
memory unit module, with local memory and frame memories
used by the ”Frame Grabber module” to store the selected sub-
image. In fact, frame memories are used as swap memories
when the ith image is written in the frame memory 0, the
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Node0−i processed the (i− 1)th image in the frame memory
1. Once the data is partitioned, an attentional detection will
be computed to highlight visually salient objects with their
associated models in the current image. In fact, this step is
the most time consuming stage in the sequential version. In
its parallel implementation, the input image is first split into
N = 2D1 homogeneous elements of the same size where
D1 is the Hypercube dimension of the first pipeline stage.
Finally, the result of treatment (i.e. saliency map) is obtained
by merging the computed of each elements and then proceed to
send attentional models (Xi, Yi,Wi, Hi, SSRi

)i∈[1,D] (D is the
total number of detected salient regions in the current image)
to the next pipeline stage to perform the complete processing
chain.

Bidirectional links (FSL link)
N=2D1

Processor

Local memory

Frame memory 0

Frame memory 1

ILMB DLMB

From Input Frame
Generator

Frame Grapper

FSL
Link

Unidirectional link
(To the second stage)

Input
Buffer

Output
Buffer

Fig. 6. Basic computing node of the first stage

2) Second Stage of the Pipeline Architecture: The second
pipeline stage (MIMD distributed memory) as shown in Fig-
ure 5 is based on an homogeneous and parallel embedded
architecture composed of M = 2D2 nodes (where D2 is the
Hypercube dimension of the network architecture) to satisfy
the communication needs while the target system remains
relatively inexpensive in term of FPGA occupation, memory
size and power consumption, etc. Furthermore, communication
between nodes is realised thanks to the well-known message
passing communication model using bidirectional communi-

cation links (FIFO point to point link) for relatively low
implementation costs. Without loss of generality, the basic
computing Node1−i (i from 0 to M ) is composed of the
following modules: soft processor (MicroBlaze processor),
with local memory for software program and data, and D2
FIFO links for the communication between two MicroBlazes.
Only Node0−0 in the first stage will communicate with the
Node1−0 in the second stage (only nodes with index 0 are
connected through unidirectional link). Further, the Node1−0

node sends the data from the previous stage to the other
processors in the same pipeline stage. Once the processing
of each node is done, the Node1−0 node reaps the results of
each node. As illustrated in Figure 5, the Node1−0 is also
connected to the ”Output Frame Generator” module in order
to control the output video flow. After the first pipeline stage
completes its calculations to detect a set of salient regions
in the current image and to describe them, the computations
will be then continue for the next stage to classify more than
one object at the same time. The target object model stored
already in external memory is matched with the extracted
attentional models of the current image and then the object
model giving maximum correspondence is considered the best
match. Finally, the video output is transferred straight away to
the ”Output Frame Generator” module.

B. Data Flow Skeleton

In this section, we are interested in partitioning and
pipeline scheduling of the proposed algorithm in the developed
pipelined architecture for maximum processing throughput. We
aimed to develop parallel algorithms starting from applications
composed of several independent parallel data with different
degrees of complexity. Thus, to easily map the proposed
application onto the multiprocessor system-on-chip, we have
focused our attention to provide the parallel structure of the
given application which naturally fits into a new developed
Data flow skeleton. In a parallel implementation, we must
define the parts of the given application that can be done
concurrently. In this case, our application can be referring to
two independent tasks running concurrently. Data flow skeleton
defined as pipeline of skeletons is one of the best choice
to exploit task level parallelism that exist in the proposed
applications.

Using the data flow skeleton, the overall processing of the
proposed application is split into a two of sequential tasks, each
task is based on a SCM (Split, compute and merge) skeleton,
with synchronisation step at the end of each step as illustrated
in Figure 7. Thereafter, the parallel implementation scheme
is based on data parallelism (images then lists of attentional
models describing each salient region) between the available
processors in each stage.

The input image is divided into subsets for parallel pro-
cessing. The detection module (which is actually the attention
mechanism) will concurrently run on different processing
nodes of the first hypercube producing as output a list of the
most salient regions found on this image. In practice, the split
function implemented in each selected node in the first pipeline
stage, allows to configure correctly the Frame Grabber module
and then recover the subimage in real time from the input
image. This process allows all the processing nodes to start
the compute step at the same time. Actually, the input Frame
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Generator module focuses particularly on distributing the data
coming from external memory. Each node then execute the
visual detection on the subimage selected. Once the compute
step is finished, the result is sent to the node Node0−0 through
the Merge function.

V. EXPERIMENTAL RESULTS

The experimental section is divided in to two parts. First,
we perform experiments demonstrating the properties of our
object recognition approach and second we provide experi-
mental results of the pipelined architecture implemented on a
Virtex6-LX760T FPGA and compare its performance with two
existing HMAX accelerators specifically tailored to saliency
based object recognition algorithm.

A. Evaluation of the Proposed Recognition Method

To evaluate the performance of the proposed system, we
have conducted a large number of experiments on real image
sequences. At 256×256 image resolution, we first applied our
saliency detection for efficient identifying of bright regions in
the input image under large variations on the appearance and
shape of the desired object. The recognised object is set using
the output of the saliency map obtained. The result of object
recognition is shown in Figure 8. The value of Thobj can be
determined empirically by human.

Moreover, as we have mentioned before, the target object
can be recognised accurately using the proposed algorithm
regardless of the position, size . To discard undesired regions
from the obtained binary image, a grayscale thresholding based
method is applied wherein the recognised salient region is
retained according to its coordinates and its size while the
rest of image is removed.

B. FPGA Prototyping Results

In this section, we present the parallelisation and the
embedding of the proposed object recognition algorithm on
a SoPC platform. We made several experiments on multicore

Fig. 8. From left to right: (1) Examples of color images with the target object
(red squares), (2) The corresponding saliency map input, (3) The matched
salient regions, (4) Recognition Results on 256× 256 images.

parallel implementation. Afterward, the performance of the
multistage architecture in terms of SoPC resource consumption
and the computation time is presented. The entire algorithm is
partitioned into sequential tasks and then implemented on our
proposed pipelined architecture. The two sequential tasks: (1)
visual feature detector/descriptor and (2) object classifier are
ported to the embedded architecture. Based on the proposed

TABLE I. SYNTHESIS SUMMARY FOR POINT-TO-POINT BASED
NETWORK TARGETED FOR A VIRTEX 6 ML 605 FPGA DEVICE

(P1, P2) Slice Registers Slice LUTs Block RAM/FIFO
(4,4) 16605 / 22545/ 142/

301440 (5%) 150720 (14%) 416 (34%)
(8,4) 23414/ 37759/ 266/

301440 (7%) 150720 (25%) 416 (63%)
(16,8) 50969/ 80437/ 343/

301440 (16%) 150720 (53%) 416 (83%)
(32,8) 114547/ 102489/ 405

301440 (18%) 150720 (68%) 416 (97%)

multi-processor approach, it is possible to implement various
parallel FPGA designs in a single chip to investigate the
impact of the increasing number of computing nodes on the
system performance. The technologies we used to implement
our architecture are Virtex FPGAs from Xilinx. The proposed
soft multiprocessor is based on 32-bit RISC soft processor
MicroBlaze.

According to the processing and communication require-
ments in our target application, we have created several multi-
core architectures based on FSL point-to point links, by
varying the number of processing nodes in each pipeline stage.
Each node in the first stage has the following configuration:
MicroBlaze processor with FPU unit, 32 Kb of local memory
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for software application and data storage, 32 Kb of frame
memory for data of the current image. Whereas, our uniproces-
sor system in the second stage has the following configuration
: MicroBlaze processor, 16 KB of local memory for program
and data.

During our experiments, we present the FPGA hardware
resource utilisation of various pipelined architectures to per-
form the two serial processing stages visual detector/descriptor
followed by object classifier. The Table I presents the logic
synthesis results in terms slice registers, slice LUTs and Block
RAM/FIFO using bi-directional point-to-point communica-
tions considering different number of processing nodes in the
complete system. FIFO depth is configured by 16 bytes. One
can see in Table I that the proposed system has been tested
with up to 40 processors in a Xilinx Virtex-6 LX760T device.

According to the FPGA implementation results, place and
route results of the last network configurations lead to an
area occupation of (19%) for Slice Registers, (97%) for RAM
blocks and (68%) for Slice LUTs. This pipeline architecture
based on FSL links, easily fits a Xilinx Virtex-6 LX760T
FPGA. Our resources utilisation is fairly low, which represents
68% on all the resources available on the FPGA.

C. Timing Performance

Based on the experiment results, we have conducted
various pipelined FPGA designs with several configurations
choices that have direct effect on the processing time of the
complete system. However, the computational cost for the
calculation of the saliency map is the most time-consuming
part of the complete recognition algorithm. We can see in the
top Table II that with architecture composed of 40 processing
nodes the parallel steps of the complete application executed in
much less than 40ms, leaving more time for execution of the
whole algorithm (with the sequential parts) to process more
than 25 frame/s (fps). Compared to serial computing, at a
system frequency of 100Mhz, we can see in the top Table II
that with architecture composed of 40 processing nodes the
parallel steps of the complete application executed in much
less than 40ms, leaving more time for execution of the whole
algorithm (with the sequential parts) to process more than 25
frame/s (fps). Moreover, the processing time required for the
classification step is more than the time needed to process the
visual detection and description.

TABLE II. APPLICATION EXECUTION TIME (MS) (TOP), APPLICATION
SPEEDUP (BOTTOM)

Nb of PNs (P1,P2) (1,1) (4,4) (8,4) (16,8) (32,8)
Detection time 188.921 55.078 27.387 13.694 6.879
Matching time 35.656 10.185 10.185 6.931 6.931
Total time (ms) 188.921 55.078 27.387 13.694 6.931

Nb of PNs (P1,P2) (1,1) (4,4) (8,4) (16,8) (32,8)
Detection Speed up 1.000 3.430 6.898 13.795 27.463
Matching Speed up 1.000 3.500 3.500 5.144 5.144

Total Speed up 1.000 3.430 6.898 13.795 27.257

Introducing the processing time of the 1ststage (tstage1 )
and the 2sdstage (tstage2 ) performing the first and the
second parallel parts of the given algorithm, the total
processing time of the complete design can be modeled
by:max(tstage1 , tstage2 ). For each new input image, calcula-
tion of the output values takes T clock cycles (expressed in

milliseconds). The calculation is pipelined: Tdetection clock
cycles is used to extract attentional features from the current
image, and Tmatch to match two images with attentional de-
scriptors. When the calculation is finished, the time required to
complete this phase is given by: T = max(Tdetection, Tmatch).
As result, for last configurations, our proposed method allows
recognition calculation in approx. 7ms with a frame rate
of 94.3fps for an image of size 256 × 256. Thus, we can
applied this algorithm as a preprocessing for higher level vision
algorithms.

It is then possible to calculate application speed-up from
one solution to another depending on the number of pro-
cessors implemented and run-time of the application. Ex-
ample speedups is shown in bottom line of Table II with
various degree of parallelisms (number of processing nodes)
for 256 × 256 color images. We compute the speedup of
the pipeline architecture as the ratio of the execution time
tseq(1, 1) needed by the sequential algorithm and the execution
time tpar(P1, P2) for the parallel algorithm: Speed(P1, P2) =
tseq(1,1)

tpar(P1,P2) =
tseq(1,1)

T . A speedup of 27 times has been
achieved compared to the sequential implementation on a
uniprocessor architecture. A very near to linear speed-up and a
scalable architecture make it possible to match the processing
power with the input image by adjusting the number of
processor in each stage.

An advantage of the proposed approach is that the designer
can use a set algorithmic skeletons to specify explicitly the
communication of data between tasks suitable to be run effi-
ciently on a parallel target architecture. To resolve the problem
of efficient implementation of multi-tasks applications, staged
computations are required to split the desired application in
a number of independent pipeline stages. This can provide
an increased performance while minimising execution time
and minimising communication costs without affect the global
processing time. As a final result, the proposed pipelined
system coupled with task decomposition is able to classify
objects in the input visual scene and to specify the tasks that
can be executed concurrently without an important increase
in resources requirements. Additionally, we provide a specific
software skeleton suitable to be used to implement a pipeline
algorithm.

TABLE III. COMPARISON BETWEEN OUR SALIENCY IMPLEMENTATION
AND TWO HMAX MODELS FOR OBJECT RECOGNITION [25] [18].

Hardware FPGA FPGA Our FPGA
2xVirtex6 2xVirtex6 Virtex6

SX475T[10] SX475T[18] XC6VLX
Resolution 256× 256 256× 256 256× 256
Frequency 100 MHz 100 MHz 100 MHz
Precision Fixed-point Fixed-point (24bit) Floating-point

Computational time 21.81 ms 11.04 ms 6.931 ms

The Table III represents the speedups in execution time
gained by our pipeline architecture and two existing HMAX
accelerators implementations for 256 × 256 grayscale im-
ages [10] [18]. The initial design of the HMAX accelera-
tor [10] takes about 21.81ms per image with a frame rate of
45.85 fps, whereas the second design [18] takes about 11.04ms
per image with a frame rate of 90.57fps. Our multi-processor
architecture gave an overall speedups of 3.14X and 1.52X
over the initial design and the second design, although it is
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mapped to a single FPGA only. In the proposed architecture,
As seen in the above results, our improved designs is well
suited for the object recognition based saliency computations
compared to purely hardware implementation.

VI. CONCLUSION

This paper described a visual saliency based object recogni-
tion method, as well as a hardware architecture for pipelined
processing, to allow for a more efficient implementation of
pipelined embedded applications. This work investigates the
contribution of the visual saliency computations for object
recognition, and proposes a new saliency detector/descriptor to
identify particular objects in unknown environments. Depend-
ing on the requirements of the targeted application, we go on
to provide the necessary parallel software skeleton to resolve
the communication overhead which is widely recognised as
the principal obstacle for achieving large speedup using a
large number of computing nodes. The results are encouraging
and show the potential of the proposed approach to ensure
real time processing of multitasks applications by balancing
the computation requirement between the pipeline stages. The
proposed parallel system was verified experimentally on a
Virtex 6 FPGA. A significant speedup of the parallel pipelined
architecture has been obtained. Specifically, the pipelined
architecture was capable of processing 94 frames per second,
demonstrating a 27X speedup compared to the original serial
implementation.

Future works include implementation of more complex
applications that will be embedded using this work to obtain
real time neural systems. This will include also the devel-
opment of the proposed parallel architecture, bringing other
benefits such as support of arbitrary network topologies and
allowing for dynamic reconfigurability to meet the targeted
application requirements. This will allow to show another type
of communication devices and parallel software skeletons.

REFERENCES

[1] J. Wu and Z. Xiao, Video surveillance object recognition based on shape
and color features, 2010 3rd International Congress on Image and Signal
Processing, Yantai, 2010, pp. 451-454.

[2] H. Durrant-Whyte, and T. Bailey: Simultaneous localization and map-
ping: Part I. IEEE Robot. Autom. Mag. 13, 99108 (2006).

[3] M. MUSIAL, U.W. BRANDENBURG, and G. HOMMEL, Cooperative
autonomous mission planning and execution for the flying robot MAR-
VIN. In : Intelligent Autonomous Systems. 2000. p. 636-643.

[4] J.-Y. Didier, F. Ababsa, M. Mallem: Hybrid camera pose estimation com-
bining square fiducials localization technique and orthogonal iteration
algorithm. Int. J. Image Graph. 8(1), 169188 (2008).

[5] K.K. Evans, T.S. Horowitz, P. Howe, R. Pedersini, R. Ester,
Y. Pinto,Y. Kuzmova, and J.M. Wolfe Visual attention. In Wiley In-
terdisciplinary Reviews: Cognitive Science, vol. 2, no. 5, pp.503-514,
2011.

[6] C. Siagian and L. Itti. Rapid biologically-inspired scene classification
using features shared with visual attention. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 29(2):300 312, feb. 2007.

[7] F. Pelissier, H. Chenini, F. Berry, A. Landrault, J.P. Dérutin,Embedded
multi-processor system-on-programmable chip for smart camera pose
estimation using nonlinear optimization methods. J. Real-Time Image
Processing 12(4): 663-679 (2016).

[8] F. Barranco, J. Diaz, B. Pino, E. Ros, Real-time visual saliency archi-
tecture for FPGA with top-down attention modulation, IEEE Trans. on
Industrial Informatics, 10 (3), 1726-1735, 2014.

[9] M. DeBole, A. Maashri, M. Cotter, C.-L. Yu, C. Chakrabarti, and
V. Narayanan. A Framework for Accelerating Neuromorphic-Vision
Algorithms on FPGAs. In Computer-Aided Design (ICCAD), 2011.
IEEE/ACM International Conference on, nov. 2011.

[10] J. Sabarad, S. Kestur, M. Park, D. Dantara, V. Narayanan, Y. Chen,
and D. Khosla. A Reconfigurable Accelerator for Neuromorphic Object
Recognition. In Proc. of Asia South Pacific Design Automation Confer-
ence ASPDAC12, Jan 2012.

[11] M. Park, S. Kestur, J. Sabarad, V. Narayanan, and M. Irwin. An FPGA-
based Accelerator for Cortical Object Classification. In Proc. of Design
Automation and Test Conference and Exhibition DATE12, Mar 2012.

[12] M. Riesenhuber and T. Poggio, Hierarchical models of object recog-
nition in cortex, Nature Neuroscience, vol. 2, no. 11, pp. 1019-1025,
November 1999.

[13] S. Kestur, M. Park, J. Sabarad, D. Dantara, V. Narayanan, Y. Chen, and
D. Khosla. Emulating Mammalian Vision on Reconfigurable Hardware.
In Intl. Symp. on Field Programmable Custom Computing Machines
FCCM12, May 2012.

[14] S. Bae, Y. Cho, S. Park, K. M. Irick, Y. Jin, and V. Narayanan. An FPGA
implementation of information theoretic visual-saliency system and its
optimization. In Intl. Symp. on Field Programmable Custom Computing
Machines, FCCM, pages 4148, 2011.

[15] A. Maashri, M. DeBole, M. Cotter, N. Chandramoorthy, Y. Xiao,
V. Narayanan, and C. Chakrabarti. Accelerating neuromorphic vision
algorithms for recognition. In Design Automation Conference (DAC),
2012 49th ACM/EDAC/IEEE, pages 579 584, june 2012.

[16] N. Ouerhani, H. Hgli, P. Burgi, and P. Ruedi, A real time implementation
of the saliency-based model of visual attention on a SIMD architecture,
in Proc. 24th Symp. Pattern Recognit., 2002, pp. 282289.

[17] A. Rahman, D. Houzet, D. Pellerin, S. Marat, N. Guyader. Parallel
implementation of a spatio-temporal visual saliency model. Journal of
Real-Time Image Processing, Springer Verlag, 2010, 6 special issue (1),
pp.3-14.

[18] M.S. Park, C. Zhang, M. DeBole, and S. Kestur. 2013. Accelerators for
biologically-inspired attention and recognition. In of the 50th Annual
Design Automation Conference (DAC ’13). ACM, New York, NY, USA

[19] S. Frintrop. VOCUS : A Visual Attention System for Object Detection
and Goal Directed Search, volume 3899 of Lecture Notesin Computer
Science. Springer, 2006.

[20] L. Itti, C. Koch, and E. Niebur, A Model of Saliency-based Visual
Attention for Rapid Scene Analysis, IEEE Tran. on Pattern Analysis and
Machine Intelligence, vol. 20, no. 11, pp. 1254 1259, Nov. 1998.

[21] D. Walther and C. Koch, Modeling Attention to Salient Proto-objects,
Neural Networks, vol. 19, no. 9, pp. 1395 1407, 2006.

[22] M. Weber, M. Welling, and P. Perona. Towards automatic discovery of
object categories. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, 2000.

[23] L. Itti, C. Koch, and E. Niebur. A model of saliency based visual
attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach.
Intell, pages 1254-1259, November 1998.

[24] H. Chenini, J.P. Derutin, R. Aufrere, R. Chapuis: Parallel Embedded
Processor Architecture for FPGA Based Image Processing using Parallel
Software Skeletons. EURASIP J. Adv. Signal Process (2013).

[25] R.J. Peters and L. Itti. Applying computational tools to predict gaze di-
rection in interactive visual environments. ACM Transactions on Applied
Perception, 5(2), Article 8, 2008.

www.ijacsa.thesai.org 482 | P a g e


