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Abstract—This paper proposes two optimal Cordic Loeffler
based DCT (Discrete Cosine Transform algorithm) architectures:
a fast and low Power DCT architecture and a high PSNR
DCT architecture. The rotation parameters of CORDIC angles
required for these architectures have been calculated using a
MATLAB script. This script allows the variation of the angle’s
precision from 10−1 to 10−4. The experimental results show that
the fast and low Power DCT architecture correponds to the
precision 10−1. Its complexity is even lower than the BinDCT
which is a reference in terms of low complexity and its power
has been enhanced in comparison with the conventional Cordic
Loeffler DCT by 12 mW. The experimental results also show that
the high PSNR DCT architecture corresponds to the precision
10−3 for which the PSNR has been improved by 6.55 dB in
comparison with the conventional Cordic Loeffler DCT. Then,
the hardware implementation and the generated RTL of some
required Cordics are presented.

Keywords—Cordic Loeffler DCT; high quality architecture; low
power architecture; Image Processing; DCT

I. INTRODUCTION

The Discrete Cosine Transform DCT was developed by
Ahmed et.al in 1974 [1]. It is a robust approximation of the
optimal Karhunen-Loeve Transform (KLT) [2]. It has become
one of the most widely used techniques of transforms in digital
signal processing.

Many works deal with the optimization of the DCT archi-
tectures. Two principal axes are explored. The first one consists
on the enhancement of the quality of the DCT in terms of
precision measured through the Peak Signal to Noise Ratio
(PSNR) ([3], [4]). The reference in this case is the Loeffler
based DCT which is the most precise architecture since it
doesn’t contain approximations.

The second axe consist on improve the DCT in terms of
power consumption ([5], [6], [7]). In fact, it is well-known
that DCT is one of the computationally intensive transforms

since it requires many multiplications and additions. Many
researches had been done on low-power DCT designs [8],
[9]. As the multiplications are energy expensive operations,
several algorithms are based on additions and shifts instead of
multiplications.

In 2004, Jeong et al. [9] suggested improving a Cordic
(COordinate Rotation Digital Computer) based implementation
of the DCT. CORDIC is an algorithm which can be used to
evaluate various functions in signal processing [10], [11], [12].
In [9], authors proposed a low-complexity CORDIC based
DCT algorithm based on the Flow Graph Algorithm (FGA)
which is the commonly used way to represent the fast DCT.
It requires only 38 add and 16 shift operations and consumes
about 26.1 % less power compared to [13],with a minor image
quality degradation of 0.04 dB.

In the same direction, Sun et .al [14], [15] proposed a new
flow graph for Cordic based Loeffler DCT implementation.
A new table of parameters is obtained with new choice of
the elementary rotations. Their experimental result shows that
the Cordic-based Loeffler DCT consumes 16% of energy
compared to [16] with a minor image quality degradation of
0.03 dB.

After this analysis of state of the art, we remark that
previous works have almost neglected the quality of the results
provided by the DCT algorithm in order to decrease the energy
consumption. In the aformentioned works, the reached preci-
sion degree is at most 10−4. We propose to remain in the same
interval (10−1 to 10−4) and provide 2 optimal architectures.
The first one is a fast and low power DCT architecture and the
second one is a high PSNR DCT architecture. The parameters
of the two architectures are obtained from a Matlab script
which calculates the rotation parameters of the considered
angles.

Contribution in this paper are:

• A matlab script which calculates the CORDIC param-
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eters of the desired angles.

• A high PSNR DCT architecture which is the closest
to the reference in terms of image quality (the Loeffler
based DCT [16]) with significant power reduction.

• a fast and low power DCT architecture which is the
closest to the reference in terms of low complexity
(The BinDCT [17]) with substancial PSNR improve-
ment.

This paper is organized as follows. Section 2 briefly
introduces the algorithms of conventional Cordic-Based DCT
Architecture. In Section 3, the proposed architectures and their
Cordic parameters are presented. The experimental results are
shown in Section 4 while Section 5 concludes this paper.

II. CONVENTIONAL CORDIC-BASED DCT
ARCHITECTURE

A. Cordic Algorithm

The conventional Cordic algorithm [10], [11] is hardware-
efficient used for the approximation computation of the tran-
scendental functions. It only uses shift and addition operations.
The Cordic algorithm can operate in two modes, namely
vectoring and rotation and in this paper, the first mode is
focused on.

In the conventional Cordic algorithm, a rotation angle is
decomposed into a combination of micro-rotation angles of
arctangent radix. When the vector is rotated by an angle θi,
the coordinate changed from (Xi, Yi) to (Xi+1, Yi+1).

The value of vector after this micro rotation can be repre-
sented as:(

xi
yi

)
=

(
cos(θi) −σi sin(θi)
σi sin(θi) cos(θi)

)(
xi+1

yi+1

)
= Ki

(
1 −σi2−i

σi2
−i 1

)(
xi+1

yi+1

) (1)

where θi = arctan(2−i), σi = ±1 and Ki = cos(θi).

The circular rotation angle is depicted as:

θ =
∑

σiθi where σi = ±1 (2)

Fig. 1. The direct implementation of equation 1

In the equation (1), only shift and add operations are
required to perform the rotation angle described in Fig. 1. But,
the results of the rotation iterations need to be scaled by a

compensation (scale) factor K. This can be done by using the
following iterative method.

K =
∏
i

Ki =
∏
i

1√
1 + 2−2i

(3)

The scale factor K which can be interpreted as a constant
gain (hence not data dependent) can be tolerated in many
digital signal processing applications. Hence, it should be
carefully investigated whether it is necessary to compensate for
the scaling at all. If scale factor correction cannot be avoided,
two possibilities are known. The first approach consists on
performing a constant factor multiplication with 1/Ki. The
second method is based on extending the Cordic iteration in a
way that the resulting inverse of the scale factor takes a value.
In other words, writing the scaling factor as a sum of 2−i

where i must be determined so that the error is minimized,
is needed. In the rotation mode, the angle accumulator is
initialized with the desired rotation angle. The rotation decision
at each iteration is made to diminish the magnitude of the
residual angle in the accumulator one. The decision at each
iteration is therefore based on the sign of the residual angle
after each step [10].

B. Cordic-Based DCT Architecture

The One-dimensional DCT for 8x8 sub-images is defined
as

X(t) =
1

2
C(t)

7∑
i=0

x(i) cos

[
(2i+ 1)tπ

16

]

C(t) =

{ √
2
2 if t = 0
1 otherwise

(4)

Where x(i) is the input data and X(t) is 1-D DCT
transformed output data.

The two-dimensional DCT is a separable transform. It can
be executed by one-dimensional DCT in a serial manner as
shown in the Fig. 2.

Fig. 2. 8× 8, 2-D DCT processor with separable 1-D DCT

The 1-D DCT transform is represented by the Equation 5
- 12.

X(0) = x(0)+x(1)+x(2)+x(3)+x(4)+x(5)+x(6)+x(7)
(5)

X(1) =
(
x(0)− x(7)

)
cos(π/16) +

(
x(1)− x(6)

)
cos(3π/16)

+
(
x(3)− x(4)

)
sin(π/16) +

(
x(2)− x(5)

)
sin(3π/16)

(6)

X(2) =
(
x(1) + x(6)− x(2)− x(5)

)
cos(3π/8)

+
(
x(0) + x(7)− x(3)− x(4)

)
sin(3π/16)

(7)
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X(3) =
(
x(0)− x(7)

)
cos(3π/16)−

(
x(3)− x(4)

)
sin(3π/16)

−
(
x(2)− x(5)

)
cos(π/16)−

(
x(1)− x(6)

)
sin(π/16)

(8)

X(4) =
(
x(0)+x(3)+x(4)+x(7)

)
−
(
x(1)+x(2)+x(5)+x(6)

)
(9)

X(5) =
(
x(3)− x(4)

)
cos(3π/16) +

(
x(0)− x(7)

)
sin(3π/16)

−
(
x(1)− x(6)

)
cos(π/16) +

(
x(2)− x(5)

)
sin(π/16)

(10)

X(6) =
(
x(0) + x(7)− x(3)− x(4)

)
cos(3π/8)

−
(
x(1) + x(6)− x(2)− x(5)

)
sin(3π/8)

(11)

X(7) =
(
x(0)− x(7)

)
sin(π/16)−

(
x(1)− x(6

)
) sin(3π/16)

−
(
x(2)− x(5)

)
cos(3π/16)−

(
x(3)− x(4)

)
cos(π/16)

(12)

The unfolded and reorganized equations allow to detail the
origin of the FGA based DCT shown in Fig. 3. These equations
are also used to represent the DCT as a matrix which will be
used in the 2D-DCT processing (Fig. 2).

The Cordic array performs the fixed-angle rotation in the
DCT algorithm. Therefore, the general signal flow graph of
Cordic-based DCT is presented by Fig. 4.

Fig. 3. Hardware architecture of CORDIC-based 1-D DCT

According to the Fig. 4, the signal flow can be represented
by three major components, the butterfly operator, the fixed-
angle CORDICs and the post-scaling factors of 8-point DCT.

III. PROPOSED HIGH PRECISION CORDIC-BASED
LOEFFLER DCT ARCHITECTURE

In this section, the proposed MATLAB script which calcu-
lates the Cordic Rotations is presented. The main result of this

Fig. 4. The general signal flow graph CORDIC-based DCT

algorithm is enhancing the degree of precision by improving
the selected parameters in order to find the exact values of the
rotations.

A. Computation of Micro-Rotation decomposition

The proposed MATLAB script takes as input the rotation
angle. We vary the precision degree from 10−1 to 10−4 to
remain in the same interval exploited by the conventional
architectures.

Input Theta (angle) and Epsilon (tolerance);

The MatLab script

1:Cpt=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0];
2:N=1;
3:Sig=0;
4:while (|Theta|>Epsilon) && (N<15))
5:if (Theta < 0) Sig=Sig+1; end;
6:x=|tan(Theta)|;
7:k=round(log2(1/x));
8:Theta=|Theta|-atan(1/2ˆk);
9:Cpt(N)=(-1)ˆSig * k;
10:N=N+1;
11:end;
12:a=0;
13:for k=1:15
14: if (Cpt(k) ˜= 0)
15: a=a+|Cpt(k)|*atan(2ˆ(-|Cpt(k)|))/|Cpt(k)|;
16:end
17:end

This approach provides the Cordic parameters (iterations
and direction) corresponding to the angle and the selected pre-
cision. The iterations, in other words, the micro-rotations are
identified with their orientation, clockwise or anticlockwise.

This method is applicable to the angles comprised within
the range of 0 and π/4. The angles higher than π/4 can be
decomposed into angles in this interval. For example, 3π/8 =
π/4 + π/8. So, to determine the CORDIC parameters of this
angle, we begin by the CORDIC parameters of π/4 followed
by the CORDIC parameters of π/8.

B. Cordic parameters corresponding to the angle 3π/16

For a precision degree of 10−1 and 10−3, the micro-
rotations shown respectively in the Table I, II are found.
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TABLE I. DETERMINING THE CORDIC PARAMETERS FOR 3π/16 CORRESPONDING TO A PRECISION DEGREE OF 10−1

θ = 3π/16 x = |tanθ| i=round(-log2(x)) θ = |θ| − tan−1(2−1) σ Stop Condition
|θ| < ε

Iteration1 x=0.6682 1 θ = 0.1254 + 0.125 > 10−1

Iteration2 x=0.1261 3 θ = 0.001 + 0.001 < 10−1

End of process

TABLE II. DETERMINING THE CORDIC PARAMETERS FOR 3π/16 CORRESPONDING TO A PRECISION DEGREE OF 10−3

θ = 3π/16 x = |tanθ| i=round(-log2(x)) θ = |θ| − tan−1(2−1) σ Stop Condition
|θ| < ε

Iteration1 x=0.6682 1 θ = 0.1254 + 0.125 > 10−3

Iteration2 x=0.1261 3 θ = 0.001 + 0.001 > 10−3

Iteration3 x= 0.0010 10 θ = 6.9457e− 05 + 6.9457e− 05 < 10−3

End of process

The rotation angle 3π
16 can be written as the weighted sum

of micro-rotations as seen in the Equation 13

θ =
3π

16
= 0.589048 ≈ θ1 + θ3 = 0.588002± 10−1 (13)

Based on the previous computed micro-rotations of the
3π/16 angle, the Cordic architecture computing 3π/16 angle
is given in Fig. 5.

Fig. 5. Unfolded flow graph of the 3π/16 angle (Precision=10−1)

The rotation angle 3π
16 is shown in the Eq. 14

θ =
3π

16
= 0.589048 ≈ θ1+θ3+θ10 = 0.588979±10−3 (14)

The Cordic architecture computing 3π/16 angle is given
in Fig. 6.

Fig. 6. Unfolded flow graph of the 3π/16 angle (Precision=10−3)

C. Cordic parameters corresponding to the angle π/16

For a precision degree of 10−1 and 10−3, the micro-
rotations shown respectively in the Table III and IV are found.

The rotation angle π
16 can be written as the weighted sum

of micro-rotations as seen in the Equation 15

θ =
π

16
= 0.196349 ≈ θ2 = 0.244978± 10−1 (15)

The Cordic architecture computing π/16 angle is given in
Fig. 7. The generated RTL is shown in Fig. 8. As it is shown,
it consists on a subsystem with 2 inputs and 2 outputs. The
subsystem is composed by two shift operators (sh1 and sh2)
and two add/sub operators (a and sub).

Fig. 7. Unfolded flow graph of the π/16 angle (Precision=10−1)

Fig. 8. The generated RTL of the of the cordic π/16 (Precision=10−1)

The rotation angle π
16 estimated with a precision degree of

10−3 is shown in the Eq. 16

θ =
π

16
= 0.196349 ≈ θ2 − θ4 + θ6 − θ9 = 0.196230± 10−3

(16)

The Cordic architecture computing π/16 angle is given in
Fig. 9.
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TABLE III. DETERMINING THE CORDIC PARAMETERS FOR π/16 CORRESPONDING TO A PRECISION DEGREE OF 10−1

θ = π/16 x = |tanθ| i=round(-log2(x)) θ = |θ| − tan−1(2−1) σ Stop Condition
|θ| < ε

Iteration1 x=0.1989 2 θ = −0.0486 + 0.048 < 10−1

End of process

TABLE IV. DETERMINING THE CORDIC PARAMETERS FOR π/16 CORRESPONDING TO A PRECISION DEGREE OF 10−3

θ = π/16 x = |tanθ| i=round(-log2(x)) θ = |θ| − tan−1(2−1) σ Stop Condition
|θ| < ε

Iteration1 x=0.1989 2 θ = −0.0486 + 0.048 > 10−3

Iteration2 x=0.0487 4 θ = −0.0138 - 0.0138 > 10−3

Iteration3 x= 0.0138 6 θ = −0.0138 + −0.0018 > 10−3

Iteration4 x= 0.0018 9 θ = −0.0138 - −1.1908e− 04 < 10−3

End of process

Fig. 9. Unfolded flow graph of the π/16 angle (Precision=10−3)

D. Cordic parameters corresponding to the angle 3π/8

For a precision degree of 10−1 and 10−3, the micro-
rotations shown respectively in the Table V and VI are found.

The rotation angle 3π
8 estimated with a precision degree of

10−1 is shown in the Eq. 17

θ =
3π

8
= 1.178097 ≈ θ0 + θ1 = 1.249045± 10−1 (17)

The Cordic architecture computing 3π/8 angle is given
in Fig. 10. The generated RTL is shown in Fig. 11. As it is
notable, it is composed by 4 add/sub operations (a1, a2, sub1
and sub2) and 2 shifters (sh1 and sh2).

Fig. 10. Unfolded flow graph of the 3π/8 angle (Precision=10−1)

The rotation angle 3π
8 estimated with a precision degree of

10−3 is shown in the Eq. 18

θ =
3π

8
= 1.178097 ≈ θ0 + θ1 + θ4 + θ7 = 1.178814± 10−3

(18)

The Cordic architecture computing 3π/8 angle is given in
Fig. 12.

IV. EXPERIMENTAL RESULTS

In order to demonstrate the high-quality feature of the
proposed DCT architectures, it has been evaluated considering
a JPEG2000 compression chain [18] using a well-known test
image. Table VII shows the comparison of the PSNR of the
proposed DCT architectures for precision degrees ranged from
10−1 to 10−4, with the other conventional DCT architectures.
Checked results consider high-to-low quality compression (i.e.
quantization factors from 95 to 70) using Lena image. Fig. 13
gives the experimental results based on the Lena image.

It can be easily noticed from the Table VII that Arch.Deg3
has better quality about 6.55 dB for Q=95 than the Cordic-
based Loeffler. As seen in the Table VII (especially the last
row which correponds to the average PSNR), Arch.Deg3 is
the closest to the Loeffler DCT which is considered as the
reference and the target in terms of precision and image quality.
It is also noticed that it is useless to go higher than 10−3 since
the values remain stable. This is why Arch.Deg3 is considered
as the best architecture in terms of image quality.

The considered architectures have been implemented on
Virtex5 xc5vlx30-3ff676. The power consumption is measured
with Xpower Analyzer with 100 Mhz clock frequency and 1V
supply power. The delay of each architecture is determined
with the ISE Simulator (ISIM). The power consumption, the
latency and the complexity of the different DCT architectures
(the conventional and the proposed ones) with precision de-
grees ranged from 10−1 to 10−4 are shown in the Table VIII.

As it could be noticed, the most interesting architecture in
terms of power consumption and execution delay is Arch.Deg1
which corresponds to a precision degree of 10−1. The com-
plexity of this architecture is even lower than the BinDCT
which is a reference in terms of low complexity. The power
consumption of Arch.Deg1 is almost the lowest. The fact is
that the power of the BinDCT is lower but this loss of power is
minor when the significant enhancement made by Arch.Deg1
in terms of image quality in comparison with the BinDCT is
considered.

The waveform correponding to Arch.Deg1 and Arch.Deg3
are shown respectively in Fig. 14 and 15. As it is notable from
Table VIII, Fig. 14 and 15, the execution time of a single
column of an 8 × 8 image block is 95 ns for Arch.Deg1 and
105 ns for Arch.Deg3. In terms of number of cycles, it could
be said that for Arch.Deg1 it is equal to 10 cycles and for
Arch.Deg3 11 cycles. The process of an entire 8 × 8 image
block takes 905 ns for Arch.Deg1 and 985 ns for Arch.Deg3.
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TABLE V. DETERMINING THE CORDIC PARAMETERS FOR 3π/8 CORRESPONDING TO A PRECISION DEGREE OF 10−1

θ = 3π/8 x = |tanθ| i=round(-log2(x)) θ = |θ| − tan−1(2−1) σ Stop Condition
π/4 + π/8 |θ| < ε

Iteration1 x=1 0 θ = 0 - 0 < 0.1
π/4 End of Process π/4

Iteration2 x=0.4142 1 θ = −0.0709 + 0.07 < 10−1

π/8 End of Process 3π/8

TABLE VI. DETERMINING THE CORDIC PARAMETERS FOR 3π/8 CORRESPONDING TO A PRECISION DEGREE OF 10−3

θ = 3π/8 x = |tanθ| i=round(-log2(x)) θ = |θ| − tan−1(2−1) σ Stop Condition
π/4 + π/8 |θ| < ε

Iteration1 x=1 0 θ = 0 - 0 < 0.1
π/4 End of Process π/4

Iteration2 x=0.4142 1 θ = −0.0709 + 0.07 > 10−3

π/8

Iteration3 x= 0.0711 4 θ = 0.0085 - 0.07 > 10−3

π/8

Iteration4 x=0.0085 7 θ = 7.1738e− 04 - 7.1738e− 04 < 10−3

π/8 End of Process π/8
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Fig. 11. The generated RTL of the of the cordic 3π/8 (Precision=10−1)

Fig. 12. Unfolded flow graph of the 3π/8 angle (Precision=10−3)

In terms of number of cycles, it could be said that Arch.Deg1
takes 80 cycles and Arch.Deg3 88 cycles. This is perfectly
normal since Arch.Deg3 requires more shift/add operation

layers than Arch.Deg1. So the process takes more time.

In comparison with the Loeffler DCT, it could be said
that Arch.Deg1 is somewhat slower since the multiplication
operation is replaced by several layers of shift/add operators
which leads to a little higher delay.

If one compares the conventional Cordic Loeffler based
architecture, Arch.Deg1 and Arch.Deg2, he finds that the delay
is the same even though the shift/add operation layers are
not exactly similar. This is perfectly normal since the delay
depends essentially on the longest path and in these three cases,
the longest path passes through the 3π/16 Cordic.
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TABLE VII. PSNR FROM HIGH-TO-LOW COMPRESSION QUALITY IN JPEG2000 FOR LENA128 IMAGE

Quality Loef. CLoef. BinDCT Arch.Deg1 Arch.Deg2 Arch.Deg3 Arch.Deg4
Factor DCT DCT

95 44.23 36.98 26.94 41.33 42.04 43.53 43.53
90 39.72 36.02 26.85 38.52 38.85 39.46 39.46
85 37.14 35.11 26.78 36.44 36.62 36.99 36.99
80 35.46 34.30 26.65 35.06 35.18 35.35 35.35
75 34.36 33.71 26.57 34.03 34.12 34.28 34.28
70 33.61 33.18 26.48 33.39 33.46 33.56 33.56

Average 37.42 34.88 26.71 36.46 36.71 37.19 37.19

(a) 34.28 dB for Q=75
(Arch.Deg3)

(b) 36.99 dB for Q=85
(Arch.Deg3)

(c) 43.53 dB for Q=95
(Arch.Deg3)

(d) 36.98 dB for Q=95
(Conventional CLDCT)

Fig. 13. Lena images obtained using the proposed Cordic-based Loeffler DCT for P = 10−3

TABLE VIII. COMPLEXITY AND POWER CONSUMPTION FOR DIFFERENT DCT ARCHITECTURES

8-point DCT Multipliers Add/Sub Shift Power(W) Delay(ns)
Loeffler DCT[16] 11 29 0 0.744 75

CORDIC-based Loeffler DCT [14], [15] 0 38 16 0.642 95
Bin DCT [17] 0 36 17 0.600 95

Arch.Deg1 (10−1) 0 34 12 0.630 95
Arch.Deg2 (10−2) 0 40 18 0.640 95
Arch.Deg3 (10−3) 0 46 24 0.656 105
Arch.Deg4 (10−4) 0 52 30 0.659 115

Fig. 14. The Waveform corresponding to Arch.Deg1
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Fig. 15. The Waveform corresponding to Arch.Deg3

V. CONCLUSION

In this paper, we present two optimal Cordic Loeffler based
DCT architectures: a high PSNR architecture (Arch.Deg3)
and a fast and low power architecture (Arch.Deg1). The
Cordic parameters required for these architectures have been
calculated using a MATLAB script. The obtained results con-
cerning the first architecture (Arch.Deg3) show a significant
improvement in the PSNR (6,55 dB for Q=95 in comparison
with the Cordic Loeffler based DCT and 16,6 dB for Q=95
in comparison with the BinDCT) without a substantial loss
of Power. Concerning the second architecture, we obtain an
enhancement in terms of power consumption (12 mW in
comparison with the conventional Cordic Loeffler based DCT
and 114 mW in comparison with the Loeffler based DCT) with
a significant improvement in terms of PSNR (4,35 dB for Q=95
in comparison with the Cordic Loeffler based DCT and 14.4
dB for Q=95 in comparison with the BinDCT). The optimal
Cordic Loeffler DCT architectures which we found could be
used in biometrical systems and endoscopy applications.
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